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Abstract   

Teachers play a crucial role in disseminating knowledge in educational settings, typically adhering to a credulist-
testimonial approach outlined in pedagogical literature. Consequently, students often acquire knowledge through 
this method, potentially leading to discrepancies between their conceptual understanding and the intended 
educational objectives. This study investigates the phenomenon of learning obstacles encountered by junior high 
school students, with a particular emphasis on mathematics education. It is part of a series of Didactical Design 
Research (DDR) projects aimed at developing effective instructional materials. Employing an interpretive 
paradigm within the DDR framework, the study adopts a qualitative approach utilizing hermeneutic 
phenomenology design. Various research tools such as diagnostic assessments, interview guidelines, 
observation sheets, and audio recordings are employed. Data analysis is conducted using the Constant 
Comparative Method (CCM). The findings highlight ontogenic, didactic, and epistemological obstacles students 
face, stemming from factors such as a lack of interest in mathematics, ineffective material presentation, and 
misconceptions regarding set concepts. These results underscore the importance of educators employing 
effective teaching strategies to help students overcome these obstacles and succeed in their mathematics 
lessons. 
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Didactical transposition, a prominent concept within the realm of education, refers to the systematic 

process by which knowledge is adapted from its original form into a format more conducive to educational 

instruction and comprehension (Banks et al., 2005; Diana et al., 2020; Schneuwly, 2021). In the field of 

mathematics education, didactic transposition entails the reconstruction of knowledge to render it 

teachable, meaningful, and applicable (Banks et al., 2005). This theory underscores the challenges 

inherent in legitimizing teaching content and the disparities between instructed learning and its referential 

origins (Diana et al., 2020). Such considerations are deeply intertwined with the fundamental aspect of 

educational practice—the transmission of knowledge across generations (Schneuwly, 2021). Essentially, 
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it involves adapting knowledge to render it more accessible, comprehensible, and utilitarian within a 

specific educational milieu. Chevallard (1989) posits that didactical transposition entails intricate 

operations that transform epistemological and cognitive knowledge structures into didactic frameworks 

suitable for classroom use. These operations may encompass simplification, abstraction, generalization, 

and creating novel concepts and representations. The overarching objective of didactical transposition is 

to render knowledge more accessible to students while preserving its core attributes and ensuring its 

scientific accuracy and validity (Brousseau & Warfield, 2020). Consequently, didactical transposition in 

education entails a nuanced process of knowledge transformation to enhance its accessibility and 

applicability for teaching and learning. It involves diverse operations such as simplification, abstraction, 

and generalization. 

In brief, didactical transposition involves translating knowledge from a source domain, like a 

scientific field, to a target domain, such as a classroom, intending to make it accessible and 

understandable for learners. However, if this adaptation of knowledge is inappropriate, it can lead to 

various negative impacts on learning, including learning obstacles (Wilhelmi et al., 2021). The concept of 

didactical transposition is closely intertwined with the issue of learning obstacles in mathematics 

education, which refer to the difficulties learners encounter when grasping mathematical concepts, 

procedures, or structures (Mutambara & Tsakeni, 2022). These obstacles can stem from multiple 

sources, including the complexity of mathematical content, the cognitive demands of tasks, the language 

used to convey mathematical ideas or the teaching methodologies employed in the classroom (Duval, 

2006). Specifically, Suryadi (2019a) classified learning obstacles into three types based on their root 

causes: ontogenic, didactical, and epistemological obstacles. 

Didactical transposition serves as a means to surmount certain learning obstacles by adjusting 

mathematical knowledge to enhance its accessibility and comprehensibility for learners (Prabowo et al., 

2022). For instance, within didactical transposition, educators may simplify the language used to convey 

mathematical concepts, furnish concrete examples or visual aids to elucidate abstract ideas or employ 

diverse teaching strategies to foster comprehension. However, if the adaptation of mathematical 

knowledge during the process of didactical transposition is inappropriate, it can introduce new learning 

obstacles or exacerbate existing ones (Brousseau, 2002). For instance, if teachers overly simplify 

mathematical content, students may fail to develop a profound understanding of the subject matter and 

encounter difficulties in applying their knowledge in novel contexts. Similarly, if instructors excessively 

rely on visual aids without allowing students to cultivate their mental representations of mathematical 

concepts, learners might excessively depend on these aids and confront challenges in independently 

solving problems (Goldin & Shteingold, 2001).  

