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Abstract  

Students often face difficulties in understanding the concept of limits in functions, a challenge that arises due to 
the abstract nature and complexity of the topic. Despite being familiar with the procedural steps, students may 
fail to grasp the underlying meaning of limits. This gap in comprehension leads to significant learning obstacles. 
As such, there is a critical need for effective didactical designs that can enhance the teaching and learning of this 
concept. This study aims to address this issue through a Didactical Design Research (DDR) approach, which is 
structured into three phases. The first phase involves a preliminary didactical design analysis, followed by 
administering a diagnostic test on the limit of functions to 26 third-semester students (Group 1) who have already 
completed a differential calculus course. This diagnostic test helps identify the initial learning obstacles. In the 
second phase, a didactical design is developed to address these obstacles, and it is then implemented with 33 
first-semester students (Group 2) enrolled in a Differential Calculus course to evaluate the impact of the design. 
Data analysis is conducted based on the scores from the written diagnostic test, categorizing them into three 
levels of ability. The findings reveal that the primary learning obstacle for students is the formal definition of limits, 
and the identified obstacles are epistemological, psychological ontogenic, instrumental ontogenic, and conceptual 
ontogenic. The results of implementing the didactical design demonstrate a significant improvement in students' 
understanding of limits, as evidenced by a reduction in the learning obstacles encountered. This research 
contributes to the development of more effective didactical approaches for teaching complex mathematical 
concepts, offering a potential model for addressing similar learning challenges in other abstract topics. 
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Calculus holds a significant position in both secondary and higher education (Rasmussen et al., 2014). 

At the secondary education level, it is a compulsory subject, with concerns being raised regarding the 

emphasis on rote memorization at the expense of conceptual understanding (Grossfield, 2020). In higher 

education, calculus is a prerequisite course in various disciplines such as engineering, mathematics, and 

the natural sciences, typically offered in the first semester. Furthermore, individuals pursuing careers in 

education, engineering, medicine, economics, science, and mathematics endeavor to master and 

understand the fundamental principles and methodologies of calculus. The "ICME-13 Topical Survey," 

focusing primarily on topics related to limits, derivatives, and integrals, provides a global perspective on 

significant advancements in the field of calculus education and pedagogy (Bressoud et al., 2016). 
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Limits, a fundamental topic in calculus, significantly impact the understanding of subsequent 

concepts such as derivatives and integrals (Buyukköroglu, 2006). The limits of functions at a specific 

point and the limits of infinite functions are essential concepts in both differential and integral calculus, 

which are extensively applied. A comprehensive understanding of the limit of a function necessitates 

familiarity with absolute value as a measure of distance on the number line, inequalities as a measure of 

proximity, and the various properties of real functions as mathematical objects (Martono, 1999). 

Consequently, the real number system, inequality theory, absolute values, functions, and graphs serve 

as foundational or precalculus topics before delving into the concept of limits (Varberg et al., 2013). 

A widely used calculus textbook in Indonesian universities is authored by Varberg et al. (Purnomo 

et al., 2017; Supriadi et al., 2020), which introduces the material on limits by first providing an intuitive or 

informal understanding of the concept, followed by a formal definition of limits. Research by Gürbüz et al. 

(2018) reveals that only a small percentage of individuals grasp the formal definition of limits effectively 

through traditional instruction. The inherent complexity of the limit definition has led many students to 

develop informal understandings of the concept, prompting the need for a formal definition to guide them. 

Adiredja (2021) suggests that some reasoning patterns rely on an intuitive approach, where students 

select values of x close to a to determine the limit. Similarly, Boester (2008) developed narratives to tap 

into students' intuitive knowledge, helping them connect prior knowledge with a more formal 

comprehension of limits. Oehrtman (2008) noted that the majority of introductory calculus courses and 

textbooks begin with an intuitive approach to teaching calculus. This intuitive approach to limits often 

involves expressions such as "x approaches a, f(x) approaches L." While formal definitions are introduced 

to demonstrate essential properties of limits, these definitions are neither emphasized nor consistently 

integrated when progressing to subsequent topics, including those defined in terms of limits. For example, 

the definition of a derivative is rarely presented using the epsilon-delta formalism in introductory calculus 

courses. The overarching goal is to provide an accessible and broad introduction to key concepts 

throughout the calculus curriculum. 

Nagle et al. (2017) stated that the main role of limit concepts in understanding introductory calculus, 

and previous findings highlight students' difficulties and misunderstandings regarding limits that are 

troubling. Researchers consistently describe students' understanding of limits as procedural, defining the 

concept of limits by the procedures used to calculate limit values. Nagle et al. contend that students may 

define a limit as a number calculated by one of the various procedures performed on a function (e.g. 

