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Abstract 

The comprehension of mathematical proofs by preservice mathematics teachers is vital for their ability to 
effectively teach mathematical reasoning. Despite its importance, existing research reveals a significant gap in 
preservice teachers’ understanding and application of formal proof methods, especially in the context of 
mathematical argumentation. This study examined how preservice teachers construct mathematical proofs, using 
Toulmin’s argumentation model as a framework. A qualitative exploratory case study design was adopted, 
involving written proofs from 72 third-year preservice teachers at a South African university, supplemented by 
task-based interviews with nine participants. The findings indicate that 62.5% of the participants were able to 
construct correct direct proofs, and 61.1% applied the contraposition proof method correctly. However, only 30.6% 
produced valid proofs using the contradiction method. Further analysis uncovered notable gaps in essential 
components of proof construction, such as warrants, backing, and rebuttals, particularly when dealing with tasks 
requiring contraposition and contradiction methods. While many participants (62.5%) demonstrated procedural 
fluency in direct proofs, 31.9% failed to provide explicit definitions or logical precision, suggesting a superficial 
engagement with proof construction. These results highlight the need for teacher education programs to 
emphasize a deeper conceptual understanding of proof structures, which is crucial for preparing preservice 
mathematics teachers to foster reasoning and argumentation skills in their future classrooms. 
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Over the years, curriculum frameworks globally have emphasized the importance of developing 

reasoning and proof skills as essential components of mathematics education. Frameworks such as the 

Australian Curriculum (2019), the Ontario Ministry of Education (Canada, 2020), and the Department for 

Education (United Kingdom, 2021), among others, consistently highlight reasoning and proof as 

fundamental elements in secondary school mathematics. This emphasis is also reflected in the work of 

prominent scholars in mathematics education (e.g., Brodie, 2010; Goos & Kaya, 2020; Knuth, 2002b; 

Selden & Selden, 2017; Stylianides et al., 2017, 2024; Varghese, 2009), who argue that reasoning and 

proof are essential for developing a deep understanding of mathematical concepts. Similarly, the process 

standards set forth by the National Council of Teachers of Mathematics (NCTM, 2000) advocate for 

students to formulate and test conjectures, construct and assess mathematical arguments, and apply a 

variety of reasoning strategies and proof techniques. 
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Although South Africa's Curriculum and Assessment Policy Statement (CAPS) (Department of 

Basic Education, 2011) does not explicitly prioritize "reasoning and proof," it encourages students to 

engage with proof techniques, emphasizing the importance of teaching the rationale behind proofs. These 

practices play a crucial role in promoting conceptual understanding and equipping students with the 

critical thinking and problem-solving skills necessary for academic achievement and success in real-world 

contexts.  

This recognition underscores the necessity for secondary school mathematics teachers to possess 

a solid understanding of mathematical concepts, particularly in proof construction, as teachers cannot 

effectively teach topics or concepts they do not fully comprehend (Mukuka & Alex, 2024). In the South 

African Further Education and Training (FET) phase, the proof of prescribed theorems and the derivation 

of formulas are integral components of routine instructional practices (Department of Basic Education, 

2011). Research by Brodie (2010) and Maoto et al. (2018) further emphasizes that reasoning and proof 

should be central to classroom discussions, irrespective of the specific mathematical topic or concept 

being studied. This highlights the importance of providing preservice mathematics teachers with more 

opportunities to deepen their understanding of proofs, especially those pertinent to the curriculum they 

will eventually teach. However, despite these calls for an increased focus on proofs, there is a notable 

lack of research documenting the comprehension of proofs by preservice teachers, particularly within the 

context of sub-Saharan Africa, and specifically South Africa. 

This study addresses this gap by investigating how preservice mathematics teachers at a South 

African university conceptualize and apply various methods of proof when tasked with validating 

mathematical statements involving fundamental number concepts. The use of proof methods, whether 

direct or indirect, is crucial for preservice teachers as these methods form the foundation of logical 

reasoning and problem-solving (Courant & Robbins, 1996, as cited in Haavold et al., 2024).  

In the context of this study, we define proof as a structured reasoning process that enables learners 

to validate mathematical statements through logical inference (Hanna, 2020; Hanna & Barbeau, 2010). 

Building on Duval's (1995, as cited by Pedemonte, 2007) framework, argumentation is understood as the 

reasoning process that preservice teachers use when constructing proofs. This process involves 

establishing logical connections and justifications. While argumentation aims to convince or persuade 

through reasoning—whether formal or informal—proof, by contrast, emphasizes the rigorous, logical 

validation of a statement. A step in a proof refers to each individual component or assertion that 

contributes to the overall argument, ensuring that every part of the reasoning is clearly articulated and 

logically sound. 