In essence, the correlation between didactical transposition and learning obstacles in mathematics 

education is intricate and contingent upon the quality of adaptation of mathematical knowledge. When 

executed effectively, didactical transposition can aid learners in surmounting certain learning obstacles 

by rendering mathematical knowledge more accessible and comprehensible (Amade-Escot, 2006). 

Conversely, inadequate execution of didactical transposition can lead to the emergence of new learning 

obstacles or exacerbate existing ones (Brousseau, 2002). Suryadi (2019a) contends that overcoming 

learning obstacles in mathematics necessitates a profound understanding of learners’ prior knowledge 

and their cognitive processes regarding mathematical concepts (Yuen et al., 2003). He suggests that 

educators should proficiently identify the specific learning obstacles confronted by their students and 

employ suitable teaching strategies to address them. These strategies may involve presenting diverse 
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representations of mathematical concepts, scaffolding learners’ problem-solving efforts, or encouraging 

them to engage in reflective exercises concerning their cognitive processes. 

Numerous studies have shed light on the various learning obstacles encountered by students in 

the realm of mathematics. Akar and Işıksal-Bostan (2022) uncovered substantial disparities between the 

knowledge intended to be taught and the content actually delivered by educators, thereby giving rise to 

learning obstacles. Pratiwi et al. (2019) delineated ontogenic, epistemological, and didactic hurdles within 

algebraic thinking, while Andini and Suryadi (2017) and Noto et al. (2020) respectively delved into specific 

barriers related to solving algebraic thinking problems and grasping algebraic forms. Collectively, these 

studies underscore the importance of understanding and addressing the diverse learning obstacles 

students encounter in mathematics. In addition to variances in the topics explored, the novelty of this 

research compared to previous endeavors lies in its foundational approach to analyzing learning 

impediments. Here, researchers aimed to pinpoint the types of learning obstacles students face in the 

domain of sets. This endeavor stems from prior findings indicating challenges in the process of translating 

set knowledge from scholarly domains to pedagogically applicable knowledge, alongside the prevalent 

uncritical stance of educators in crafting didactic designs. However, challenges arose in scrutinizing the 

sources utilized by teachers. Consequently, the timely identification of learning obstacles experienced by 

students is imperative, as it can lead to enhanced learning outcomes, mitigation of misconceptions, 

tailored support for individual students, and refinement of teacher practices. 

Nevertheless, prior research has largely overlooked the specific learning obstacles junior high 

school students encounter, particularly within the context of design actualization, thereby posing 

challenges to their academic progress. This underscores a notable gap in the existing literature, as a 

thorough examination of the learning barriers experienced by students, employing a didactic approach 

and comprehensive data analysis, could yield valuable insights and deepen our understanding of the 

subject. Bridging this gap has the potential to refine and advance the design actualization process, 

consequently impacting the hurdles faced by students in their learning journey. Ultimately, the 

implications of such research suggest that it could enhance educators’ understanding of the learning 

processes and challenges encountered by junior high school students, facilitating the development of 

tailored interventions that foster more effective and engaging learning environments. 

