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Abstract  

Mathematical arguments are central components of mathematics and play a role in certain types of modelling of 
potential mathematical giftedness. However, particular characteristics of arguments are interpreted differently in 
the context of mathematical giftedness. Some models of giftedness see no connection, whereas other models 
consider the formulation of complete and plausible arguments as a partial aspect of giftedness. Furthermore, 
longitudinal changes in argumentation characteristics remain open. This leads to the research focus of this article, 
which is to identify and describe the changes of argumentation products in potentially mathematically gifted 
children over a longer period. For this purpose, the argumentation products of children from third to sixth grade 
are collected throughout a longitudinal study and examined with respect to the use of examples and 
generalizations. The analysis of all products results in six different types of changes in the characteristics of the 
argumentation products identified over the survey period and case studies are used to illustrate student use of 
examples and generalizations of these types. This not only reveals the general importance of the use of examples 
in arguments. For one type, an increase in generalized arguments can be observed over the survey period. The 
article will conclude with a discussion of the role of argument characteristics in describing potential mathematical 
giftedness.  
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Only when you can explain something, have you understood it. A sweeping statement that, when 

expressed in different terms, finds scientific acceptance. The ability to formulate arguments is not only a 

central learning goal of mathematics teaching, but is also an important basis for understanding 

mathematical contexts (Hanna, 2000). Mathematical arguments are not only the building blocks of 

content but are also methodological tools for deeper understanding. Justifying connections or dealing 

with assumptions are only two examples of mathematical argumentation activities.  

Mathematical reasoning is sometimes considered in the diagnosis, characterization and promotion 

of mathematical giftedness in students from an outcome-focused perspective through the 

characterization of the formulated arguments (Heinze, 2006; Maddocks, 2018; Sowell et al., 1990). The 

relevance of arguments for mathematics education can also be extended to the context of potential 

mathematical giftedness. This reveals two gaps in research, which are elaborated as follow: 
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1. the question of how the arguments of potentially mathematically gifted children can be descriptively 

characterized. 

2. a longitudinal description of change in these characteristics.  

 

The question of how to describe the arguments of potentially mathematically gifted children arises 

from various models of potential mathematical giftedness and how they integrate mathematical 

reasoning. For example, Käpnick (1998) does not explicitly characterize potentially mathematically gifted 

third and fourth grade children in terms of the arguments they formulate. Nevertheless, he mentions 

giftedness-specific abilities that can theoretically have an influence on mathematical reasoning and the 

resulting arguments. For example, particular skills in recognizing and indicating mathematical structures 

may have an influence on the discovery of particularities and connections (Fritzlar & Nolte, 2019), 

whereby, such a discovery would form the basis for the formulation of an argument (Amielia et al., 2018). 

Furthermore, it is unclear to what extent a particular intuition in potentially mathematically gifted children 

(Fuchs, 2006; Sriraman, 2004) influences how arguments are linguistically formulated. It is, therefore, 

unclear whether the arguments of potentially mathematically gifted children can be described in a 

standardized way, and which possible characteristics can be observed, and which is the research focus 

of this article.  

Furthermore, the need for a longitudinal perspective arises from the predominantly cross-sectional 

view of potential mathematical giftedness. Despite the consensus that the development of potential 

giftedness is a multi-year process (Käpnick, 1998), characterizations of mathematical giftedness are 

usually selective, i.e., for the grade in which the diagnosis is made. Such a selective analysis with regard 

to mathematical reasoning can be found here in isolated cases (Heinze, 2006; Maddocks, 2018; Sowell 

et al., 1990). Brunner (2019) concludes, after a corresponding review of the literature that previous 

studies on reasoning, though not specific for giftedness, have generally been conducted as cross-

sectional analyses. Nevertheless, indicators from developmental psychology (Piaget, 1928) on the one 

hand, and research into giftedness (Käpnick, 1998; Sjuts, 2017) on the other, suggest possible changes 

in the way that mathematical arguments are formulated between the ages of nine and twelve. For 

example, the ability for stating general structures emerges during the fifth and sixth grades.  

The emergence of this ability to state general structures will be the focus of this article and will be 

applied to the field of mathematical reasoning. The mathematical arguments of potentially mathematically 

gifted children are examined longitudinally from a product-oriented perspective regarding, firstly, the use 

of examples, and secondly, generalized formulations. The aim is to develop a descriptive building block 

for describing the arguments of potentially mathematically gifted children and to take a crucial step 

towards a longitudinal analysis. The aim is to make a scientific contribution to the description of potentially 

mathematically gifted children about mathematical reasoning – a contribution which can be used as a 

basis for further empirical studies as well as for practical considerations on diagnosis and support. This 

research goal is pursued as part of a qualitative longitudinal study with potentially mathematically gifted 

children, which, with its theoretical basis, methodology and results, forms the focus of the article.  

Mathematical Arguments: Definition and Positioning from a Product-oriented 
Perspective 

Formulating arguments is a fundamental communicative activity of human beings. Habermas (1984-87) 

defines reasoning as a type of speech in which participants address contentious claims to validity and 

attempt to redeem or criticize them with arguments. An argument contains reasons that are linked in a 
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systematic way to the claim to validity of a problematic statement (van Eemeren et al., 1996). This 

definition allows us to identify four aspects that characterize reasoning in general: Formulating an 

argument is an activity that takes place in a social context, more specifically in a joint oral or written 

conversation, communication, or interaction with corresponding participants. The starting point for an 

argument is a disagreement about a point of view. Its aim is to speak for or against a point of view, to 

justify something, and/or to increase or decrease the acceptance of a point of view (van Eemeren et al., 

1996). For this purpose, reasoning is built up in a systematic way. Reasons are presented based on the 

claim to validity of a disputed viewpoint, so that a gradual and seamless reduction to already recognized 

statements is created.  

These aspects are also relevant for mathematical reasoning, but with one reservation: 

Mathematical reasoning in a mathematics lesson is usually distinguished from everyday arguments by 

the absence of a real point of disagreement, which, in this list of aspects, goes hand in hand with the 

starting point and the goal of reasoning. This divergence highlights the need for a contextual definition of 

reasoning. Mathematical reasoning can be located more in terms of problem solving, explaining and 

gaining deeper understanding (Baker, 2003). This special characteristic is also accompanied by the 

establishment of a starting point for argumentation: starting points that require reasoning activities, e.g., 

questioning statements, justifying discoveries, and formulating an argument. An obvious basis for 

mathematical argumentation is reasoning tasks that present assertions or call for extreme cases to be 

considered. If, for example, the consideration of extreme cases is chosen as the starting point for 

reasoning, an argument might be prompted by when does a certain case occur? or does it always apply? 

Why or why not?  