Direct proof is a method of demonstrating the truth of a mathematical statement by starting with 

known premises and using logical steps to arrive at a conclusion (Cupillari, 2024). While there may be 

other types of direct proofs, this study employs a proof by construction, a direct proof method that involves 

proving statements such as 𝑃  𝑄 directly (Ferry, 2010). An example of a direct proof may involve 

proving that the sum of two odd numbers is always even. The first step in applying proof by construction 

would be to let the two odd numbers be represented as 2m + 1 and 2n + 1, where 𝑚 and 𝑛 are 

integers. Secondly, adding them followed by factoring out 2 results in 2(m + n + 1), which is clearly 

an even number, as it is divisible by 2.  

On the other hand, indirect proofs, including proof by contraposition and proof by contradiction, 

approach a proof task from a different angle. In a contrapositive proof, instead of proving the original 

statement 𝑃  𝑄, one proves its equivalent contrapositive ¬𝑄  ¬𝑃 (Antonini & Mariotti, 2008). An 

example of a contrapositive proof is showing that if the square of an integer is even, then the integer itself 
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must be even. Rather than proving the original statement directly, we assume the contrapositive—that if 

an integer is odd, then its square is odd—and then verify this claim to conclude the truth of the original 

statement. Proof by contradiction, on the other hand, assumes the negation of the initial statement and 

seeks to show that this assumption leads to a logical contradiction, thereby confirming the original 

statement as true. A classic example involves proving the irrationality of √2. By assuming √2 is rational, 

one can prove a contradiction, ultimately proving its irrationality (Quarfoot & Rabin, 2022). 

For preservice teachers, developing a deep understanding of proof methods and their application 

is essential for both their personal mathematical growth and their future effectiveness as educators. 

Research indicates that teachers with a solid grasp of proof can elucidate abstract concepts, correct 

common misconceptions, and cultivate classrooms where reasoning takes precedence over rote 

memorization (Lesseig et al., 2019; Mukuka et al., 2021; 2023). However, despite the critical role proofs 

play in mathematics education, many preservice teachers face challenges in constructing and 

understanding them, often resorting to memorizing steps without fully comprehending the underlying logic 

(Buchbinder & McCrone, 2023; Doruk & Kaplan, 2015; Moore, 1994). This reliance on rote learning 

inhibits the development of the critical thinking skills necessary for effective mathematical reasoning. 

These difficulties not only impact the future teaching practices of preservice teachers but also the 

mathematical competence of their students (Harel & Sowder, 1998; Knuth, 2002a). 

Thus, this study seeks to analyze preservice mathematics teachers' understanding of proofs. 

Focusing on direct, contraposition, and contradiction methods of proof, the study aims to examine the 

reasoning processes that preservice teachers employ and the challenges they face when applying these 

methods. Toulmin's Argumentation Model provided the framework for analyzing these reasoning 

processes. This model is particularly valuable for identifying and assessing the key components of 

arguments—such as claims, data, and warrants—which are central to understanding proof 

comprehension. To achieve this objective, the following research questions were addressed: 

1. How do preservice teachers justify their reasoning when constructing proofs for mathematical 

statements on number concepts? 

2. What gaps or inconsistencies in Toulmin’s argumentation components emerge in preservice 

teachers’ proofs, and how do these reflect their conceptual understanding? 

 

As previously mentioned, this study is grounded in Toulmin’s Argumentation Model, which offers 

a structured framework for analyzing the reasoning and logic that underpin arguments. Introduced by 

Stephen Toulmin in The Uses of Argument (Toulmin, 1958; 2003), the model identifies six key 

components that are essential for constructing a coherent and robust argument: claim, data, warrant, 

backing, qualifier, and rebuttal. The claim represents the conclusion or assertion being put forward, which 

is supported by data—evidence or facts that substantiate the claim. The warrant serves to link the data 

and the claim, providing the logical reasoning that connects them. The backing further strengthens this 

connection by offering additional support for the warrant's validity. The qualifier specifies the degree of 

certainty associated with the claim, while the rebuttal acknowledges potential counterarguments or 

exceptions. 

Applying Toulmin’s model to mathematical proof allows for a detailed analysis of reasoning 

processes, which enables teachers to identify gaps in students’ logical structures and reasoning. Using 

the earlier example of proving that the sum of two odd numbers is always even, the claim asserts that 

adding two odd integers results in an even number. The data supporting this claim involves representing 

odd numbers as 2m + 1 and 2n + 1, where m and n are integers. As indicated earlier, adding these 
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expressions produces something which is clearly divisible by 2. In this case, the warrant would connect 

this data to the conclusion by appealing to the definition of even numbers. At the same time, the backing 

draws upon established properties of integers and arithmetic operations. This means that common issues 

in students’ proofs, such as omitting the specification that m and n are integers, can weaken the 

argument by creating logical ambiguities.  

Similarly, in the proof of the irrationality of the √2, Toulmin’s model provides a lens through which 

to analyze the logical steps involved. The claim is that √2  cannot be expressed as a ratio of two integers. 