Our focus on sets stems from several compelling reasons. Firstly, set theory serves as the bedrock 

of mathematics (Lipschutz, 1986), with all mathematical entities and structures ultimately grounded in set 

theory (Maddy, 2003). Moreover, set theory finds extensive application across various branches of 

mathematics, such as algebra, topology, and analysis. Secondly, a pressing need exists for continued 

examination of sets of material. Linchevski and Vinner (1988) documented teachers’ misconceptions 

regarding sets contextualization, while Fischbein and Baltsan (1999) observed a reluctance among both 

students and teachers to accept the notion of the empty set due to their perception of sets solely as 

collections. Recent research by Bingolbali et al. (2021) further reinforced that sets are consistently 

interpreted as collections containing elements with common properties, thereby discrediting sets with 

elements lacking a common property as non-sets. Thirdly, several previous studies have highlighted 

issues with presenting sets of material in textbooks, including deficiencies in content delivery (Muilenburg 

& Berge, 2005) and knowledge acquisition. For instance, Jamilah et al. (2020) revealed a disparity 

between students' conceptual images (CI) of sets and the formal concept definition found in scholarly 

literature, even after accounting for taught knowledge and knowledge intended for instruction. This gap 

in CI is attributed to ontogenic, didactical, and epistemological obstacles arising from inaccuracies in the 

material presentation and the didactic scenarios provided. 
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Navigating the learning process can prove challenging as students encounter various obstacles in 

pursuing educational objectives. These learning obstacles impede students’ progression toward attaining 

desired learning outcomes (Muilenburg & Berge, 2005). Over time, numerous theories have emerged to 

elucidate the phenomenon of learning obstacles. One prominent theory is proposed by Brousseau (2002), 

which delves into how students grapple with obstacles within didactical contexts. Brousseau’s theory, 

also called the didactical situation theory, posits that learning obstacles emerge from the interplay 

between the learner and the didactical situation (Brousseau, 2002; Brousseau & Warfield, 2020). 

According to Brousseau (2002), the didactical situation encompasses the teacher, the student, the object 

of knowledge, and the task or learning scenario, with learning obstacles manifesting when these 

components fail to interact effectively. 

Guy Brousseau’s theory of didactical situations offers a framework for understanding the intricate 

dynamics among educators, learners, and mathematical concepts within educational settings. This theory 

emphasizes the importance of creating specific instructional environments that empower students to 

independently engage with mathematical problems, thereby facilitating the construction of new 

knowledge. It also highlights the conditions necessary for students to participate in activities conducive 

to developing specific meanings and insights into mathematical concepts (Laborde, 2014; Šipuš et al., 

2022). Furthermore, the theory of didactical situations serves as a guiding principle for designing teaching 

tasks and interventions in mathematics education. It sheds light on how prospective teachers 

conceptualize task designs, particularly concerning different types of situations, the didactical contract’s 

complexities, and the didactic situation’s components (Daher et al., 2022; Vergnaud, 2009). 

Moreover, Guy Brousseau’s theory of didactical situations holds practical implications, as it has been 

effectively utilized in devising teaching sequences for primary school settings, showcasing its relevance in 

educational contexts (Rønning, 2021). Furthermore, it has proven invaluable in exploring the process of 

knowledge consolidation within mathematics education, offering valuable insights for structuring instructional 

interventions and dissecting the complexities of knowledge (Pinheiro et al., 2022). The theory has also found 

application in the didactic engineering of teaching sequences, emphasizing its role in enhancing the learning 

environment and facilitating the teaching process (Alves et al., 2021; De Sousa & Alves, 2022). 

Didi Suryadi, a prominent Indonesian mathematics educator, has applied Guy Brousseau’s theory 

of didactical situations to elucidate students' learning obstacles in mathematics. Suryadi (2019b) 

contends that learning obstacles in mathematics emerge due to a discrepancy between learners’ existing 

mathematical knowledge and the new knowledge they are expected to acquire. In his research, Suryadi 

(2019a) identified various learning obstacles experienced by students in mathematics, including 

ontogenic, didactical, and epistemological obstacles. 

Ontogenic obstacles pertain to students’ mental preparedness and cognitive maturity in 

assimilating knowledge. This learning obstacle arises from a disparity between the difficulty level or 

cognitive demands of didactical situations and students’ readiness. Suryadi (2019a) identified three 

categories of ontogenic obstacles: psychological, instrumental, and conceptual. Psychological ontogenic 

obstacles involve students’ lack of readiness regarding motivation and interest in the subject matter under 

study. Instrumental ontogenic obstacles involve students’ lack of preparation for crucial technical aspects 

of the learning process, as evidenced by their responses and errors during task completion. Conceptual 

ontogenic obstacles stem from students’ unpreparedness due to previous learning experiences, such as 

failure to grasp fundamental ideas and prerequisites for supporting material. 