When emphasizing a product-oriented perspective, the result of an argumentative activity is 

referred to in the following article as the argumentation product. This includes all statements produced 

during a reasoning activity, either in writing, orally or non-verbally. Considering their systemic structure, 

argumentation products are structured by two elements in the context of the article: discovery and 

justification. Both elements are necessarily linked in the argumentation product because a discovery lacks 

certainty without justification. From the students' perspective, what is to be discovered is something new 

and is not predetermined by the teacher or the task (Amielia et al., 2018). The article defines a discovery 

in the context of an argumentation product as a statement that is elaborated on and formulated by the 

students, e.g., based on a mathematical problem. A justification is defined as a statement that is intended 

to substantiate the formulated discovery by means of generally accepted statements (Toulmin, 2003). 

Mathematical Arguments in the Context of Mathematical Giftedness 

As stated in the introduction, the focus of this article is on the description of the mathematical arguments 

of potentially mathematically gifted children. At this point, the relationship to potential mathematical 

giftedness is examined in greater detail, with the help of the definitions of mathematical reasoning that 

consider a product-oriented perspective. For this purpose, giftedness is understood as an individual 

performance potential that can develop into a visible above-average performance (Käpnick, 1998). This 

emphasizes the distinction between giftedness as a potential achievement, and achievement as a visible 

outcome, which gives rise to the term potential giftedness. It is also defined as a domain-specific 

characteristic. Giftedness in the sense of this article refers to the ability and performance domain of 

mathematics.  

Definitions of giftedness using an IQ score to diagnose, and label seem inappropriate in this 

understanding of giftedness; firstly, because of the distinction between giftedness and achievement, and 
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secondly, because of the emphasis on domain-specific giftedness. At the same time, this positioning 

raises the question of appropriate methods for diagnosing potential mathematical giftedness. In the work 

of Käpnick (1998), this labelling is effected by means of special characteristics of potentially 

mathematically gifted children (Figure 1, left side). Based on an empirical comparative study, the 

catalogue of characteristics lists the characteristics of giftedness for children in the third and fourth grades 

in which significant differences between potentially mathematically gifted children and a comparison 

group were found. Sjuts (2017) developed an extended catalogue of characteristics for the fifth and sixth 

grades under comparable conditions. Figure 1 (right side) lists the additional characteristics for children 

in these grades.  

 

Figure 1. Mathematics-specific characteristics of potentially gifted children in grades 3/4 ( Käpnick, 1998; left) 

and 5/6 (Sjuts, 2017; right) 

 

There are various characterizations used in giftedness research to describe potential mathematical 

giftedness in the style of Käpnick (1998) and Sjuts (2017). Here, focus is placed on the role of 

mathematical reasoning in the various characterizations. Durak and Tutak (2019) assume – irrespective 

of possible peculiarities in the formulation of arguments – that there are no differences between potentially 

mathematically gifted and normally gifted pupils of primary school age in terms of their basic need for 

argumentative justifications. In Käpnick’s (1998) catalogue of characteristics for potentially 

mathematically gifted children in the third and fourth grades, peculiarities in formulating arguments are 

not explicitly included in the characteristics of giftedness, although it remains unclear whether it was 

relevant in the task selection of the study. In contrast, mathematical intuition is taken into account in the 

description of typical problem-solving processes (Fuchs, 2006; Sriraman, 2004). Intuition is described as 

a spontaneous, largely unconscious mental process. Potential forms of this may include sudden insights 

or ideas for solutions, as well as fragmentary or diffuse justifications or explanations of the problem’s 

solution (Fuchs, 2006). While intuition may yield the correct result when solving problems, the path to the 

solution often remains implicit for observers. To paraphrase using the structure of an argument: While 

intuition can be useful in formulating a discovery, it appears to skip the step of explicit reasoning. Gutierrez 

et al. (2018) propose the hypothesis that “mathematically gifted students […] tend to show unusual paths 

of reasoning” (p. 170). The authors justify their observation with the special abilities of potentially 

mathematically gifted children, e.g. "the abilities to identify patterns and relationships among different 

elements, generalize and transfer mathematical ideas or knowledge from one context to another, or invert 

mental processes of mathematical reasoning" (Gutierrez et al., 2018, p. 170). This list of facilitating skills 

Characteristics grade 3/4

Storing mathematical facts

Mathematical power of imagination

Structuring mathematical facts

Transfer of recognised structures

Switching levels of representation

Reversing thought processes

Mathematical sensitivity

Characteristics grade 5/6

Structuring mathematical facts at the 
level of patterns

Specifying structures 

Logical reasoning



Examples and generalizations in mathematical reasoning – A study with potentially mathematically gifted children            609 
 

 

also changes the role of mathematical arguments in catalogues of characteristics such as Käpnick's. 

Special abilities in reasoning might thus be justified theoretically by empirically proven and favorable 

abilities or preconditions. The list of favorable factors put forward by Ufer et al. (2008) includes 

mathematical knowledge, metacognitive skills, and the organization of hypotheses and statements. This 

perspective on mathematical reasoning legitimizes a justification of possible connections with the help of 

the characteristics of potentially mathematically gifted children, for example: 

1. A creative approach to problem solving, whereby the children find different ways of solving 

problems and play with mathematical relationships and numbers (Assmus & Fritzlar, 2022; Fritzlar 

& Nolte, 2019; Käpnick, 1998). Creativity in the sense of Creative Mathematical Reasoning seems 

particularly relevant for discovering relationships together with the use of mathematical knowledge 

(Joklitschke et al., 2022).  

2. Special skills in structuring mathematical facts, through which children can recognize mathematical 

patterns and form classes (Käpnick, 1998; Sjuts, 2017). This seems to be particularly relevant for 

discovering relationships, but also for organizing hypotheses and statements, as well as for using 

strategies of metacognitive control and organization.1 

 

In addition to this indirect connection, there are also models of potential mathematical giftedness 

that explicitly list selected aspects of mathematical reasoning as a special skill. For example, Heinze’s 

(2005) model of giftedness lists the "need for plausible, mathematical explanations and striving for 

knowledge" and "the ability to formulate exact and complete justifications of mathematical facts" (p. 295) 

as characteristics of potentially mathematically gifted children of primary school age. The latter in 

particular would also influence the formulated products of argumentation and their characteristics. Logical 

reasoning also plays a role in what Sjuts (2017) refers to as an explicit characteristic of giftedness.  

It remains unclear from the various perspectives how the mathematical arguments of potentially 

mathematically gifted children can be described descriptively and whether the children adopt different 

approaches. The remainder of this article will explore such a description, using one characteristic, namely 

the role of examples and generalizations in formulating products of reasoning. The next section justifies 

this choice following an introduction to the theory. 