‘division technique’ or ‘direct substitution’). If 𝑓(𝑥) = lim
x→3

x2−5x+6

x−3
, some students can use this 

procedural knowledge to determine lim
x→3

x2−5x+6

x−3
= 1, but fail to apply this knowledge to estimate its 

value from 𝑓(2.99). Research also shows that some students fail to conceptualize the limit as a number, 

viewing it as a process by which the function value approaches the real number L, rather than as a 

product, specifically the number L which is the result of this process. 

The concept of limits in mathematics is abstract and presents significant challenges for students, 

requiring advanced cognitive abilities (Juter, 2007; Bansilal & Mkhwanazi, 2021). Several studies on limits 

highlight that students continue to struggle with solving limit-related problems. Denbel (2014) concluded 

that students' knowledge and understanding are often fragmented, relying heavily on isolated facts, 

routine calculations, and the memorization of algorithms and procedures. As a result, students' 

conceptual understanding of limits, continuity, and infinity remains insufficient. Jordaan (2005) identified 

a common misconception in which students equate the limit value with the function value at a point, 
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assuming that limits can be determined by the substitution method. Additionally, Hong and Choi (2019) 

conducted studies on students' comprehension of the limit concept, revealing that many students face 

learning challenges when engaging with limits. These challenges include the mistaken belief that only 

continuous functions have limits, the misconception that limits are approximations and may not be equal 

to a number, and difficulties in grasping the concept of infinite processes. The reliance on intuition and 

the application of procedures without full comprehension often contribute to students' restricted 

understanding and misconceptions (Swinyard, 2011; Berry & Nyman, 2003). Tall and Vinner (1981) 

argued that students' cognitive structures, visual images, and properties—collectively known as concept 

images—often hinder their ability to understand formal definitions of concepts. Despite these difficulties, 

students may still solve calculus problems by following procedures, even when they lack a 

comprehensive understanding of the underlying concepts. This approach can be a significant source of 

learning obstacles. 

Learning obstacles refer to conditions that impede students' ability to acquire new knowledge 

during the learning process, often leading to learning difficulties. These obstacles can be identified 

through students' errors (Suryadi, 2019). Ontogenic obstacles relate to students' mental preparedness 

and cognitive maturity, which influence their ability to absorb knowledge. These obstacles are categorized 

into three types: psychological ontogenic obstacles, instrumental ontogenic obstacles, and conceptual 

ontogenic obstacles. Psychological ontogenic obstacles are associated with motivation and interest in 

the subject matter, instrumental ontogenic obstacles involve the technical aspects of problem-solving, 

and conceptual ontogenic obstacles arise when a concept's level in the learning process does not align 

with the students' actual learning experiences (Lutfi et al., 2021).  

The second type of learning obstacle is the didactical obstacle, which pertains to the sequence of 

learning activities undertaken by students or the manner in which the lecturer presents the material. 

Didactical obstacles become evident when the actual learning process diverges from the content anticipated 

in the theoretical framework. These obstacles can be identified through the structure and progression of 

material delivery. Additionally, didactical obstacles may arise from the teaching materials prepared and used 

by the instructor during the learning process. The epistemological obstacle is related to the tasks assigned 

to students, focusing not only on their ability to apply procedural knowledge but also on their capacity to 

construct understanding and ways of thinking. These obstacles may result from incomplete or insufficient 

information acquired by students, which can hinder their ability to solve problems when faced with new or 

unfamiliar situations, such as when questions are presented without varying difficulty levels. 

Analyzing learning obstacles in mathematics education is essential for improving teaching and 

learning outcomes. Common errors in learning inverse functions include conceptual, procedural, 

calculation, and conclusion errors, which are influenced by both internal and external factors (Perbowo & 

Anjarwati, 2017). Prospective mathematics teachers encounter ontogenic, didactic, and epistemological 

obstacles when designing lesson plans, underscoring the need for improved teaching strategies and 

lesson designs (Prabowo et al., 2022). These studies highlight the importance of identifying and 

addressing learning obstacles to enhance mathematics education. 

However, previous research has primarily overlooked specific learning obstacles in higher 

education and how these obstacles impact the learning process. This gap in the existing literature 

suggests a need for further exploration, particularly in the context of improving learning through 

instructional designs that address students' learning obstacles. By understanding the challenges students 

face, lecturers can focus on the limits of functions that are most likely to cause difficulties and develop 

strategies to overcome them. The implications of this research demonstrate that understanding learning 
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obstacles can improve lecturers' awareness of university-level learning processes and assist in the 

development of targeted interventions, known as didactical designs, that foster more productive and 

engaging learning environments (Hendriyanto et al., 2024). 

The didactical design is a learning plan based on the Theory of Didactical Situations (TDS) by 

Brousseau (2002), which consists of four stages: action, formulation, validation, and institutionalization. 