Didactical obstacles arise from the didactic system, encompassing factors such as sequencing 

and curriculum stages, including their presentation in classroom instruction (Fauzi & Suryadi, 2020). 
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Brousseau (1976) asserts that didactical obstacles must be assessed based on the order of material, 

both structurally (the interrelationships between concepts) and functionally (the continuity of thought 

processes), as well as the level of detail in the presentation of the material, whether it is insufficient or 

excessively detailed. On the other hand, epistemological obstacles arise from students’ inadequate 

understanding and mastery of a concept, problem, or other subject matter that is only relevant in specific 

situations. This learning obstacle becomes apparent when students can address topics using examples 

and formats provided by the teacher or textbook but require assistance in responding to questions 

presented in alternative formats or contexts. Suryadi (2019a) argues that overcoming obstacles in 

learning mathematics necessitates adopting didactical situations conducive to learning. According to 

Suryadi (2019b), a conducive didactical situation should involve a teacher who comprehends learners’ 

existing knowledge and can bridge the gap between that knowledge and the new knowledge.  

Moreover, the teacher should employ appropriate language and explain clearly to ensure learners 

grasp the concepts. Suryadi (2019a) also suggests that a conducive didactical situation should incorporate 

tasks or learning scenarios that are challenging yet manageable. Tasks should be designed to assist learners 

in building upon their current knowledge while gradually acquiring new knowledge. Additionally, tasks should 

be contextualized to help learners perceive the relevance of new knowledge to their everyday lives. 

In summary, learning obstacles represent a significant hurdle for students in the realm of 

mathematics. Brousseau’s theory of didactic situations provides a valuable framework for understanding 

the nature of these obstacles and how they arise from the interaction between the learner and the didactic 

environment. Didi Suryadi’s integration of this theory into his research on mathematics learning obstacles 

has yielded insightful perspectives into the various types of obstacles students face and strategies for 

overcoming them. By implementing didactical situations conducive to learning, teachers can aid students 

in overcoming these obstacles and achieving their desired learning outcomes. 

METHODS  

Research Design 

This research is part of the Didactical Design Research (DDR) framework developed by Suryadi (2019a), 

which implements an interpretive paradigm. Implementing this paradigm allows researchers to construct 

essential elements as a reference to justify the initial construction of a design (Scotland, 2012). Qualitative 

research is the type employed in this study, with the design utilizing hermeneutic phenomenology. The 

application of hermeneutic phenomenology as a research method is warranted for investigating the 

learning barriers junior high school students face due to its inherent appropriateness for delving into 

individuals’ lived experiences and subjective viewpoints. Hermeneutic phenomenology excels in 

exploring the intricate complexities of personal experiences, enabling researchers to unveil the underlying 

meanings and interpretations associated with phenomena like learning obstacles. Through this 

methodology, researchers can undertake a reflective and interpretative approach that acknowledges the 

distinct perspectives of participants, thereby offering comprehensive and contextually relevant insights 

into the challenges encountered within the junior high school learning milieu. 

Before embarking on identifying learning obstacles among students, researchers underwent a 

crucial preliminary stage involving the analysis of the didactic design employed in the learning process. 

This didactic design encompasses a myriad of materials curated independently by teachers or provided 

by the government in the form of curriculum, often manifested in textbooks, serving as primary 

instructional resources within the classroom. This analysis was meticulously conducted, encompassing 
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several vital aspects. Firstly, researchers assessed the appropriateness of the concepts imparted to 

students with universally accepted scientific knowledge. This necessitated comparing what is presented 

in the didactic design and the established scientific understanding.  

Additionally, researchers analyzed the array of task types based on insights gleaned from 

praxeology studies. This facilitated an understanding of how learning is structured and presented to 

students from the perspective of actions taken and techniques employed. Moreover, the research 

scrutinized whether the task types present in the didactic design were epistemically presented or not. 