To support this, the data assumes the contrary, that √2 =  
a

b
,  where a and b are coprime integers, b ≠

0. The proof proceeds by showing that this assumption leads to a contradiction. If the initial assumption 

of coprimality is violated, then the contradiction is reached. In this sense, the warrant connects the 

assumption of rationality to the logical inconsistency that arises, while the backing includes the properties 

of divisibility and integers. This proof is valid within the context of integer arithmetic and rational numbers, 

as it assumes the definition of rationality as a fraction in simplest form. However, omitting critical 

assumptions, such as a and b are coprime integers and b ≠ 0, could weaken the data and lead to 

illogical arguments. 

Toulmin’s model has been effectively employed in various studies to analyze mathematical 

reasoning and proof. For instance, Pedemonte (2001) explored the transition from argumentation to 

formal proof, emphasizing the role of warrants in bridging informal and formal reasoning. Tchonang 

Youkap et al. (2019) utilized Toulmin’s framework to analyze secondary school students’ geometric 

proofs, revealing frequent gaps in warrants and backing. Similarly, Knipping (2008) examined students’ 

proofs in algebra, identifying recurring issues in their argumentation structures. In another study, 

Rodríguez-Nieto et al. (2023) integrated Toulmin’s model with the Extended Theory of Mathematical 

Connections to analyze an episode focused on proving the continuity theorem for functions of a real 

variable. Their findings highlighted the importance of connections between mathematical concepts, 

theorems, and properties in constructing coherent and logically supported arguments. These studies 

demonstrate the model’s effectiveness in pinpointing specific areas where students face difficulties and 

offer valuable insights for targeted instructional interventions. By applying Toulmin’s model to analyze 

preservice teachers’ proofs, this study contributes to a deeper understanding of the strengths and 

weaknesses in their reasoning processes, thus providing a foundation for designing pedagogical 

strategies aimed at improving preservice teachers’ proof comprehension. 

METHODS 

Study Design and Context 

This research employed a qualitative exploratory case study design to examine preservice teachers’ 

comprehension of proof techniques. The design facilitated the collection and analysis of data aimed at 

understanding how preservice teachers interpret and apply various proof methods. The participants were 

third-year preservice mathematics teachers enrolled in a Bachelor of Education program at a South 

African university. Unlike their peers in pure or applied mathematics programs, these students did not 

engage in intensive proof-oriented coursework. Instead, their curriculum focused on mathematics 

education and pedagogical approaches relevant to their future teaching careers. Prior to this study, 

participants had completed an introductory module on real analysis, which provided foundational 

exposure to proof construction and logical reasoning. The module covered topics such as truth tables for 
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quantifying statements, the application of various proof methods, and reasoning techniques for validating 

mathematical propositions, including the characterization of the real number line as an ordered field. The 

curriculum also explored problem-solving strategies and theorem proofs, as well as sequences, series, 

sets, and boundedness in the context of real analysis. These topics provided a conceptual basis for 

understanding proof methods, though the level of rigor was designed for prospective educators rather 

than professional mathematicians. 

In this study, participants were tasked with answering three proof-based questions designed to 

assess their proficiency with direct (proof by construction) and indirect (proof by contraposition and 

contradiction) methods for justifying the validity of selected mathematical statements. The study was 

motivated by recurrent challenges identified in the literature regarding preservice teachers' difficulties 

with proof comprehension (e.g., Mukuka et al., 2019). The three proof questions administered to the 

participants are illustrated in Figure 1. 

 

Figure 1. Administered proof tasks 

While completing the tasks shown in Figure 1, participants were asked to select and apply 

appropriate proof methods, such as direct proof, proof by contraposition, or proof by contradiction. In the 

first task, participants were expected to recognize that direct proof by construction was the most suitable 

approach. This task required expressing odd numbers in a general form and utilizing basic arithmetic to 

demonstrate that their sum is always even. A strong understanding of algebraic manipulation and the 

properties of odd and even numbers were necessary for success in this task. 

For the second task, participants were required to prove that if the product of two integers is even, 

then at least one of the integers must be even. Both contraposition and contradiction methods were 

applicable here. In using proof by contrapositive, participants would restate the problem as “If neither 𝑚 

nor 𝑛 is even, then their product is odd” and proceed to show that this restatement is logically consistent 

with the given conditions. Alternatively, proof by contradiction would involve assuming that both 𝑚 and 

𝑛 are odd and demonstrating that this assumption contradicts the given statement. 

The third task asked participants to prove that √3 is irrational, which is typically done using proof 

by contradiction. Participants would assume that √3 is rational and express it as a fraction in its lowest 

terms. They would then engage in a sequence of logical deductions, each justified by established 

mathematical principles, ultimately arriving at a contradiction to demonstrate that √3 cannot be rational. 

These tasks were designed to evaluate participants’ understanding of proof methods and their ability to 

select appropriate techniques based on the nature of the mathematical statement. Our aim was to assess 

both their final conclusions and the reasoning behind their choice and application of proof methods.  