The teaching and learning process is structured around these stages. In the action stage, students are 

encouraged to develop new hypotheses. In the formulation stage, students engage in discussions, 

activities, and interactions with other groups to achieve the learning objectives. During the validation 

stage, the instructor, as a theorist, evaluates the theorems students have generated in the action and 

formulation phases. Institutionalization occurs when students are able to apply their newly acquired 

knowledge to solve problems and transform their existing knowledge into new insights, reinforced by the 

lecturer's validation of their understanding. 

This research aims to address three key research questions: What are the most common learning 

obstacles faced by students in terms of content? How are students' learning obstacles related to the 

concept of limits of functions? And how can the didactical design for teaching limits of functions be 

implemented effectively? This study contributes to the identification of learning obstacles in the teaching 

of limits of functions and provides insights into which obstacles appear most frequently within this 

subtopic. The findings will enable lecturers to offer targeted instruction and interventions that can help 

alleviate the difficulties and obstacles students encounter in learning this concept.  

METHODS  

Research Design  

This study employs a qualitative research approach within the framework of Didactic Design Research 

(DDR). DDR is grounded in its didactic nature as an art, science, and epistemology in the context of 

knowledge dissemination and acquisition, aiming to foster students' independence in producing new 

knowledge as justified true beliefs (Suryadi, 2019). DDR operates on two primary paradigms: the 

interpretive and the critical. The interpretive paradigm focuses on the diffusion and acquisition of 

knowledge, where researchers identify both existing and emerging learning barriers. In contrast, the 

critical paradigm seeks transformative change by proposing didactical designs that influence the teaching 

and learning process. The research in this study follows three distinct stages as outlined in Figure 1. 
 

 

Figure 1. DDR stages (Suryadi, 2019) 

• Preliminary didactical 
design analysis

• Giving test

• Initial learning obstacle

Prospective 
Analysis

• Designing treatment to 
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obstacle
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Analysis • Implementation of 

Didactical  Design

• Analysis the impact of 
the design

Retrospective 
Analysis
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Participants 

The first phase of the research was conducted over a period of approximately two months, from 

November 1, 2023, to January 15, 2024, at Universitas Khairun, Ternate City, Indonesia. A 

purposive sampling technique was applied to select participants. Purposive sampling ensures the 

inclusion of specific cases that are relevant to the research question (Campbell et al., 2020). The 

selection criteria for participants are as follows: 

1. Enrollment in regular Mathematics Education classes, Semester 1. 

2. Prior completion of the limit of functions topic in the Differential Calculus course. 

3. Willingness to attend a written test on November 6, 2023. 

 

The initial group, comprising 26 students, undertook a written test on the limit of functions. Following the 

test, in-depth interviews were conducted with three students selected from the group, representing high, 

moderate, and low levels of proficiency. The selection of these three students was intended to explore 

their thought processes, responses, and identify potential learning obstacles related to the concept of 

limits. This phase provides valuable insights into the learning challenges within the Calculus classroom, 

informing future teaching strategies. The second phase of the study took place from October 4 to 

November 25, 2024, and involved 33 first-semester students enrolled in the Differential Calculus course 

for the implementation of the didactical design. 

Data Collection and Analysis 

A diagnostic test was utilized to identify learning obstacles related to the concept of limits. The test 

comprised four descriptive questions addressing key indicators of the limits concept. Participants were 

required to respond to essay questions demonstrating their understanding of function limits. Expert 

judgments were employed to validate the test instrument (Colson & Cooke, 2018). The test was 

reviewed and validated by two expert lecturers specializing in mathematical analysis and mathematics 

education. Their evaluation ensured the clarity and appropriateness of the test items. 

Students' responses to the written test were evaluated using holistic scoring guidelines, divided 

into four distinct categories (Moskal, 2000). In addition to the diagnostic test, a didactical design was 

developed to address the learning obstacles identified from the diagnostic results. The validation of 

this didactical design was conducted through a focus group discussion (FGD) involving experts in 

DDR, algebra, mathematical analysis, and mathematics education. 

The test indicators are based on content from three core textbooks: Calculus by Varberg, 

Purcell, and Rigdon (2013); Martono (1999); and Stewart (1999). Table 1 presents the indicators and 

scoring categories used for the assessment of the limit of functions. 

Table 1. The indicators for each material on the limit of function 

Contents Indicator Scoring Categories 

Limit at a point 

  

To find limit value 

using factoring 

1. Finding answers correctly using factoring 

2. Most of the answers reached the correct answer but there 

were still mistakes 

3. Only a small number of answers reach the correct answer 

4. No Answer 

One-sided limits To find left and 

right-hand limits  

1. Finding the answer function value of left limits and right 

limits correctly 
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2. Most of the answers reached the correct answer but there 

were still mistakes 

3. Only a small number of answers reach the correct answer 

4. No Answer 

Formal Prove To prove that a 

limit exists using 

𝜀-𝛿 definition. 