Examples and Generalizations in Mathematical Arguments  

Argumentation and proof are understood as two specific forms of justification that refer to different 

settings and thus partly follow different rules and use different means (Pedemonte, 2002). The concepts 

are thus related, in particular through the assumption that formal-deductive reasoning is based on a 

deductive approach with formally correct arguments (Pedemonte, 2002). Argumentation is thus a 

decisive, propaedeutic aspect of proof. In order to establish the connection and distinction between 

examples and generalizations in the formulation of arguments, argumentation is first considered in this 

propaedeutic relationship to mathematical proof. Harel and Sowder (1998) use proof schemes to describe 

typical procedures (hereafter referred to as types) with which a person tries to convince themselves and 

others of a mathematical statement. The authors distinguish between three different types: external 

persuasion, empirical evidence, and analytical evidence. What is interesting in the distinction between 

arguments with examples and arguments with generalizations is, on the one hand, the empirical type, in 

which the inductive procedure is described as based on one or more examples – in the sense of 

                                                             
1 The selection of these two characteristics is intended to illustrate a possible connection by way of example. This is not to rule out further 
connections between reasoning and the characteristics of potentially mathematically gifted children. 
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calculations with fixed numerical values, or figures with fixed side lengths and angles. The starting point 

for proof is an individual case or concrete example against which a statement is tested. The analytical 

type, on the other hand, proceeds deductively by using generally valid ideas and facts, hereafter 

generalizations, to provide proof (Harel & Sowder, 1998).  

The two types do not have to stay separate from each other. Reid and Knipping (2010) use the 

following distinction to classify the different roles of examples in proving: 

1. Empirically: concrete examples are used for proof without any further classification of them. 

2. Generically: concrete examples are used for proof, and these are deemed to represent a class.  

3. Symbolically: no concrete examples are used, but words with semantic meaning are used for proof.  

4. Formally: No concrete examples or words with semantic meaning are used for proof. 

5. Looking back to Harel and Sowder (1998), a generic approach can hence turn an empirical proof 

into an analytical one.  

 

The remaining article applies the distinction between different types of proof to the level of 

argumentation and, in particular, to the level of argumentation products. An empirical argument is based 

on one or more examples, whereas an analytical argument is formulated using mathematical rules and 

facts. A generic argument describes an analytical argument that has been developed with the help of 

examples. Along the lines of proof schemes, the concept of argumentation type describes a recurring, 

regular procedure that a person uses when reasoning and which is reflected by characteristics in the 

argumentation products that they formulate.  

Apart from a descriptive description, the use of examples in arguments has both potential and 

risks. Examples, if chosen skillfully, bring vividness, comprehensibility and validity as an empirical 

examination (Komatsu, 2017). Under certain circumstances, they are the starting point for discovering a 

mathematical relationship in the first place and for deriving a justification from it. Last but not least, its 

relevance to defining the partial competence of "recognizing the general in an individual case and thus 

gaining insight into why something is always and by necessity valid or must be valid and, on this basis, 

being able to develop a valid generalization" (Brunner, 2019, p. 327; translated) is evident. Various 

authors cite empirical argumentation in the sense of argumentation where the general validity of a 

statement is erroneously derived from individual examples as a possible problem (Nussbaum, 2011). 

Unlike generic reasoning, a generally valid argument is not developed here through the example, but the 

example is used as an empirical derivation of generality. Studies on this show that children in primary 

school do not usually argue at a general level, and only begin making increasing use of mathematical 

rules as proof for their arguments in higher secondary school (Koleza et al., 2017). Still, the process of 

generalizing is seen as a stage of early algebraic thinking, being related to numeric pattern generalization 

from arithmetic (Kieran et al., 2016; Sari & Ng, 2022).  

Once again, the question arises as to which considerations can be applied in connection with 

potential mathematical giftedness. On the one hand, the use of special intuition in potentially 

mathematically gifted children raises the question of whether there is a need for examples and 

generalizations – what is discovered seems intuitive and not worth further explanation. On the other hand, 

potential factors influencing mathematical reasoning are also relevant for reasoning using examples and 

rules. While Gutierrez et al. (2018) speak relatively superficially of students’ ability to "identify patterns 

and relationships among different elements" and "generalize and transfer mathematical ideas", the 

transition from "structuring mathematical facts" (Käpnick, 1998) to "structuring at the pattern level" or 

"specifying a structure" (Sjuts, 2017) in particular describes a potential influencing factor on 
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generalizations in mathematical arguments. The latter differs from the former by explicitly using 

representatives to structure (Sjuts, 2017), which is fundamental to a generic approach to reasoning. Here, 

this also prompts a progression over time or changes in the use of examples and generalizations – if it 

does not (yet) seem to be a special feature with potentially mathematically gifted children in the third and 

fourth grades, a generalized indication of a structure and a representative, and hence possibly also 

generalizations in arguments, play a role in the fifth and sixth grades. 

Research Question 

From the theoretical outline, the roles of mathematical reasoning in the various characterizations of 

potential mathematical giftedness can be summarized as follows: explicit mention as a characteristic of 

potentially gifted children (Heinze, 2005; Maddocks, 2018; Sowell et al., 1990), mention of sub-areas of 

reasoning as a mathematics-related giftedness characteristic (Gutierrez et al., 2018; Sjuts, 2017), listing 

of characteristics that could influence the formulation of argumentation products (Käpnick, 1998) and no 

further analysis as a giftedness-specific characteristic (Durak & Tutak, 2019). These different positions 

justify taking a closer look at the argumentation products of potentially mathematically gifted children, 

describing them descriptively and, where appropriate, identifying types of reasoning among the children. 

The discussion below will focus on a description of empirical and analytical arguments. 

Looking back at the comparison of Käpnick’s (1998) catalogue of characteristics for the third and 

fourth grades with Sjuts’ (2017) for grades five and six reveals a possible change in the reasoning 

products of potentially mathematically gifted children over time. Although logical reasoning does not 

feature in the catalogue for third and fourth grade children, it is included as a giftedness-specific 

characteristic for fifth and sixth grade children. Structuring skills are also related to the level of patterns 

from the fifth grade onwards, i.e., they take place at a general, possibly also rule-guided level. This might 

be relevant when formulating generalizations.  

As derived from the theoretical background, selective observations in cross-sectional studies 

cannot describe individual changes in the products of (empirical and analytical) argumentation. However, 

this seems to be relevant; firstly, for characterizing the products of argumentation in the context of a long-

term giftedness profile, and secondly, for changing the products of argumentation in general (Brunner, 

2019). Results on the development of children's thinking are available outside the field of mathematics 

education. Piaget's stage theory (Piaget, 1928) and the LOGIK study (Schneider & Bullock, 2009) 

describe cognitive changes in logical thinking and also give indicators for changes in how children 

formulate general arguments through developmental psychological presuppositions, but without 

reference to mathematical arguments. The fact that mathematical reasoning and possibly even recurring 

types – in the sense of long-term characterizations of the products of reasoning (Harel & Sowder, 1998) 

– change with increasing age is indeed indicated by developmental psychological descriptions and results 

from research on giftedness. However, direct conclusions are absent due to different study settings and 

selective analyses. This is where interest arises in focusing not only on the description of argumentation 

products, but also on long-term change – still subject to a restriction to examples and generalizations. 