Participant Selection  

Out of 189 submissions, 72 scripts were selected for analysis based on the principle of data saturation, 

which indicated that further analysis would not yield new insights (Fusch & Ness, 2015). This decision 

Item 1: Show that the sum of any two odd numbers is always even 

Item 2: For all integers 𝑚 and 𝑛, prove that if the product 𝑚𝑛 is even, then 

either 𝑚 is even or 𝑛 is even. 

Item 3: Prove that √3 is an irrational number                                                                                                                                            
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was informed by a systematic review of the written scripts, wherein an iterative analysis of smaller batches 

identified recurring themes, common misconceptions, and typical reasoning patterns. The selected 

scripts were labeled from S001 to S072 for identification purposes. 

In addition to the script analysis, task-based interviews were conducted with nine preservice 

teachers, purposively selected to ensure a diverse representation across different response categories 

(correct, partially correct, and incorrect). Three participants were chosen randomly from each category to 

provide a balanced perspective on their reasoning processes, proof method application, and the 

challenges they encountered. This purposive sampling strategy ensured that the interview data 

complemented the script analysis, thereby enhancing our understanding of preservice teachers' proof 

comprehension. The task-based interviews did not follow a predetermined interview guide. Each 

participant was asked to select one of the proof questions displayed in Figure 1, given a piece of paper, 

and instructed to construct a proof. Following the construction of their proof, we asked questions to solicit 

further explanation of their reasoning. 

Data Analysis  

Written script analysis was conducted using content analysis, guided by Toulmin’s model of 

argumentation (Toulmin, 1958; 2003). This framework allowed for a structured assessment of the key 

components in participants’ proofs, including claims, data, warrants, backings, qualifiers, and rebuttals. 

These components provided a basis for evaluating the appropriateness of the chosen proof methods, the 

handling of mathematical statements, the logical progression of arguments, the identification of common 

errors or misconceptions, and the overall clarity of explanations. Table 1 presents the analytical 

categories and guiding questions derived from Toulmin’s model to direct the data extraction and analysis.  

Table 1. Predetermined themes and guiding questions for data extraction and analysis 

Analysis Code Guiding Question 

Claim Is the mathematical statement being proven clearly articulated? 

Data Is the selected proof method appropriate? Are the definitions, assumptions, and given 

information explicitly stated? 

Warrant Is there a clear and logical connection between the data and the claim? 

Backing Are additional justifications or properties used to support the warrant? 

Qualifier Are there any indications of generality or limitations in the argument? 

Rebuttals Are potential counterarguments addressed, or alternative assumptions considered? 

 

Content analysis was employed to systematically categorize the responses into four groups: blank, 

incorrect, partially correct, and correct. This classification enabled the quantification of preservice 

teachers’ performance and facilitated the identification of patterns in their approach to proof. Previous 

studies (Tatira, 2021, 2023; Tatira & Mukuka, 2024) employing similar response categorization alongside 

Toulmin’s model provided a comparative framework for analyzing our findings and drawing connections 

with other research on proof comprehension. 

Additionally, data from task-based interviews were analyzed thematically to explore participants’ 

reasoning processes in greater depth. This analysis focused on the claims participants aimed to prove, 

the data and warrants they used, and the challenges they faced in applying proof methods. Thematic 

coding was conducted to categorize participants’ responses based on their articulation of claims, use of 

data and warrants, reliance on backing, and handling of qualifiers or rebuttals. This approach offered 

insights into whether participants relied on procedural familiarity or demonstrated a deeper conceptual 
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understanding in proof construction. Thematic analysis also illuminated tendencies toward memorization 

versus engagement with the logical structure of proofs. 

Ethical Clearance  

The study adhered to ethical standards, ensuring participant privacy and confidentiality. No identifying 

information was disclosed in the data dissemination process, and participants provided informed consent 

for the use of their written and oral responses for research purposes. This study forms part of an ongoing 

research project approved by the Institutional Ethical Review Board of the university, with the authors 

and participants affiliated with the institution. The ethical approval number is FEDSRECC01-12-20, and 

the approval certificate permitted the study to be conducted with preservice teachers in their second or 

third year. The broader research project aims to profile preservice teachers’ content knowledge in various 

mathematical concepts, with the goal of enhancing their mathematical knowledge for teaching. 

RESULTS AND DISCUSSION 

This study aimed to examine the understanding of proof methods among preservice teachers and their 

application in validating mathematical statements related to number concepts. The results are presented 

in two sections: Analysis of Written Scripts and Insights from Task-Based Interviews. The first section 

evaluates preservice teachers' responses to three proof tasks using Toulmin's model of argumentation, 

focusing on key components such as claim, data, warrant, backing, qualifier, and rebuttal. However, it is 

important to note that not all six components of Toulmin’s model were explicitly articulated in the 

preservice teachers' solutions, which may reflect gaps in their reasoning or presentation. The second 

section discusses the preservice teachers' thought processes during task-based interviews, reflecting on 

their written solutions and addressing challenges or misconceptions encountered. Additionally, 

connections are drawn between their interview responses and the patterns observed in their written work. 