 

1. Finding the correct answer with a formal proof. 

2. Most of the answers reached the correct answer but there 

were still mistakes 

3. Only a small number of answers reach the correct answer 

4. No Answer  

Continuity To determine 

whether a 

function is 

continuous or 

discontinuous. 

1. Finding answer regarding the continuity function. 

2. Most of the answers reached the correct answer but there 

were still mistakes 

3. Only a small number of answers reach the correct answer 

4. No Answer 

 

The data analysis for the written test was conducted based on predefined scoring categories. 

Each participant's total score from the written test was categorized into three levels of proficiency. 

These categories for the limit of function test results were established using a holistic scoring rubric 

(Nurhayati et al., 2023). Following the categorization, one participant from each proficiency group was 

selected to represent their respective group for an in-depth interview. 

After categorization, students were grouped into three proficiency levels. One participant from 

each group was chosen to participate in an in-depth interview, which aimed to explore their problem-

solving experiences, with a particular focus on how the students approached and answered the test 

questions, as well as to identify any learning obstacles encountered (Sari et al., 2024). An overview 

of the entire research process is depicted in Figure 2.  
 

 

Figure 2. The research process at every level 
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RESULTS AND DISCUSSION 

Participant Written Test Results 

The results of the written tests administered to all participants regarding the limit at a point are presented 

in Table 2. 

Table 2. Participants' written test on the limit at a point 

Question Answer Descriptions Participants 

Find  lim
𝑥→3

𝑥2−𝑥−6

𝑥−3
 

 

Correctly identifying the answer through factoring. P10, P12, P13, P15, P17, P18, 

P19, P20, P24, P25, P26 

Most responses were correct, though some errors 

persisted. 

P1 

A small number of responses were correct P2, P3, P4, P5, P6, P7, P8, P9, 

P11, P14, P16, P21, P22, P23 

No answer provided - 

 

The results of the written tests regarding one-sided limits are shown in Table 3. 

Table 3. Participants' written test on one-sided limits 

Question Answer Descriptions Participants 

For the function above, find the 

indicated limit or function value 

a. lim
𝑥→2 (−)

 𝑔(𝑥) 

b. lim
𝑥→0 (−)

 𝑔(𝑥) 

c. lim
𝑥→−4 (+)

 𝑔(𝑥) 

d. lim
𝑥→−4 (−)

 𝑔(𝑥) 

e. 𝑔(2) 

Correctly determining the left-hand 

and right-hand limits 

P10, P12, P13, P18, P19, 

P23 

Most responses were correct, 

though some errors persisted 

P1, P6, P15, P20, P22 

Only a few responses were correct P2, P3, P4, P5, P7, P8, P9, 

P11, P14, P16, P17, P21, 

P24, P25, P26 

No answer provided - 

 

The results of the written tests on the formal definition are displayed in Table 4. 

Table 4. Participants' written test on the formal definition 

Question Answer Descriptions Participants 

Prove in a formal way that = 10 

 

Finding the answer correctly with a 

formal definition of the limit of the 

function 

P10, P12, P13, P18, P19 

Most of the answers reached the correct 

answer, but there were still mistakes. 

P20, P22 
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Question Answer Descriptions Participants 

Only a small number of answers 

reached the correct answer. 

P1, P2, P3, P4, P6, P8, 

P11, P15, P16, P21, P23, 

P24, P25, P26 

No Answer P5, P7, P14, P17, P9 

 

The results of the written tests on continuity are presented in Table 5.  

Table 5. Participants' written test regarding continuity 

Question Answer Descriptions Participants 

𝑓 (t) = {
𝑡 −  3, 𝑡 ≤  3

3 − 𝑡, 𝑡 > 3
   

Investigate if 𝑓 (t) is continuous or 

not. Tell the reason. 

Correctly identifying the continuity of the 

function 

P16, P12, P13, P15, 

P18, P19, P20, P22, 

P23, P24, P25, P26 

Most responses were correct, though 

some errors persisted 

P1, P4, P8 

Only a few responses were correct P2, P3, P5, P6, P7, P9, 

P11, P17 

No answer provided P5, P14, P16 

 

The data presented in Table 2 until 5 is further illustrated in Figure 3, which highlights the most 

significant learning obstacles encountered by the students based on the content assessed. 

 

 

Figure 3. The most frequent learning obstacle faced by students in Group 1 based on content 

Figure 3 illustrates that formal proofs of limits were the most frequent source of learning obstacles among 

students. This conclusion is derived from the number of participants who either provided incorrect 

responses or failed to answer the question altogether, as evidenced by two key response categories: a 

small number of correct answers and no answer provided. These findings suggest that instructors must 
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dedicate additional focus to teaching the concept of formal limits in order to mitigate learning obstacles 

effectively. 