This gives rise to the underlying research question of the study: Which types can be characterized in 

potentially mathematically gifted children in relation to the use of examples and generalizations in the 

products of argumentation? It is the aim of this article to contribute to the description on how potentially 

mathematically gifted children relate to mathematical reasoning. 
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METHODS  

Sampling and Period of the Study 

Indicators of changes in the products of argumentation – in the use of examples and generalizations – 

are investigated following an exploratory approach. A longitudinal study with a constant sample and 

survey method was chosen because of the changes over time. The sample consists of 37 children from 

the enrichment program Junge Mathe-Adler Frankfurt ("Young Maths Eagles Frankfurt"), (Jablonski & 

Ludwig, 2021). At the start of the study, all children who were in the third and fourth grade at the time, 

were invited to participate. Children from the new third grade in the subsequent school term were also 

added half a year later to allow for panel mortality. Table 1 gives an overview of the characteristics of the 

sample.  

The children are selected for the Mathe-Adler program through nomination by their mathematics 

teachers on the basis of Käpnick’s (1998) catalogue of characteristics. An indicator task test is completed 

by the children during the first weeks of participation in order to identify the special mathematics-specific 

characteristics for the third and fourth grade (cf. Figure 1, left) (Fuchs & Käpnick, 2009). This is less about 

performance-oriented use of the tasks, instead, it is more about the procedures used for solving them. 

The score achieved on the test does not directly lead to exclusion from the program but is taken as an 

occasion for further assessment steps (e.g., interviews and discussions with parents). At this point, the 

score serves to characterize the sample as potentially mathematically gifted as defined in the theoretical 

background. Fuchs and Käpnick (2009) give an average score of 14 points for a group of potentially 

mathematically gifted children in the third and fourth grades, with 27 maximum achievable points. Table 

1 allows this to be compared with the children in the sample.  

Table 1. Sample characterization 

Group Number of 

children fully 

interviewed  

Observation window  

Grade (half-year) 

Start; End 

Observation window 

average ages 

Start; End 

Score achieved in 

indicator test 

Minimum; Maximum; 

Average; Median  

1 11  4 (2); 6 (1) 10 Y. 3 M.; 11 Y. 9 M. 8; 24; 14,9; 15,5 

2 13  3 (2); 5 (1)  9 Y. 6 M.; 11 Y. 13; 26; 19,4; 20 

3 13  3 (1); 4 (2) 8 Y. 11 M.; 10 Y. 5 M. 10; 24; 16; 16 

 

The longitudinal study was conducted between April 2018 and May 2020 (see Figure 2). An initial 

pilot study with 13 children initially took place in April 2018. The main study began for groups 1 and 2 in 

May 2018 and group 3 in November 2018. In the main study, four surveys were conducted with all children 

– each with a time interval of six months between the two survey points and a total observation period of 

18 months.  
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Figure 2. Timeline of the data collection 

 

Classification of the Survey Tool 

The children's argumentation products, as defined in the theoretical framework, and possible changes 

were recorded in individual one-to-one interviews. Oral reasoning was considered advantageous to 

written reasoning, in that clarity and precision are improved with immediate prompting or by asking follow-

up questions. In addition, the fact that "children of primary school age sometimes still find it very difficult 

to overcome linguistic barriers, to organize their thoughts and to write them down independently" (Bezold, 

2009, p. 89; translated) suggests that "oral ability in the area of mathematical reasoning [...] is still 

significantly higher at primary school age than ability in written reasoning" (Brunner, 2019, p. 328; 

translated).  

The interviews are based on justification tasks from the field of arithmetic with a reference to its 

potential for reasoning and generalization in the context of early algebraic thinking (Kieran et al., 2016; 

Sari & Ng, 2022). The basic formats for the interview tasks are the number wall with three basic stones 

and the non-square number grid with two arrow numbers (see Figure 3, cf. also Bezold (2009); Moor 

(1980); Wittmann and Müller (1990)). The task formats and tasks are based on a teaching unit by Bezold 

(2009) with a focus on discovery learning. This study showed the potential to elicit both examples and 

generalizations. Thus, the tasks are suitable in the sense of the study. The piloting in 2018 including 13 

students confirmed this statement. 
 

 

 

 

 

Figure 3. Examples of task formats “number wall” and “number grid” 

 

An interview refers exclusively to one of the two formats. These task formats were chosen because; 

firstly, the number correlations they contain offer opportunities for reasoning, and secondly, they should 
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not present any computational hurdles to focus on reasoning. 

The process of each interview is controlled by standardized guidelines providing the tasks, follow-

up questions and space for notes. An interview contains five tasks with prompts for argumentation, 

although only four of the tasks are relevant to the research question discussed in this article. In task 1, 

the reasoning trigger is generated by a (false) statement after an example task like Figure 3 has been 

calculated. 

1. [Number wall] " Three foundation stones of a number wall always produce the same capstone, no 

matter how I arrange the foundation stones"  

2. [Number grid] "Swapping the two numbers in the arrows does not change the target number." 

 

These false statements were chosen to allow the children an opportunity to argue using a 

counterexample. In task 2, the children calculate differently arranged number walls/number grids and 

should eventually recognize the statement as false and comment upon it. Arguments are then made 

based on the interrelationships between the basic elements and the outcome. Task 3 involves the 

question of how the basic elements of a number wall or number grid need to be arranged to maximize 

the result (Figure 4 above). Task 4 asks how the result of a number wall or number grid changes when a 

basic element is changed (see Figure 4 below). 

The trigger for reasoning in tasks 1 and 2 is the verification of an assertion. Task 3 focuses on the 

search for the maximum of the result depending on the arrangement of the basic elements. In task 4, a 

corresponding reasoning trigger arises from the change of the result by rearranging the basic elements. 

All tasks are based on examples so that the children are given the opportunity to use examples in the 

reasoning products. The guideline allows for the children to first formulate discoveries and, if necessary, 

– if not formulated independently – the interview prompts for a justification (e.g., Why is it like that?). After 

a justification has been provided, the guidelines allow for further follow-up questions in the form of 

generalizations (e.g., Is it always like this?). This step is intended to initiate analytical arguments – if they 

have not already been formulated independently. This selection of tasks, together with the follow-up 

questions on generalization, is intended to provide the opportunity for empirical and analytical reasoning 

in equal measure. 



Examples and generalizations in mathematical reasoning – A study with potentially mathematically gifted children            615 
 

 

 

Figure 4. Overview of the reasoning tasks from the "number wall" and "number grid” interviews 

 

Performing Data Collection 

The interviews took place in parallel with the Mathe-Adler sessions; the children were taken out of the 

session individually for a period of 15 minutes. Trained student assistants supervised the process. The 

children were first informed about the aim of the interview and then asked for their consent. The interviews 

were recorded using an audio device so that the conversation between the child and the interviewer could 

subsequently be transcribed. The children were given the appropriate task material at the start of the 

interview. The tasks were visible on the material and were also introduced by the interviewer following 

pre-determined guidelines.  

Four different variants of the interview were used to exclude the effect of recollection as far as 

possible: (a) number wall addition, (b) number grid multiplication, (c) number grid addition and (d) number 

grid multiplication. This meant that each child completed four interviews with different task formats.  