Analysis of Written Proof Scripts 

The results summarized in Table 2 highlight distinct patterns in preservice teachers' reasoning processes 

and areas of difficulty. Each task is analyzed individually, with excerpts from participants’ written work 

providing further insights. Responses are categorized into four groups: left blank, incorrect, partially 

correct, and correct.  

Table 2. Response categories for all Items 

Response Category 
Item 1   Item 2   Item 3 

Count (n) %   Count (n) %   Count (n) % 

Left blank 4 5.6   3 4.2   1 1.4 

Incorrect 7 9.7   10 13.9   0 0 

Partially Correct 16 22.2   15 20.8   49 68.0 

Correct 45 62.5   44 61.1   22 30.6 

Total 72 100   72 100   72 100 
 

Item 1: Sum of Two Odd Numbers Being Even 

The results in Table 2 indicate that a majority of preservice teachers (62.5%) provided correct proofs for 

Item 1, which suggests a relatively strong grasp of direct proof methods. The claim of this task—"the sum 

of any two odd numbers is always even"—was correctly stated by most participants. However, several 
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responses lacked precision in the data, as some participants failed to specify that 𝑘 in the expression 

2𝑘 + 1 must be an integer, as shown in Figure 2. This omission weakened the logical foundation of the 

proof, though it did not always invalidate the procedural steps. This indicates that the warrant was either 

incomplete or flawed, as the reasoning lacked a critical assumption necessary to establish the connection 

between data and the claim. 

The warrant, which connects the data (definitions of odd numbers) to the claim (resulting even 

sum), was frequently implied rather than explicitly stated. For example, some participants did not justify 

why adding 2𝑘 + 1 and 2𝑚 + 1 results in 2 (𝑘 + 𝑚 + 1) , a form divisible by 2. These gaps suggest 

an overreliance on procedural fluency without a deep conceptual understanding. Furthermore, the 

backing, such as justifications for integer properties, was often absent, indicating a lack of depth in 

reasoning. 

 

 

Figure 2. Solution by S008 displaying undefined variables for Item 1 

Partially correct (22.2%) and incorrect (9.7%) responses for Item 1 often involved incomplete or 

erroneous warrants. For instance, Figure 3 demonstrates a case where the student misunderstood the 

relationship between odd and even numbers, leading to an invalid conclusion.  

 

 

Figure 3. Item 1 solution by S021 showing incorrect assumptions or misunderstanding of a claim 

In addition to misunderstandings of assumptions and failure to grasp the claim, the solution in 

Figure 3 also illustrates unclear variable specifications, such as the omission of stating that k and l are 

positive integers. Another common issue was confusion regarding proof methods, such as direct proof, 

contraposition, or proof by contradiction. Some participants mixed up these methods, resulting in 

incomplete or incorrect solutions. In some cases, participants identified one proof method but 
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inadvertently employed another, suggesting a lack of understanding of the distinctions between the 

methods or simple oversight. Figure 4 shows an example of such a mismatch. 

In the case of Figure 4, the solution reflects an incomplete or missing warrant, as the logical 

reasoning connecting the data to the claim is neither clearly stated nor correctly aligned with the chosen 

proof method. 

 

 

Figure 4. Solution by S004 displaying a mismatch between selected and implemented proof methods for Item 1 

Item 2: Contrapositive or Contradiction Proof for an Even Product  

Item 2 required preservice teachers to prove that if the product 𝑚𝑛 of two integers is even, then either 

𝑚 or 𝑛 must be even. As indicated by the results in Table 2, 61.1% of responses were correct, reflecting 

a basic understanding of the claim and the appropriate proof methods. However, Figure 5 demonstrates 

that some participants in the partially correct category (20.8%) and others in the incorrect category 

(13.9%) struggled with selecting and applying the correct proof method. 

 

 

Figure 5. Item 2 solution by S031 showing a lack of coherent logical steps in a proof 
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The solution presented by participant S031 in Figure 5 exhibits significant gaps in reasoning and 

logical structure. Although the participant attempts to prove that “if 𝑚𝑛 is even, then either 𝑚 or 𝑛 is 

even,” the claim is not explicitly stated, leading to ambiguity and undermining the clarity of the argument. 

The use of the equation 𝑚𝑛 = 2𝑘, while correct in indicating that 𝑚𝑛 is even, fails to fully utilize the 

definitions of odd and even numbers. Furthermore, the equation 𝑛 =  2(𝑘 − 𝑓𝑛) is problematic due to 

its circular dependency, which impedes the isolation of 𝑛 as an even number and weakens the proof. 