The Test Results of Participants for Interview and Learning Obstacles 

Three participants, representing each level of ability—high, moderate, and low—were selected for the 

interview analysis. These participants were labeled as P20 (high ability), P22 (moderate ability), and P17 

(low ability). This section aims to address the second research question: How do the students describe 

their learning obstacles in the topic of limits of functions? 

High-Ability Student: P20 

Table 6 explains the interview results with P20. It was found that P20 did not experience any learning 

obstacles in relation to questions 1 and 4. However, in question 2(d), P20 encountered a 

misinterpretation. Although P20 understood that the values of −4− and −4+ are not the same due to 

the discontinuity of the function graph, P20 mistakenly assumed the question was asking about 𝑓(𝑥) 

rather than the limit. This led P20 to experience an epistemological obstacle, as they could not 

differentiate between the limit notation lim
𝑥→𝛼

𝑓(𝑥) and the function notation 𝑓(𝑥). 

Table 6. The interview results of high-ability student 

P20 Answer The Conclusion of Interview Results 

 

P20 suggests solving limit problems through 

substitution. If the result is 0 or undefined then 

use factoring. 

P20 thinks that the way to solve limit problems 

is to use substitution. If the result is 0 or 

undefined, then use factoring. 

 

 

The left limit of the point x = 2 is 2. 

Answer: 0 because 0 is neutral and the limit 

direction also points to 0. 

Because the graph is disconnected, the limit 

value from the right goes to 3 

Because it is disconnected, the limit value does 

not exist. There are points 3 and 4, so the 

answer is none. 

The full point is one, so the answer is one. The 

answer is not an empty point. 

 

 
 
 
 
 
 
 

Precision limits, formal proofs. How to find 

epsilon, each field is moved and then done. 

Create factoring and cross out the same. P20 

wants to find the x value obtained from epsilon 

over 5. The number 5 on the left side moves to 

the right, so it becomes a division.  

Does not exist, because it 

has two different answers. 
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Continuous conditions, there are conditions (i) 

and (ii). Condition (i) 3-t = 0. Meanwhile, 3- 

means t is less than 3, 3+ means t is more than 

3. Because 3- and 3+ have the same value, 

then f(t) exists. (iii) f(t) is continuous, and f(t) is 

continuous because conditions (i) and (ii) are 

the same. If the two conditions are not the 

same, f(t) is not continuous. 

 

In question 3, while P20 demonstrated procedural knowledge in solving formal proof problems, they 

struggled to comprehend the underlying principles of the proof. P20 did not understand that in proving limits, 

the epsilon value is provided, and the delta value must be determined. This lack of understanding led to an 

epistemological obstacle. According to Brousseau (2002), epistemological obstacles are challenges that 

arise from the nature of the learning approach based on the concept itself, while Fuadiah (2015) identifies 

epistemological obstacles as those related to the application of the concept. Finally, the conclusion 

regarding the learning obstacles experienced by P20 is summarized in Table 7. 

Table 7. The learning obstacles in high-ability students 

Question Number Learning Obstacle 

1 × 

2 epistemological obstacle 

3 epistemological obstacle 

4 × 

 

Moderate-Ability Student: P22 

The analysis of P22's responses to the four interview questions revealed several insights into the learning 

obstacles encountered as presented in Table 8. In response to Question 1, P22 did not utilize the factoring 

method due to feelings of uncertainty and instead opted for substitution. This choice suggests that P22 

faced limitations in the prerequisite knowledge required for solving limits of functions, particularly in 

finding the roots of quadratic functions. These skills are considered fundamental pre-calculus concepts 

necessary for understanding limits. Consequently, it was concluded that P22 experienced ontogenic 

learning obstacles, which Puspita et al. (2023) classifies into three categories: psychological, 

instrumental, and conceptual. In P22's case, the hesitation in applying factoring, coupled with the inability 

to effectively use this method, reflects both psychological and instrumental ontogenic obstacles. 

Formal proof 

exist 

exist 

continuous 
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Table 8. The interview results of moderate-ability student 

P22 Answer The Conclusion of Interview Results 

 

P22 uses the substitution method because it 

cannot be factored. Even though P22 had tried to 

do factoring in another paper, he was still unsure, 

so he decided to just make a direct substitution. 

Where he finds 
0

0
 that is meaningless. 

 

P22 chose the full dot; on the left side is 1, the 

answer is 1. 

P22 said he was in a hurry to answer, so he 

answered nothing. P22 continued, that the 

answer should be 3 because the arrow pointing 

to 3 is an empty point. 

The value is 3 because, at point -4 from the right, 

the empty point corresponds to 3. 