However, the structure and the reasoning triggers were identical. The order of interview formats (a) to (d) 

were systematically varied over the survey period to rule out variations due to possible differences in the 

level of difficulty. Likewise, no feedback on the content of the solution to the task or methodological advice 

on the argumentation procedure was given to minimize potential learning and memory effects due to the 

structurally identical tasks. The Mathe-Adler sessions took place at their usual frequency between the 

data collection exercises. There was no special focus on promoting reasoning over other skills.  

Approach to Data Analysis 

The transcripts prepared using the audio recordings and written materials form the basis for analysing 

the products of the argumentation. In total, four interviews, each consisting of four tasks, were conducted 

with 37 children. An argumentation product here describes the combination of all statements on a task. 
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This meant that 148 products of argumentation were analyzed for each of the four data collection 

exercises. An analytical framework for individual oral interviews was developed for the analysis using 

both the theoretical considerations, as well as the interviews from the pilot study. Based on the product-

oriented perspective, the analysis of the argumentation products was carried out by coding the children's 

explicit statements. Categories were selected in line with the qualitative content analysis according to 

Mayring (2014) – following a deductive procedure – that contribute to answering the research question.  

First, the scheme calls for the products of argumentation to be coded structurally. Following the theoretical 

introduction in chapter 2.1, the term discovery includes any verbalized observation of the children relating 

to the task. Justification is considered to be all statements made by the children who (were supposed to) 

justify their conclusion concerning the discovery made, based on the task and the task material. 

The generality category was chosen to assess the children's argumentation products in terms of 

the use of examples and generalizations. Its theoretical origin can be found in the distinction between 

empirical and analytical in Harel and Sowder (1998), and in Reid and Knipping’s (2010) listing of 

empirical, generic, symbolic and formal. The study's analytical framework first distinguishes between the 

empirical and analytical characteristics according to Harel and Sowder (1998) for discoveries and 

justifications. The most frequently occurring category while a conversation in a task is coded regarding a 

possible shift from the example to the general rule, as occurs in generic argumentation. Here, the generic 

approach is not initially distinguished due to the focus on the outcome, which does not emphasize the 

actual process of development, but is considered within the framework of the discussion. The formal 

approach without semantic meaning does not seem to have any particular relevance for the oral survey 

setting. 

This category is supplemented by completeness to be able to describe a content-related 

component of the empirical or analytical reasoning. Following the distinction made in Heinze's 

argumentation analysis (2005, 118ff.), student responses were coded by an inability to answer, 

statements without explanatory value and statements with explanatory value. Additionally, the two 

subcategories: (1) incomplete (in the sense of a statement without all necessary mathematical information 

or explanatory value) and (2) complete (in the sense of a statement with all necessary mathematical 

information or explanatory value) are distinguished for the discoveries or justifications in the study's 

analytical framework. 

Table 2. Categories of the analysis framework for the formulation of a discovery 

Classification of the discovery Empirical: The discovery 

contains a reference to concrete 

figures or an example 

calculation. 

Analytical: The discovery refers 

to general facts without giving 

specific examples. 

Incomplete: The discovery does 

not provide all necessary 

mathematical information. 

"I notice that the 50 is in the 

middle." 

"The number walls have different 

results."  

 

Complete: The discovery provides 

all relevant mathematical 

information. 

""The biggest result occurs when 

50 is in the middle." 

 

"I notice that the biggest number is 

in the middle and that's why a 

bigger result occurs." 

 

Coding was carried out by the author and several trained student assistants. The analytical 

framework was empirically confirmed in the study by good values of intercoder reliability (generality κ = 

0.71 and completeness κ = 0.72). Tables 2 and 3 describe the categories as well as their assignment 
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rules with examples from the interviews of the pilot study – for the element’s discovery and justification 

respectively. The question, When does the capstone of the number wall become largest? is fundamental 

for a number wall example with the capstones 10, 20 and 50. The prompts provided by the guidelines for 

justifying the discovery (Why is this so?), and for general reasoning (Is this always so?), must also be 

considered here for the context in which the argumentation products are formed.  

Table 3. Categories of the analytical framework for formulating a justification 

Classification of the justification Empirical: Equivalent to the 

discovery 

Analytical: Equivalent to the 

discovery 

Incomplete: The justification does 

not contain any explanatory value. 

"Because 50 is in the middle." 

 

"Because the highest number is in 

the middle."  

Complete: The justification 

contains explanatory value. 

 

"Because 50 is in the middle and 

is then added to the brick on one 

side and the one on the other 

side." 

"[...] because the largest number is 

in the middle and the largest 

number is added to both." 

 

 

The four sample statements in Table 3 are all coded as discoveries because the children formulate 

an independent observation concerning the task in each of these statements. The distinction between (a) 

empirical and (b) analytical results from the integration of the concrete material – in the case of (a), it is 

the naming of 50, in the case of (b), the reference to general representatives such as the result and the 

largest number. The distinction between incomplete and complete refers to the necessary mathematical 

information contained in the statements. Their assessment varies with the task and the information 

previously determined as necessary. This coding is performed in a similar way in Table 3 for the 

justifications. 

The analytical framework serves as the basis for coding the children's argumentation products. 

The research question requires that types be identified using examples. The methodological approach is 

based on Kluge’s (2000) typology. Such type of formation is based on the requirements for internal 

homogeneity and external heterogeneity, so that cases of one type differ to a minimum extent, and cases 

of different types differ to a maximum extent. The attribute range for type formation results from the 

combination of the categories presented – generality of the argument and completeness of the argument 

– including the respective binary expression: incomplete and empirical, incomplete, and analytical, 

complete and empirical, complete and analytical. 

The assignment to one of the four dimensions is first made for each child for each of the four data 

sets using empirical boundaries. To this end, the four argumentation products from an interview are 

analyzed in terms of their completeness and validity. The proportion of complete and generalized 

elements is then described in percentage terms. Here, the same empirical boundary is chosen for each 

of the four data sets. This is intended to enable an individual description of change and allocation, without 

possible changes in the group as a whole having any influence on it. In a final step, a timeline is created 

for each child with the assignment in all data sets, and the children are grouped according to their 

longitudinal classifications. The children who can be assigned three times to a combination of 

characteristics (1, 2, 3 or 4) are classified first. This approach is limited to one of the two categories and 

one of its expressions, e.g., analytical, for the remaining children. In a final step of the grouping, 

tendencies are considered, i.e., the change in a comparative dimension, e.g., from empirical in the first 

data collection to analytical in at least the third and fourth data collection.  
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RESULTS AND DISCUSSION 

Quantitative Results of Coding  

Table 4 summarizes the results of coding all the children's discoveries. N describes the number of task 

prompts for a discovery that were asked in connection with a data set. No corresponding statement was 

formulated for the no discovery classification. 