This entails whether the material presented encourages students to comprehend the concepts and 

contemplate their epistemological underpinnings deeply. This aspect is pivotal to ensure that learning not 

only revolves around teaching mathematical concepts but also fosters a robust and profound 

understanding of the scientific principles behind them. After thoroughly analyzing the didactic design, 

researchers investigated students’ learning obstacles. 

Participants 

The study participants were meticulously selected to ensure a representative sample capable of providing 

insightful data regarding the phenomenon under investigation. They consisted of students enrolled in two 

prestigious schools situated in Bandung and Surakarta, respectively. These students were chosen 

explicitly because they studied sets of material at the junior high school level, which constituted the focal 

point of the research inquiry. An integral aspect of the participant selection process was ensur ing 

uniformity in the student’s primary learning resources. The mathematics textbooks published by the 

Ministry of Education and Culture of the Republic of Indonesia were utilized in both schools. This 

deliberate decision aimed to ensure consistency in the didactical transposition phenomenon across the 

selected schools, thereby facilitating a more accurate comparison and analysis. 

The study comprised a total of 183 participants. This larger cohort selected a subset of 24 students 

for further examination. The selection of these 24 students employed the snowball sampling technique, 

commonly used in qualitative research, to identify and recruit participants through referrals from initial 

subjects. This approach enabled the researcher to capture diverse perspectives and ensure that the 

sample encompassed a broad spectrum of experiences and viewpoints relevant to the research topic 

(Naderifar et al., 2017). Overall, the characteristics of the participants, including their educational 

background, level of study, and the consistency of learning resources, were meticulously considered to 

ensure the validity and reliability of the study findings. 

Instrument and Data Collection Technique 

The primary instrument utilized in the study was the researcher, who served as the planner and data 

collector, interpreting the data, analyzing, concluding, and reporting the results. Various tools were 

employed, including diagnostic assessments of sets of materials, interview guidelines, observation 

sheets, and audio recording devices. These instruments were developed in accordance with the research 

objectives and problem construction (Yorulmaz et al., 2021), ensuring language suitability. Prior to data 

collection, the instruments underwent validation by experts in cognitive mathematical problems (Tutticci 

et al., 2017). Their feedback included suggestions for improvement, such as enhancing the clarity of 

mathematical symbol notation, refining problem-solving guidelines, aligning language with research 

objectives, and streamlining the structure of interview questions for greater efficiency and effectiveness. 

In developing instruments for this research, the researchers incorporated insights gleaned from 

previous studies. Experts and practitioners across various fields, including mathematics teachers, verified 
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the knowledge derived from these studies. This verification process was facilitated through focus group 

discussions (FGDs), during which these individuals engaged in focused conversations regarding the 

methodology and research instruments to be employed. Throughout the FGD process, experts and 

practitioners offered invaluable input and feedback concerning the design and content of the instruments. 

These discussions were instrumental in ensuring that the developed instruments possess high relevance 

and accuracy in measuring the investigated variables. Consequently, the instruments are deemed 

appropriate and reliable for use in this research. 

The diagnostic assessment instrument comprised four sub-tasks focusing on understanding the 

meaning of sets and non-sets, element of set notation, finite and infinite sets, and comparing two sets. 

The assessment was carried out concurrently with close supervision at each school, involving teachers 

and other competent individuals to ensure the credibility of the obtained data. Simultaneously, 

researchers conducted field observations and meticulously documented all observations. The results of 

students’ responses were analyzed and utilized to identify interview subjects. The interview process was 

conducted sequentially, one participant at a time, using an audio recorder application. 

