Activity	Problem (P #)	Content
Representational	P #1: A farmer had 19 animals on his farm - some chickens	Simultaneous linear
	and some cows. He also knew that there was a total of 62	equations with two
	legs on the animals on the farm. How many of each kind of	variables in a
	animal did he have?	concrete context.
	P #2: Die A and Die B are twelve sides each. Suppose that	
	you roll die A and die B at the same time. When do the dice	
	satisfy the following two conditions?	
	(i) The sum of 2 times A plus B equals 15.	
	(ii) 3 times A minus B equals 5.	
	P #3: You have some teen and young adult books. You gave	Linear equations with
	one-half of the books plus one to a friend, one-half of the	one variable in a
	remaining books plus one to another friend, and one-half of	concrete context.
	the remaining books plus one to another friend. If you have	
	one book left for you, how many books did you have at the	
	start?	
Rule-based	P #4: Solve the equations below for <i>x</i> :	Linear equations with
	(a) $4 \times (x+3) = 16x$	one variable in an
	(b) $2.\left(\frac{3(2x-1)}{7}+6\right)+7=25$	abstract context.
	P # 5: Solve the equations below for x :	
	(a) $2(x+1) + 3(x+1) = 10$	
	(b) $4(x-2) + 2x + 10 = 2(3x + 1) + 4x + 8$	
Generalising and	P # 6: If you are given the sum and difference of any two	The use of letters to
justifying	numbers, show that you can always find out what the	express generality.
	numbers are.	
	P # 7(a) A girl multiplies a number by 5 and then adds 12.	
	She then subtracts the original number and divides the result	
	by 4. She notices that the answer she gets is 3 more than the	
	number she started with. She says, "I think that would	
	happen, whatever number I started with." Using algebra,	
	show that she is right.	
	P # 7 (b) Show, using algebra, that the sum of two	
	consecutive numbers is always an odd number.	

ESM 1: Problems used in the study group grouped into the activities of school algebra

Note: Items were sourced from Tripathi (2008) (P #1), Ito-Hino (1995) (P #2), Musser et al. (2008) (P

#3), Star and Seifert (2006) (P #4 and P #5), and Kieran (1992) (P #6 and P#7).

References

- Ito-Hino, K. (1995). Students' reasoning and mathematical connections in the Japanese classroom. In P. House, & A. F. Coxford (Eds.), *Connecting mathematics across the curriculum* (pp. 233–245). NCTM.
- Kieran, C. (1992). The learning and teaching of school algebra. In D. A. Grouws (Ed.), *Handbook of research on mathematics teaching and learning* (pp. 390–419). Macmillan Publishing.
- Musser, G.L., Burger, F.W., & Peterson, B.E. (2008). *Mathematics for elementary teachers: A contemporary approach*. Wiley: USA.
- Star, J. R., & Seifert, C. (2006). The development of flexibility in equation solving. *Contemporary Educational Psychology*, *31*(3), 280–300.

Tripathi, N. P. (2008). Developing mathematical understanding through multiple representations. *Mathematics Teaching in the Middle School*, 13(8), 438–445. <u>https://www.jstor.org/stable/41182592</u>