Essential specifications, such as explicitly stating that 𝑘, 𝑓 and 𝑛 are integers, are also missing, 

undermining the foundational reasoning. The warrant, which should connect the assumption that 𝑚 is 

odd to the conclusion that 𝑛 is even, remains underdeveloped. 

Similarly, Figure 6 provides an example where the participant’s reasoning lacks a clear warrant, 

as the logical connection between the initial assumption and the conclusion is inadequately articulated. 

The introduction of new assumptions after the conclusion is reached undermines the validity of the proof 

and indicates a failure to recognize that a contradiction should arise solely from the original assumption 

and the established logical steps.  

 

 

Figure 6. Item 2 Solution by S022 Displaying a Misunderstanding of Underlying Proof Structure 

Item 3: Proof by Contradiction for the Irrationality of √𝟑  

Item 3 presented the most significant challenge, with only 30.6% of participants producing correct proofs. 

Most responses (68.0%) were partially correct, revealing widespread difficulties with the underlying logic 

of proof by contradiction. The claim that √3 is irrational was frequently misunderstood or ambiguously 

stated, as illustrated by participant S002’s solution in Figure 7. 

The solution presented in Figure 7 reflects a surface-level understanding in which a participant 

correctly assumed that √3 =  
𝑎

𝑏
, but failed to define what 𝑎 and 𝑏 represented or why the assumption 

was necessary. This omission highlights a missing data component, as the lack of explicitly stated 

definitions and conditions (e.g., 𝑎 and 𝑏 being integers) undermines the foundation of the proof. 

Additionally, the participant’s failure to explicitly state that 𝑎 and 𝑏 are coprime, and that 𝑏 ≠ 0, further 

weakens the logical framework by neglecting critical backing, additional justifications that would reinforce 

the assumptions and the progression of the argument. 
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The proof also exhibits a flawed or incomplete warrant, as the participant did not establish a clear 

connection between the assumption √3 =  
𝑎

𝑏
  and the contradiction that should logically follow. Without 

properly specifying the relationships and properties of 𝑎 and 𝑏, the reasoning process remains 

disconnected, resulting in logical gaps. Such inadequacies were quite prevalent and revealed 

participants’ reliance on procedural familiarity without fully grasping the conceptual underpinnings 

necessary for constructing a valid and coherent mathematical proof for the task presented in Item 3.  

 

 

Figure 7. Item 3 solution by S002 showing incomplete assumptions, and missing variable definitions, and 

conclusion 

Figure 8 illustrates another example where the participant claimed to use proof by contraposition 

but instead employed proof by contradiction. The solution contains undefined variables and lacks a proper 

conclusion, further weakening the argument. 

 

 

Figure 4. Mismatch between selected and implemented proof methods by S005 for Item 3 
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In summary, the findings reveal that while many preservice teachers provided correct responses 

(averaging 51.5%), significant challenges remain in their conceptual understanding, particularly when 

constructing valid proofs. Item 3, which required more complex reasoning, had a particularly high rate of 

partially correct responses (68.0%), with only 30.6% of participants successfully constructing a valid 

proof. The observed patterns of confusion regarding mathematical definitions, proof methods, and 

variable representation suggest a reliance on procedural understanding rather than conceptual insight. 

This highlights the need for deeper internalization of proof concepts among preservice teachers. 

Insights from Task-Based Interviews 

The task-based interviews provided deeper insights into the difficulties preservice teachers faced when 

constructing valid proofs for mathematical statements. These interviews offered participants the 

opportunity to reflect on their written solutions, discuss the challenges they encountered, and clarify 

misconceptions that arose during the process. Specifically, the interviews focused on how participants 

selected proof methods for the tasks at hand and the difficulties they experienced. Their responses also 

shed light on whether they relied on memorization or demonstrated a genuine mastery of proof 

construction. 

In terms of selecting proof methods, it became evident that many preservice teachers lacked a 

comprehensive understanding of when and how to apply specific proof methods to different mathematical 

scenarios. Some participants indicated a tendency to use direct proof for “straightforward” statements 

and to switch to indirect methods (contraposition or contradiction) when direct proof did not seem feasible. 

This approach suggests a partial understanding of proof method applicability, as exemplified in the 

following statements: 

1. S003: "For question 1, I used direct proof because it is straightforward." 

2. S004: "I usually begin by analyzing the statement and check which proof method is suitable by 

reminding myself of their properties." 

3. S005: "For straightforward ones, I use direct proof, but I know that I may face challenges at times. 

So, when I face challenges, for example in question 2 and question 3, I take the opposite, such as 

contrapositive or contradiction." 

4. S008: "For item 1, I decided to use the direct proof method because it is not very challenging to 

me, and it only requires general knowledge of what odd numbers and even numbers are." 