Table 4. Overview of discoveries for all data sets 

N = 148 t1 t2 t3 t4 

 Emp. Ana. Emp. Ana. Emp. Ana. Emp. Ana. 
No discovery 4.8% 0% 0% 0% 

Incomplete discovery 35.9% 16.8% 27.2% 21% 9.2% 19.9% 7.2% 19.5% 
Complete discovery 2% 40.5% 4.5% 47.3% 5.7% 65.2% 7% 66.3% 

Total 37.9% 57.3% 31.7% 68.3% 14.9% 85.1% 14.2% 85.8% 

 

Table 4 first shows that the children use examples in formulating their discoveries, with the number 

of analytical discoveries predominating and increasing across all data sets. At the beginning of the survey, 

the proportion was 57.3 %, rising to 85.8 % within the 18-month observation period. A potential interaction 

between completeness and generalization can also be identified: if coding tends to be incomplete in the 

case of empirical discoveries, the opposite can be observed in the case of an analytical discovery. 

Table 5 shows a similar overview of the justifications formulated. Since follow-up questions were 

asked in the interview, and justifications were specifically initiated using the guidelines, only the 

argumentation products in which such prompting occurred are considered here. This number of prompts 

is described as NI for each data collection. The proportions shown therefore refer to the children's 

prompted justifications.2  

Table 5. Overview of justifications for all data sets 

 t1 (NI = 114) t2 (NI = 131) t3 (NI = 130) t4 (NI = 123) 

 Emp. Ana. Emp. Ana. Emp. Ana. Emp. Ana. 
No justification 5.3% 4.6% 8.5% 0.8% 

Incomplete 
justification 

46.2% 15.8% 55.3% 9.2% 29.4% 10% 29.3% 6.4% 

Complete justification 12.6% 20.1% 11.7% 19.2% 11.3% 40.8% 16.2% 47.3% 
Total 58.8% 35.9% 67.0% 28.4% 40.7% 50.8% 45.5% 53.7% 

 

The increasing tendency of analytical discoveries seems to be reflected in the children's 

justifications. When considering the entire period, the share of analytical justifications increases from 

35.9% to 53.7%. Nevertheless, this increase is not across the board, as the use of examples initially 

increases in t2. What is also like the coding results of the discoveries is that of the feature combinations 

incomplete and empirical, as well as complete and analytic, seem to be particularly pronounced. 

Comparing the two tables, the first thing that stands out is that justifications are more often formulated 

empirically, and discoveries are more often formulated analytically.  

The results first give an overview of the children's argumentation products across groups. Below, 

individual changes in argumentation products are described through the characterization of types. Due 

                                                             
2 It should be noted here that the proportion of independently formulated justifications is low for all groups and data sets. The 
focus at this point is, therefore, on the prompted justifications. Reference is made to Jablonski and Ludwig  (2021) for an 
analysis of the independent justifications. 
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to their interplay in the context of an argument, the elements of discovery and justification are initially 

considered together in the context of type formation and summarized under the generic term argument. 

Characterization of Types 

When all the data from the interviews is considered, the following empirical limits to the assignment of 

children emerge. In the completeness category, 54 % of all elements examined are incomplete, and 46 % 

of all elements examined are complete. In the general validity category, 43% are empirical and 57% 

analytical (Jablonski & Ludwig, 2021). These empirical limitations provide the basis for ranking children 

for each of the four data sets. Figure 5 shows the classification for t1 in the form of a scatter plot. The x-

axis shows the proportion of analytical elements, the y-axis the proportion of complete elements of a child 

and the lines represent the empirical boundaries.  

 

Figure 5. Scatter plot for the first data collection  

 

Figure 6 refers to t4. Each child has a fixed number starting with the associated group in all data 

sets. The scatter plots thus render the classification of each child visually and also provide an overview 

of any changes across groups. Comparing the scatter plots for t1 and t4, we see an increase in generalized 

elements across the groups, which was already observed in Tables 4 and 5.  
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Figure 6. Scatter plot for the fourth data set 

 

Grouping the individual children longitudinally yields the following six types, to which 34 of the 37 

interviewed children can be assigned (see Figure 7). At this point, the criterion of internal homogeneity 

comes into play, in that the children of a case are considered like each other. 

 

 

Figure 7. Summary of the types formed 

 

Children whose argumentation products go beyond concrete numerical examples or the material 

at hand are classified in type 1. These children consistently refer to general mathematical facts and/or 

the structure of the task format. Type 1.1 describes children who put forward analytic arguments in a 

stable manner over the survey period, but the content of which cannot be classified as either stable 

Type 1: Analytical arguments

• Type 1.1: Stable analytical

• Type 1.2: Stable analytical and complete

Type 2: Incomplete arguments

• Type 2.1: Stable incomplete

•Type 2.2: Stable incomplete and empirical

Type 3: Changing over time from empirical to analytical arguments

Type 4: Changing over time from incomplete to complete arguments
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incomplete or stable complete. This applies to six children. Type 1.23 includes children who, in addition 

to a stable analytical style of reasoning, are also able to formulate stable complete discoveries and 

justifications, i.e., statements that contain all necessary information. This applies to five children. 

Type 2 includes children who argue in a stable, incomplete way. Two subtypes are also formed in 

this case. Type 2.1 includes those children who provide discoveries and justifications over the entire 

observation period, where information or the explanatory value required for completeness is missing. No 

uniform statement on the use of examples and generalizations can be made for them. In contrast, children 

in type 2.2 not only argue incompletely, but also in a stable empirical way. A total of ten children are 

assigned to type 2, four of them to type 2.1 and six to type 2.2.  

The ten children assigned to type 3 begin with an empirical style of argumentation in t1 and possibly 

also in t2, using concrete numerical examples and referring directly to the material. The children 

increasingly formulate their discoveries and reasons beyond concrete examples and use general facts 

from t3. No clear statement can be made about the completeness of the discoveries and justifications.  

Type 4 is also variable in nature. This type is empirically weakly represented and is assigned to 

three children. These children are similar in their style of reasoning, in that they initially argue incompletely 

in t1 and possibly also in t2. From t3 at the latest, they formulate discoveries and justifications that 

increasingly contain all relevant information or explanatory value. No statement can be made about the 

use of examples and generalizations for these children. 

The differences between the types in terms of their external heterogeneity become clear through 

their characterizations. This is illustrated by the changes over time in the cases of the different types in 

Figures 8 and 9. The four survey classifications of all cases of a type are sorted into a diagram using 

color gradients. Apart from isolated survey results, two fixed ranges emerge for types 1 and 2, where the 

cases are classified across all data sets. With type 1, it is the area analytical, with type 2, incomplete. 

The two types can be considered disjunctive throughout the survey process, aside from individual data 

sets.  

Types 3 and 4 also differ when different categories are considered. In contrast to types 1 and 2, 

they show a tendency to change over the survey period, which is illustrated by the color gradients and 

corresponding direction of the arrows. The sample does not provide other combinations of comparative 

dimensions, e.g., analytical, and incomplete, and are, therefore, not listed. 

Below, case studies are used to present the three types 1, 2.2 and 3, which show particular 

relevance for the research question through characterization by means of empirical or general 

argumentation products. The prototypical procedure of the children in various reasoning activities is 

described for this purpose.  