The value is 4 because, at point -4 from the right, 

the full point is 4. 

P22 said he forgot why he could answer yes. He 

doesn't yet understand what f(2) is looking for. 

 

 

P22 solved problem number 3 by using the 

formula first, namely 0 < |𝑓 (𝑥) − 𝐿| <  𝛿   

and 0 < |𝑓 (𝑥) − 𝐿| <  𝜀 then P22 used the 

factoring method but was still hesitant. The 

numerator and denominator are crossed out. So 

P22 decreases x+5. But how to write it goes 

back and forth. 

 

P22 says that (i) and (ii) are conditions that must 

be met. T approaching 3 from the left is 3-3 = 0. 

T approaching 3 from the right is also 0. Part (iii) 

is continuous because the positive and negative 

values are the same, so f(t) is continuous. If the 

value is positive or on the right, for example, 2, 

then, for example, on the left, 3 so they are 

different; then the function is not continuous. 

 

In Question 2a, P22 demonstrated a misunderstanding regarding the determination of limit values, 

erroneously focusing on the focal points of the graph rather than applying the correct limit evaluation 

methods. Similarly, in Question 2b, P22 acknowledged being in a hurry when answering, resulting in an 

incomplete response. In Question 2c, P22 argued that the answer should be 3, associating the empty 

exist 

Does not exist 

continuous 

exist 

exist 
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point with an arrow pointing toward 3. This suggests that P22 had a limited understanding of the graph's 

behavior, particularly in discerning the function's direction at specific points. Moreover, in Question 2e, 

P22 admitted to forgetting the reasoning behind a previously correct answer, indicating a lack of 

understanding regarding the meaning of 𝑓(2). These difficulties reflect psychological ontogenic 

obstacles, primarily arising from time pressure and an incomplete conceptual grasp. Furthermore, P22's 

struggle to comprehend the concept of one-sided limits indicates the presence of epistemological 

obstacles, which are rooted in a lack of deep understanding of the underlying mathematical concepts. 

In Question 3, P22 initially succeeded in applying the factoring method, though hesitantly. 

However, the solution was incomplete, and P22 did not manage to fully resolve the problem. This 

suggests that while P22 demonstrated some procedural knowledge, the inability to completely solve the 

problem can be attributed to epistemological obstacles, which are indicative of limitations in 

understanding the formal definition of limits. The hesitation observed during this process also points to 

psychological ontogenic obstacles, reinforcing the idea that emotional or psychological factors 

significantly affect P22's performance. Lastly, in Question 4, P22 did not encounter any notable learning 

obstacles, indicating that this particular concept or problem type was well within P22's grasp. 

Based on the findings from P22’s interview responses in Table 8, the following types of learning 

obstacles were identified in Table 9. The categorization of these obstacles aligns with the theoretical 

framework of ontogenic and epistemological barriers to learning, suggesting that P22’s difficulties are 

rooted in both emotional and conceptual challenges. 

Table 9. The learning obstacles in moderate-ability students 

Question Number Learning Obstacle 

1 Psychological and instrumental types of ontogenic 

2 Psychological, Psychological ontogenic, and epistemological obstacles 

3 Psychological ontogenic and epistemological obstacles 

4 × 

 

Low-Ability Student: P17 

The analysis of P17’s responses to the four interview questions revealed several key learning obstacles 

that can be classified into ontogenic and epistemological categories as summarized in Table 10. 

Furthermore, in Question 1, P17 struggled with factoring and opted to directly substitute into the function. 

This indicates a lack of mastery over the prerequisite material for solving limits, particularly the skill of 

factoring quadratic functions, which are foundational to understanding limits. According to Sukarma et al. 

(2023), students who face ontogenic obstacles encounter difficulties due to insufficient understanding of 

essential concepts or prerequisite material. In this case, P17’s inability to apply factoring methods reflects 

a conceptual ontogenic obstacle. 

In Question 2, P17 exhibited a limited understanding of how to determine the value of the function 

limit. Specifically, P17 believed that only points marked with a thick dot could be used to determine the 

function's limit. This misconception is an example of an epistemological obstacle. Brousseau (2002) 

explains that epistemological obstacles arise when students' understanding is constrained by limitations 

in how they interpret mathematical contexts. P17's narrow focus on the thick points without recognizing 

the broader concept of limits exemplifies this type of barrier. 

In Question 3, P17 was unable to solve the formal proof of limits due to a lack of understanding of 

the appropriate methods for formal proof in the context of limits. This failure to solve the problem is 
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attributed to epistemological obstacles, as P17’s cognitive conflict arose from a disparity between the 

informal concept image and the formal definition of limits. Tall and Vinner (1981) assert that such cognitive 

conflicts occur when the concept image is inconsistent with the formal definition, which aligns with P17's 

difficulty in understanding formal limit proofs. 