 

These responses align with the findings from the written scripts, where some participants exhibited 

a preference for familiar methods, such as direct proof, for simpler tasks but struggled when deeper 

reasoning or alternative proof methods were required. This reliance on surface-level understanding, as 

indicated by S003 and S008, coupled with uncertainty in selecting the appropriate method, as observed 

in S005, points to an inadequate understanding of proof concepts, further corroborating the partially 

correct or incorrect solutions noted in the written scripts. Nonetheless, it is important to recognize that 

preservice teachers may find some proofs more intuitive, which could lead to natural exploration of 

several methods before arriving at the correct one. 

Regarding the challenges faced during the process, the following direct quotes illustrate the 

experiences of the preservice teachers: 

1. S001: It was difficult for me to give conclusion before even proving. Proving made me uncertain, 

especially that I do not even believe in assumptions, but I did anyway. I know that n and m is odd 
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right! By definition, I first said n = 2r (assumption) then I proved till I saw that if I add 1 to 2r then 

I will get an odd integer.  

2. S004: Choosing the method to work with is kind of confusing sometimes and not knowing how to 

agree (direct proof) or disagree with the statement to prove a thing is a challenge to me.  

3. S005: For question 3, I always get confused to understand why if 3 is a factor of a2 then it should 

also be a factor of a. Because of language, I always confuse terminologies like factors and 

multiples. For example, in class we were saying a2 is a multiple of 3 and not a factor of 3. 

4. S006: For question 2, I first wanted to prove it using the direct proof method, but I did not know 

how to start. Later I remembered that I needed to use another method, but I had forgotten how to 

do it. 

 

These interview responses reveal several misconceptions that correspond with the patterns observed in 

the written test scripts. They suggest that this group of preservice teachers demonstrated limited flexibility 

in their reasoning. For example, discomfort with using assumptions (e.g., S001’s reluctance to believe in 

assumptions) and difficulty in connecting assumptions to conclusions point to a limited understanding of 

the logical structure of proofs. Additionally, the inability to initiate a proof, as seen in S006, reflects an 

absence of initial heuristic strategies. 

Despite these challenges, some interviewees demonstrated a solid understanding of proof 

methods and their application in the given tasks. Examples from this group include: 

1. S008: I did not face any difficulties while constructing a proof because I have a deep understanding 

of terms like odd numbers and how they operate. 

2. S003: I had no difficulties 

3. S009: I never had challenges because I was always sure of how to proceed. I have understood 

the logic behind these proofs. 

4. S002: In using proof by contradiction to prove that √3 is irrational, the difficulties I had were from 

the misconception of negation. I was trying to work toward proving the statement as true instead 

of false. That means I lost track of the assumption I was working on. 

 

Regarding whether they relied on memorization or a thorough understanding of proofs, four of the 

interviewed preservice teachers stated that they understood the underlying logic, while the remaining five 

indicated that they relied on memorization of the steps. When asked what they considered key to 

understanding proof methods, all participants emphasized that "practice" was essential. This suggests 

that the participants viewed increased practice as vital to improving their understanding of proof 

construction. 

The findings of this study offer significant insights into preservice teachers’ engagement with proof 

construction, the challenges they faced, and the underlying reasoning processes involved. The preservice 

teachers exhibited varying levels of proficiency in articulating claims, presenting data, and justifying their 

reasoning. Direct proof construction was handled relatively well, with 62.5% of participants providing 

correct solutions for Item 1. This result is consistent with the findings of Demiray and Bostan (2015), who 

observed that preservice teachers tend to favor direct proof and mathematical induction due to their 

perceived simplicity. Similarly, Brown (2018) noted that students are more likely to engage with direct 

proofs, viewing them as more convincing and easier to apply. However, despite their positive engagement 

with direct proof tasks, the results revealed that some participants failed to specify critical details, such 
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as explicitly defining integers in their representations, which compromised the logical precision of their 

proofs. This finding aligns with Doruk (2019), who reported that preservice teachers often struggle to 

articulate definitions and apply them correctly in proof construction. 

The analysis using Toulmin’s model of argumentation highlighted gaps in components such as 

warrants, backing, and rebuttals, particularly in Items 2 and 3, which involved the application of proof by 

contraposition or contradiction. For instance, in proving the irrationality of √3 (Item 3), only 30.6% (n = 

22) of responses were correct, while 68.0% were partially correct. The partially correct responses were 

primarily due to the lack of explicit definitions, such as the term "coprime integers," and essential 

assumptions like 𝑏 ≠ 0. The absence of these critical details weakened the logical structure of the 

arguments, mirroring findings by Siswono et al. (2020) and Zeybek and Galindo (2014), who noted similar 

difficulties in indirect proofs and the application of definitions. Similarly, in Item 2, misconceptions related 

to contraposition and contradiction led to irrelevant algebraic manipulations and logical inconsistencies. 

These difficulties underscored the challenges preservice teachers faced in establishing clear warrants 

and backing to support their claims. Several participants also failed to address rebuttals or provide clear 

connections between assumptions and conclusions, reflecting an incomplete understanding of the logical 

structures underpinning these proof methods. Weber (2004) and Azrou and Khelladi (2019) also 

observed that students often lack metacognitive awareness about proofs, which impedes their ability to 

grasp the deeper principles that guide proof construction. 