 

                                                             
3 It should be noted here that type 1.2 is not a subset of type 1.1 in this overview. Children from type 1.2 also fulfil all the characteristics of type 1.1 in their 

approach to reasoning. Nevertheless, the focus here is on the distinction between the two types, which is why the more comprehensive type is always 
assigned in terms of its characteristic features. The same applies to types 2.1 and 2.2. 
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Figure 8. Changes over time within the formed types 1 and 2 

 
 

Figure 9. Changes over time within the formed types 3 and 4 
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Case Studies for the Types 

Type 1 – Stable analytical arguments: The following comparison of two argumentation products at the 

time of the first and fourth data surveys characterizes the stable analytical formulation of a child's 

arguments. In both cases, it is the argument product that is formulated in task 3. In t1, the task initially 

focuses on the question, When does the target number of the number grid become largest? In this and 

all following transcripts, “I” describes the person interviewing, and “B” the child being interviewed. 

 

B: I think where the larger number points downwards. 

I: Very good and why is that? 

B: Because (...) basically you actually follow the path downwards. And if the smaller number is there, then 

you also move down in smaller steps. So, you take two steps down and one step to the side, no matter 

how you calculate. 

(2_10_t1, Number grid addition) 

 

Child 2_10 first formulates a general discovery in response to the task. When asked why this is 

true, the child justifies why the result is the largest by using the calculation path in the number grid. This 

not only refers to a single way of calculating, but to " any way you calculate". Such argumentation without 

reference to the concrete example is also evident in data set t4 in response to the corresponding question, 

When does the capstone of the number wall become the largest? 

 

B: When the largest number is in the middle.   

I: Why?  

[…] 

B: Because whenever the largest number is in the middle, it refers back to the two next to it, and that 

makes the results larger. However, for this to happen, the largest of these first three numbers must really 

be in the middle.  

(2_10_t4, Number wall multiplication) 

 

In t4, the child again formulates a general discovery about the position of the largest number and 

a general justification, which, as in the first data set, concerns a step-by-step approach to the calculation 

or the construction of the arithmetic format.  

When checking the false claim of task 1, the children of this type either use a counter-example, 

which in this case can correspond to a complete argument by refutation, or they also argue completely 

and analytically, as child 2_10 does in t2: "I think if I put the biggest one in the middle, the capstone will 

be higher, because then I multiply the numbers that are on the outside with the ones that are on the inside 

and the one that is on the inside is the biggest, then I think the biggest result should come out." (2_10_t2, 

Number wall multiplication) 

Again, general terms are used to describe the elements and the calculation path. Type 1 children 

use virtually no examples, either in their discoveries or in their use of assertions. It is striking that one in 

two children's stable analytical argumentation is accompanied by a stable complete style of reasoning 

which is hence, assigned to type 1.2.  

Type 2.2 – Stable incomplete and empirical arguments: The argumentation product of task 4 in t1 

is presented to show the approach to reasoning of this type. The starting point is the question of what 
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happens to the capstone of a number wall if you increase the size of the middle capstone by 10. The 

child calculated the two number walls shown in Figure 10 and, together with the interviewer, discovered 

a change of 20 in the capstone. 

 

Figure 10. Number walls for the transcript of child 1_11 

 

B: (Points to the middle foundation stones of the number walls) I think because (...) if you add the two 

together, it equals 20. 

I: Both? [...] So you mean the middle foundation stones? What do I get when I add 30 and 40? 

B: [...] No, I don't mean the middle ones, but the 40 and the 50 together are equal to 10, the 50 and the 

60 together are 10 and then 10 plus 10 is 20. 

(1_10_t1, Number wall addition) 

 

The empirical procedure becomes clear in two ways in this justification of child 1_11, which is 

based on a comparison of the numbers in the middle row: first, the child uses the task material by pointing 

to the numbers, which suggests an implicit reference to the particular example. Second, the concrete 

example is also reflected in the explicit formulation, where numbers are not generalized, but are described 

by their concrete values. In so doing, the child does not formulate a general rule - even when asked.  

This approach is characteristic of type 2.2 children. Both discoveries and justifications are usually 

formulated with reference to the material and with the help of concrete numerical examples. The children 

involved in this case used examples to illustrate and explain their statements. With child 1_11, the 

procedure is characterized by showing and naming distinctive arithmetic steps through concrete 

numbers. Nevertheless, the justification remains incomplete – even when asked – and comprehensibility 

is therefore hampered.  

When reproducing and verifying assertions during task 1, the children also find it difficult to 

formulate a suitable counter-example – despite the mainly empirical approach to reasoning. Although 

there is a greater use of examples in type 2.2, they are used less for actual justification or a generic 

approach than for illustrating implicit and non-linguistic justifications. Overall, the children seem to have 

problems using appropriate examples as justification. 

Type 3 – Changing over time from empirical to analytical arguments: The increasing tendency of 

analytical discoveries and justifications over the survey period will be illustrated by the example of task 3 

in a comparison of t2 to t3. First, we consider the argumentation product that emerged during the second 

survey in response to the question, When does the target number of a number grid become largest? 

Figure 11 shows the corresponding task material. 
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Figure 11. Number grid for the transcript of child 2_11 

 

I: OK, so we found out that the number became smaller. How will the target number be largest at the bottom?  

B: (Points to the arrow number downwards of the number grid of task 3) When the larger number is down 

here.  

[…] 

I: Why? Why is it so important that it is in the down arrow and not to the right?  

B: If you have a 4 here instead of a 16, you must take double here, in this case four times. If you take double 

here, it is clearly more.  

(2_10_t2, Number grid multiplication)  

 

Child 2_08 primarily uses empirical justifications in t1 and t2, which is shown in this section. While the 

discovery is formulated in general terms, an implicit reference to the concrete example is nevertheless 

recognizable by pointing to the arrow number. Similarly, the justification (the child’s last statement) is related 

to a concrete numerical example used by the child uses to compare the change step by step. Here, the idea 

of empirical argumentation also emerges, as a generally formulated discovery is justified using a single 

example. The change in argumentation behavior is evident in the interview at time t3, which, in turn, is portrayed 

in a representative manner for this case based on task 3.  

 

I: OK, we’ve now found that the arrangement of the foundation stones changes the result of the capstone. 

When does the capstone become largest?  

B: When the largest number is in the middle.  

I: Very good, why? 

B: Because you then take the largest number twice. [...] The largest number is then used the most often and 

so it is always calculated several times.   

(2_10_t3, Number wall multiplication)  

 

The present calculation no longer seems to play a role in t3. The child formulates both the discovery, “If 

the largest number is in the middle”, and the reasons, e.g. “Because you then take the largest number twice”, 

without direct reference to the calculation, i.e., analytically. Instead of numerical examples, child 2_08 uses 

general terms at this point – like type 1 – such as largest number, which can be applied to any version of the 

task format. Furthermore, a description of the format's structure replaces the step-by-step comparison of the 

calculation. This procedure is also repeated in data set t4 for the number grid, which can be seen, for example, 

through the justification: “Because we calculate the number twice, because we have a 2-by-3 field. That’s why 
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we calculate the one arrow pointing to the right only once, but the arrow pointing down twice”. 