In Question 4, P17 demonstrated limited understanding regarding the meaning of the limit sign 

𝑥 → 3+ (right-hand limit) and 𝑥 → 3− (left-hand limit). P17’s inability to interpret these symbols correctly 

and to understand their implications when analyzing function graphs represents another epistemological 

obstacle. This limitation reflects P17's incomplete grasp of one-sided limits and their role in determining 

the behavior of functions at specific points. 

Table 10. The interview results of low-ability student 

P17 Answer The Conclusion of Interview Results 

 

 

P17 doesn't know how to do factoring. P17 also 

made a mistake in carrying out the operation. 

 

P17 looks at point 2 then at the thick point there. 

The 2 at that point is parallel to the number 1. 

Approaching 0, the answer is none because there 

is no bold point leading to 0, so I answered none. 

Choose the thick part c as well; if it's empty it means 

it's not there, like in part d. 

Part d is missing as well. 

Part e remains unanswered. 

Part e is not answered. 

 

 

 

P17 immediately substituted because he didn't 

know how to solve it with formal proof.  

 

P17 said that the way to solve this problem, part (i) 

first P17 takes from t-3, t < 3. Then part (ii) 

immediately adding and subtracting, P17 believes 

that the sign 3+ indicates addition, so the result is 

6. Conversely, 3- means subtracted so it becomes 

0. Part (iii), the no because the value is not the 

same in part (ii). P17 concluded that it was not 

continuously seen from the unequal values 

between 3+ and 3-. Then P17 was asked again 

what (i) and (ii) again, P22 answered that he did not 

understand it and only saw the example provided 

Does not  exist Does not  exist 

Undefined 

Does not  exist 

discontinuous 
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on the whiteboard during the lecturer gave him 

when teaching process. 

 
Based on the findings from P17’s interview responses, the following learning obstacles were 

identified in Table 11. These obstacles suggest that P17 faces significant challenges in mastering both 

foundational and advanced concepts related to limits, with epistemological barriers being the primary 

hindrance to progression. 

Table 11. The learning obstacles in low-ability students:  

Question Number Learning Obstacle 

1 Conceptual ontogenic obstacle. 

2 Epistemological obstacle 

3 Epistemological obstacle 

4 Epistemological obstacle 

 

In summary, the analysis revealed distinct learning obstacles experienced by students of varying 

abilities. High-ability students primarily encountered epistemological obstacles, which are related to 

limitations in understanding key concepts or their applications. Moderate-ability students faced a 

combination of psychological ontogenic obstacles, instrumental ontogenic obstacles, and epistemological 

obstacles, indicating challenges in both the application of specific methods and in conceptual 

understanding. Low-ability students, on the other hand, were predominantly affected by conceptual 

ontogenic obstacles and epistemological obstacles, particularly due to gaps in prerequisite knowledge 

and limited understanding of formal mathematical concepts. Given these findings, lecturers can develop 

targeted strategies to minimize these learning obstacles, focusing on addressing both foundational 

conceptual gaps and the development of critical thinking skills necessary for advanced mathematical 

understanding. 

Implementation of Didactical Design for Teaching Limits of a Function 

The implementation of an effective teaching design for the concept of the limit of a function can be 

developed to minimize the learning obstacles identified in this study. The design process for teaching the 

limit of a function follows several key steps: 

1. Analysis of Learning Obstacles: The first stage involved analyzing the learning obstacles related 

to the limit of a function, as outlined in the results section of this article. This analysis identifies the 

specific challenges students face in understanding the concept of limits. 

2. Review of Lecturer's Teaching Design: The second stage examined the existing calculus course 

design used by lecturers at Universitas Khairun. It was found that Purcell’s textbook is the primary 

reference used, with some variations in the teaching and learning approach to suit the local context. 

3. Review of Published Research: A study of relevant research articles on teaching the limit of a 

function provided further insights into effective teaching strategies. 

4. Expert Validation: The proposed didactical design was then validated through a Focus Group 

Discussion (FGD) held on September 28, 2024, involving subject matter experts. 

 

Based on the findings from these stages, the recommended teaching phases for the limit of a function 

have been formulated, as depicted in Figure 4.  
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Figure 4. Teaching phase based on the content of the limit of function 

The learning obstacles associated with determining the limit value typically arise when students 

are unfamiliar with factoring. In such cases, students often resort to direct substitution. To address this, 

the teaching design begins by introducing the concept of the limit intuitively (Oehrtman, 2008). Students 

are initially presented with a function where substitution leads to an indeterminate form, thereby 

illustrating the need for alternative methods, such as factoring or multiplying by the conjugate (Hardy, 

2009; Nagle, 2013). Once students grasp the intuitive meaning of a limit and learn how to determine the 

limit using these methods, they progress to the next phase: one-sided limits. 