Data Analysis 

The researchers employed the constant comparative method (CCM) as a data analysis model, which 

Glaser and Strauss developed in the 1960s (Glaser & Anselm, 2017). CCM is a qualitative research 

technique involving comparing data from various sources to discern patterns and themes (Grandgirard 

et al., 2003). It comprises four fundamental steps: (1) Coding, wherein the researcher reads the data and 

assigns codes to different segments based on their content; (2) Comparison, where the researcher 

contrasts codes across different sections of the data to identify similarities and differences; (3) 

Conceptualization, wherein the researcher begins to group codes into categories and formulate 

overarching concepts that elucidate the data; and (4) Theoretical saturation, wherein the researcher 

continues to gather and analyze data until no new codes, categories, or concepts emerge. 

Researchers consistently compare and refine their codes, categories, and concepts throughout 

the CCM process when considering the data. This iterative approach allows researchers to develop a 

progressively nuanced and sophisticated understanding of the data over time. By continuously comparing 

and revising their interpretations, researchers generate comprehensive and detailed explanations of the 

didactical phenomena under investigation. 

Validity of Data 

Data validation is a critical process in qualitative research aimed at upholding the accuracy and reliability 

of collected data (Creswell & Guetterman, 2018). This study’s data validation methods include 

triangulation and peer debriefing. Triangulation involves utilizing multiple data sources to corroborate 

findings, while peer debriefing entails involving other researchers—more than one—to review and offer 

feedback on the research process and outcomes. This approach aids in identifying potential biases and 

ensuring the precision of the analysis. 

In this research context, data triangulation is paramount to ensure the validity and reliability of 

findings. It involves comparing information obtained from various data collection techniques and sources. 

Meanwhile, peer debriefing is conducted through focus group discussion (FGD) activities, where 

researchers or other experts in relevant fields gather to discuss findings and data interpretations. These 

discussions in FGDs help test data interpretations, evaluate research methodologies, and provide 

alternative perspectives on the findings generated. 
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RESULTS AND DISCUSSION 

This research involves a rigorous process comprising various critical steps to ensure the study's quality, 

particularly regarding data validation. In this research, four categories are employed to test the validity of 

data and findings, collectively known as trustworthiness: truth value (credibility), applicability (applicability 

or transferability), consistency (consistency or dependability), and neutrality (neutrality or confirmability). 

The strategies implemented to ensure credibility in this research include examination by the researcher’s 

team and debriefing with various stakeholders in focus group discussions (FGDs), as shown in Figure 1. 

FGD activities are also documented on the following page (https://berita.upi.edu/hadirkan-praktisi-

hingga-pakar-matematika-mahasiswa-doktoral-pendidikan-matematika-upi-gelar-forum-group-

discussion-fgd/). 

  

Figure 1. Documentation of FGD Activities 

Transferability can be further enhanced by employing the same data collection methods with 

different demographic groups or geographical locations. In this instance, the researcher utilized data 

collection methods in two distinct schools, as illustrated in Figure 2, which documents the approval from 

the schools involved. This approach allows for the comparison of findings across different educational 

settings, thereby contributing to the transferability of the study’s results. 

 
 

(a) (b) 

Figure 2. Certificate of Implementation of Research at (a) Surakarta School and (b) Bandung School 

https://berita.upi.edu/hadirkan-praktisi-hingga-pakar-matematika-mahasiswa-doktoral-pendidikan-matematika-upi-gelar-forum-group-discussion-fgd/
https://berita.upi.edu/hadirkan-praktisi-hingga-pakar-matematika-mahasiswa-doktoral-pendidikan-matematika-upi-gelar-forum-group-discussion-fgd/
https://berita.upi.edu/hadirkan-praktisi-hingga-pakar-matematika-mahasiswa-doktoral-pendidikan-matematika-upi-gelar-forum-group-discussion-fgd/
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Furthermore, to ensure dependability, the strategy involves engaging all researchers in the analysis 

process, where each research team member contributes input regarding data analysis, providing additional 

perspectives. Meanwhile, to achieve confirmability, the researcher adopts a technique involving recording 

personal feelings, biases, and insights immediately after conducting interviews. Several documentation of 

the interview activities conducted by the researcher can be observed in Figure 3. 