This tendency towards the use of more analytical elements in justifying and generalizing connections 

and number relationships is not borne out in the comprehension and verification of assertions, or if it is, it only 

occurred in individual cases. Most type 3 cases used complete counterexamples consistently or recurrently. 

CONCLUSION 

The aim of this study was to answer the research question of how the argumentation products of potentially 

mathematically gifted children can be described in terms of empirical and analytical elements, and what 

longitudinal changes occur. The cross-group coding of the argumentation products into categories of 

generality as well as of completeness permit three key observations as follows. 

1. The role of examples in argumentation: Empirical arguments across all data sets play a role in both the 

formulation of discoveries as well as the corresponding justifications. This proportion is higher for 

justifications than for discoveries. Firstly, this seems to demonstrate the potential of examples as 

illustrations of facts. Secondly, this number illustrates the danger of empirical argumentation with more 

generalized discoveries than justifications (Nussbaum, 2011). This hypothesis is further supported by 

the combinations occurring, primarily analytical and complete and empirical and incomplete. Hence, it 

appears that (just) using examples does not generally contribute to the completeness of discoveries 

and justifications.    

2. The increase in generalizations: Across all 37 children interviewed, the formulation of generalizations – 

both in the formulation of discoveries and in the formulation of justifications – increases over the course 

of data collection. This result is initially in line with previous theoretical evidence for such a change 

(Piaget, 1928; Sjuts, 2017). 

3. Examples and generalizations for describing types of argumentations: Type formation also emphasizes 

the impressions of the first two observations. Of the six types identified, three are characterized through 

their use of examples and generalizations. 

 

The children of the first type (stable analytical) do not generally use examples to formulate their 

discoveries and justifications. Because of their general formulations of discoveries and justifications, this type 

resembles a deductive (Harel & Sowder, 1998) or symbolic approach (Reid & Knipping, 2010). An exception 

is the formulation of counterexamples when reacting to a false claim. Case study child 2_10 took a step-by-

step approach to justification in each instance, which, representative of the totality of children of this type, 

suggests a potential connection to special structuring skills (at the pattern level) (Käpnick, 1998; Sjuts, 2017).  

Type 2.2 children (stable incomplete and empirical) are characterized by their repeated and consistent 

use of examples in their argumentation products. They mainly use examples to describe and illustrate their 

reasoning. Their approach corresponds to the characterizations of an empirical (Reid & Knipping, 2010) or 

inductive (Harel & Sowder, 1998)) formulation. Nevertheless, their arguments regularly remain incomplete and 

implicit. One possible connection to the intuition of potentially mathematically gifted children (Fuchs, 2006) is 

conceivable in this case, although a starting point for argumentation was explicitly revealed through follow-up 

questions in the interviews. Here, then, intuition would be understood less in terms of a lack of need, in that 

an argument is expected, than in terms of a lack of clarity about what is expected in the context of a complete 

argument or generalization. Their difficulties in choosing a suitable counterexample are particularly interesting, 

which would, at first, seem plausible with regard to the characterization of the type.  

Type 3 children (changing over time from empirical to analytical) are strongly represented empirically 
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and transition over time from empirical to analytical reasoning. It was, therefore, possible to observe that they 

increasingly formulated more general facts in their arguments and in doing so, broke free from concrete 

numerical examples. These children confirm the observation across groups regarding an increase in 

generalizations, in addition to the level of individual children. The change in type, therefore, describes a 

transition from the empirical to the analytical level of proof schemes (Harel & Sowder, 1998). A generic 

approach (Reid & Knipping, 2010) might be particularly relevant in this transition over time. It is conceivable 

that the increase in analytical arguments does not emerge independently of examples but based on examples. 

This remains open for the time being due to the study's focus on products. Nevertheless, opportunities exist 

for further longitudinal studies in the field of argumentation processes.  

Regarding considerations of argumentation characteristics associated with mathematical giftedness, a 

high degree of heterogeneity and inter-individual differences in the formulation of arguments are evident, 

despite the selection of potentially mathematically gifted children. The type formation and argumentation 

characteristics emphasize that potential giftedness does not automatically lead to a homogeneous group, and 

that the problematic use of examples, e.g. in the context of empirical reasoning (Nussbaum, 2011), cannot be 

ruled out. Connections to mathematics-specific giftedness characteristics can be assumed, even if the 

formulation of complete and analytical arguments is not clearly related to potential mathematical giftedness in 

all cases of the study. The cross-group increase in analytical arguments speaks for the theoretical 

considerations on the influence of further giftedness-specific characteristics, e.g., structuring skills.  

The findings emerged from an exploratory approach and should be interpreted accordingly. The small 

sample size means that the findings cannot be generalized, but instead require confirmation in quantitative 

studies. Observation of a control group is a useful extension to the hypothetical considerations of links to 

mathematics-specific giftedness characteristics and, finally, to modelling potential mathematical giftedness. 

Furthermore, the findings need to be interpreted in the context of specific task selection. Especially for the 

distinction between empirical and analytical, this seems relevant, as the tasks are initially based on concrete 

examples. The follow-up questions and direct prompts for general reasoning in the guide were intended to 

ensure that general argumentation seems desirable to the children here. Nevertheless, a possible discrepancy 

arises at this point between the expectations for the guidelines from a research perspective, and what the 

children assume to be expected, e.g., generalization based on the question, Is it always like this? It is important 

to note that the examples of tasks do not initially show this intention clearly. It must also be stressed that the 

study only analyzed the children's spoken words and that any non-verbal reflections – including those related 

to intuitive approaches – were disregarded. 

What is more, the findings were obtained in the context of the “Junge Mathe-Adler Frankfurt” enrichment 

program and should be interpreted with this restriction in mind. Even though there was no deliberate focus of 

argumentation during the support sessions, and there was no feedback on the content and methodology of 

the interviews, the enrichment program itself can be considered an influencing factor. The children may have 

changed their way of reasoning because of the support work and their increased experience with mathematics 

contents and procedures. The same applies to the children's ongoing mathematics lessons. However, this 

limitation can be regarded as less relevant since there were usually only the same for a maximum of two 

children in the sample. In addition, although precautions were taken to minimize the effects of recollection, it 

is possible that the children became accustomed to the structure and question types used during the interviews 

and remembered after which answer no further questions were asked. A possible memory effect, however, 

does not seem to have any particular significance for the evaluation of this research question, since coding 

always included the highest-occurring argumentation product formulated after initiation. 

The study presented here provides a basis for the following ideas for further research: The descriptions 



628                     Jablonski & Ludwig 
 

 

and changes in the use of examples and generalizations in mathematical arguments cannot be represented 

one-dimensionally, despite being restricted to potential mathematical giftedness. Nonetheless, typing in 

particular has shown that it is possible to structure, group and simplify the change processes. At this point, 

apart from a quantitative examination, a further interest arises for more complex case studies that focus on a 

procedural perspective as well as further sub-areas of mathematical reasoning, thereby rendering the 

relationship between giftedness and reasoning as tangible. 
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