The one-sided limit phase is aimed at determining the limit of a function as it approaches a given 

point from one side only. During this phase, students are provided with both the function and its graph and 

are asked to compute the left and right limits. An example of this didactical design is presented in Figure 5. 
 

 

Figure 5. Example of didactical design for one-sided limits 

Once students have learned how to determine whether the limit of a function exists, the next phase 

of instruction focuses on the formal limit. A significant learning obstacle in this phase is that students 
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often focus solely on procedural aspects of limit proofs without understanding the conceptual foundation, 

particularly the epsilon-delta definition. This finding aligns with previous research by Nagle et al. (2017). 

To address this, teaching begins by introducing the formal definition of limits, followed by practical 

examples that illustrate the values of epsilon and delta. This approach helps students visualize these 

values as real numbers, thus facilitating a deeper understanding of the formal limit definition. 

Additionally, the teaching design incorporates limits at infinity, which is an essential extension of the 

concept of limits. Although this phase was not included in the initial stages of the research due to its exclusion 

from previous coursework, it will be addressed in future instructional phases. The focus of this phase is to 

explore the behavior of a function as 𝑥 approaches infinity. The final teaching phase is dedicated to 

determining whether a function or its graph is continuous or discontinuous. Through this phase, students learn 

how to analyze the continuity of functions, building on the knowledge they have acquired in previous phases. 

The diagnostic tests, which were administered to two student groups (Group 1 and Group 2), 

provide an important measure of the effectiveness of the didactical design. These tests were given at the 

start and end of the teaching intervention to assess students’ understanding of the limit of a function. 

The results of the diagnostic test, displayed in Figure 6, show a marked reduction in learning 

obstacles in Group 2 after the implementation of the didactical design. The most prominent learning 

obstacles remaining in this group were related to the formal definition of limits and limits at infinity. 

Consequently, it is recommended that calculus instructors place greater emphasis on these subtopics to 

ensure students develop a comprehensive understanding.  

 

 

Figure 6. The learning obstacles faced by students the most in group 2 based on the content 

Finally, the implementation of the didactical design led to a significant reduction in the number of 

learning obstacles compared to the pre-intervention phase, as shown in Figure 3. However, the results also 

highlight that challenges persist in the areas of formal definitions and limits at infinity, suggesting that lecturers 

should provide additional support and clarification in these areas. By addressing these remaining obstacles, 

lecturers can further enhance students’ understanding of limits and improve their overall learning experience. 

CONCLUSION  

This study led to three significant conclusions regarding the learning obstacles in the concept of limits in 

calculus. First, the research revealed that among the four sub-contents of limits of function—namely limit at 

a point, one-sided limit, formal definition, and continuity—the most prevalent learning obstacle was 
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The learning obstacle faced by students the most 
based on the content after the implementation of 

the didactical design
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encountered in understanding the formal definition. This highlights the importance for educators to prioritize 

the teaching of formal definitions, particularly the ε-δ definition, and to ensure that students grasp the 

conceptual understanding needed to prove the existence of limits. Second, the study found that learning 

obstacles varied according to the students' ability levels. High-ability students predominantly faced 

epistemological obstacles, while moderate-ability students encountered psychological ontogenic, 

instrumental ontogenic, and epistemological obstacles. Low-ability students primarily experienced 

conceptual ontogenic and epistemological obstacles. The high-ability students demonstrated a procedural 

understanding of the formal definition but struggled with its deeper meaning. Moderate-ability students 

tended to use substitution methods instead of correctly applying factoring techniques, and they also 

struggled with conceptualizing the formal definition. Low-ability students exhibited significant challenges in 

understanding any of the four sub-content areas due to insufficient prerequisite knowledge, such as 

factoring and solving inequalities. 

Despite the positive impact of the didactical design implemented in this study, which contributed 

to reducing learning obstacles and enhancing comprehension of the limit of function, certain limitations 

were observed. While the occurrence of learning obstacles decreased, they were not completely 

eradicated. This suggests that while the didactical design approach showed promise, further efforts are 

required to address the persistent barriers that hinder full comprehension. Additionally, the study's 

findings underline the need for continuous refinement of teaching strategies and materials to ensure that 

these obstacles are minimized more effectively. 

Based on the results and limitations of this research, future studies should focus on exploring more 

advanced and comprehensive methods to further reduce learning barriers in the teaching of limits and 

other calculus topics. Research could investigate innovative teaching strategies, including adaptive 

learning techniques or technology-enhanced learning tools, to better support students across different 

ability levels. Moreover, further research should examine the broader application of didactical designs to 

other areas of mathematics education, exploring their effectiveness in various instructional contexts to 

improve overall student understanding and reduce epistemological and conceptual obstacles. 
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