Moreover, the study revealed a predominant reliance on procedural approaches rather than 

conceptual understanding among preservice teachers. This reliance on mimicking procedures, rather 

than engaging with the underlying principles of proof structures and methods, is consistent with 

observations by Buchbinder and McCrone (2020) and Moore (1994), who found that students often 

reproduce proofs without fully understanding their theoretical foundations. Such tendencies raise 

significant concerns for mathematics education, as preservice teachers’ limited comprehension of proofs 

may hinder their ability to foster mathematical reasoning and critical thinking in future classrooms. 

To address these challenges, teacher education programs must emphasize not only procedural 

fluency but also a deeper conceptual understanding of proofs. Mukuka et al. (2019) argue that 

strengthening proof comprehension is essential to equipping future teachers with the skills necessary to 

guide students in constructing logical arguments and identifying errors. One promising approach to 

achieving this goal is to provide preservice teachers with opportunities to read and critically assess their 

own proofs, as suggested by Mejia-Ramos et al. (2012). Such reflective practices could offer valuable 

insights into preservice teachers’ understanding of proofs and highlight the specific difficulties they 

encounter. These findings are critical for informing the design of targeted interventions aimed at 

enhancing proof comprehension among preservice teachers. 

While this study provides valuable insights, the findings should be interpreted with caution, 

particularly with regard to the educational context in which the study was conducted. The study took place 

at a single South African university, with third-year preservice teachers enrolled in a teacher education 

program. Given that these students are being trained to teach mathematics rather than pursue advanced 

mathematical research, the proofs presented were designed to enhance their mathematical knowledge 

for teaching. Consequently, the scope and complexity of the proofs may differ from those encountered 

by preservice teachers in other programs or regions, especially those training to become pure 

mathematicians. Therefore, the results may not be fully generalizable to preservice teachers in vastly 

different educational settings, both within and outside South Africa. 

To address these limitations and enhance the robustness of future research, it is crucial to expand 
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the scope of similar studies to include multiple institutions. Comparative studies examining preservice 

teachers’ proof comprehension across different educational systems and levels of teacher training (e.g., 

mathematics specialists versus general teacher education programs) could provide a broader 

understanding of the challenges and best practices in proof instruction. Additionally, future research could 

adopt a mixed-methods approach, combining quantitative data with qualitative findings to enhance 

generalizability. Finally, longitudinal studies tracking the development of proof comprehension from 

preservice training to classroom practice would offer deeper insights into how proof skills are acquired 

and applied in real-world teaching environments. 

CONCLUSION 

This study aimed to explore preservice mathematics teachers' understanding and construction of 

mathematical proofs, with a focus on their reasoning processes and application of various proof methods. 

Through the use of Toulmin’s argumentation model, the research assessed how preservice teachers 

justify their reasoning in mathematical proofs, identified gaps in their arguments, and evaluated their 

engagement with the conceptual and logical foundations of proof construction. The findings revealed 

several critical deficiencies, particularly in components such as warrants, backing, and rebuttals. 

Additionally, challenges were evident in tasks involving proof by contraposition and proof by contradiction. 

While preservice teachers generally displayed procedural fluency in constructing direct proofs, their 

failure to incorporate precise definitions and logical rigor suggested a superficial understanding of proof 

concepts. This highlights the need for mathematics teacher education programs to emphasize the 

development of a deeper, more conceptual understanding of proofs, ensuring that preservice teachers 

are better prepared to teach proof construction effectively. 

Despite the valuable insights gained from this study, there are several limitations to consider. 

Firstly, the sample size was limited to a specific group of preservice teachers, which may not fully 

represent the broader population of mathematics teacher candidates. The study also primarily focused 

on the analysis of proof tasks within a controlled environment, which may not fully capture the complexity 

of proof construction in real classroom settings. Furthermore, the research was constrained by the use 

of Toulmin’s model alone, which, while effective in analyzing logical structure, may not have accounted 

for other influencing factors, such as prior knowledge or individual teaching styles. These limitations 

suggest that the results should be interpreted with caution, and further studies are necessary to explore 

the broader applicability of the findings. 

Future research in this area should aim to address these limitations by expanding the scope of the 

study to include a larger and more diverse group of preservice teachers from different institutions and 

training programs. Additionally, employing a mixed-methods approach or longitudinal study design could 

provide deeper insights into how preservice teachers’ proof skills develop over time and how they apply 

these skills in classroom settings. Exploring proof comprehension in various educational contexts and 

comparing the effectiveness of different pedagogical strategies for teaching proofs could also contribute 

to a more comprehensive understanding of how to enhance preservice teachers' mathematical reasoning 

and argumentation skills. These future directions would help inform the design of more effective teacher 

education programs that support the development of critical thinking and logical reasoning in mathematics 

education.  
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