  

Figure 3. Documentation of Interview Activities 

The findings and discussions are organized into four subchapters: learning obstacles in 

understanding the meaning of sets and non-sets, learning obstacles in understanding set element 

notation, learning obstacles in understanding finite and infinite sets, and learning obstacles in 

understanding the similarity of two sets. Each subchapter delves into various subjects tailored to the type 

of learning obstacle encountered. 

Learning Obstacles in Understanding the Meaning of Sets and Not Sets 

In this section, we asked five different questions, and subjects were asked to infer and provide their 

arguments regarding whether the objects presented were sets. The first object is "The capital city of 

Indonesia." This task has the motivation to identify students' understanding of the meaning of sets. The 

second and third objects. “{2,3,5,7,10} and {1,2,3, 𝑎, 𝑏, 𝑐}” have the motivation to see how students 

understand the characteristics of the elements in a set. The fourth and fifth objects. 

“{𝑥|𝑥 𝑡ℎ𝑒 𝑙𝑒𝑡𝑡𝑒𝑟 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝑙𝑒𝑡𝑡𝑒𝑟 𝑎 𝑖𝑛 𝑡ℎ𝑒 𝐿𝑎𝑡𝑖𝑛 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒} and { }” are 

intended to identify students' understanding of the empty set. 

The sentence about the capital city of Indonesia that we presented is not a set. It is just a statement, 

not a property imposed on the object. Two opinions emerged from the students’ answers; some said it 

was a set, and others did not. Arguments against students’ views are presented in Table 1. 

Table 1. Summary of Students’ Answers to the First Object 

Argument Code 

Indonesia's capital city is definable and certain. 1 𝛼1 

Indonesia's capital city can be distinguished from other cities. 1 𝛼2 

Its elements are Jakarta. 1 𝛼3 

The name of the city is not mentioned. 2 𝛼4 

Indonesia's capital city is only one, Jakarta. So, the capital city of Indonesia is not a set because the 

set consists of several element. 2 

𝛽1 

A set is a unit of several elements, whereas the capital city of Indonesia does not consist of several 

element (only Jakarta). 2 

𝛽2 
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The capital city of Indonesia is not a collection of several cities/contents but only one. 𝛽3 

Indonesia's capital city is only one. It cannot be called a group or set.2 𝛽4 

The set is denoted by a capital letter, while its elements are enclosed in curly braces. { }2 𝛾1 

1Set 
2Not a set 

 

Next, about {2,3,5,7,10} and {1,2,3, 𝑎, 𝑏, 𝑐}, both are examples of sets, but some students think 

they are not sets. Students who claimed both assets also used the same argument as the previous case. 

Students' opinions on this case are shown in Table 2. 

Table 2. Summary of Students’ Answers to the Second Object 

Argument Code 

{2,3,5,7,10} is a set because it is in a sign that is like parentheses indicating they are one unit.1 𝛾2 

{1,2,3, 𝑎, 𝑏, 𝑐} is a set. Although there are numbers and letters, they are in the { } The sign 

indicates they are one unit.1 

𝛾3 

{2,3,5,7,10} is a set because there are curly braces that also have numbers in them that are similar.1 𝛾4 , 𝛿5 

{2,3,5,7,10} is a set because its elements can be classified into various sets, for example, such 

assets that cannot be divided by 4.1 

𝜀1 

{2,3,5,7,10} set because there is more than one number in a set.1 𝛽5 

{1,2,3, 𝑎, 𝑏, 𝑐}  set because there are some numbers and letters in a set.1 𝛽6 

{2,3,5,7,10}  is not a set because it is not known what the numbers are.2 𝛿1 

{1,2,3, 𝑎, 𝑏, 𝑐} is not a set because if you want to include other numbers/alphabets, it is better to 

create a new set, such as  {1,2,3},{𝑎, 𝑏, 𝑐}.2 

𝛿2 

{2,3,5,7,10}  is not a set because the numbers in the example are random (not prime, even, or odd).2 𝛿3 

{1,2,3, 𝑎, 𝑏, 𝑐} is not a set because there are numbers and variables (different types).2 𝛿4 

{1,2,3, 𝑎, 𝑏, 𝑐} Although there are curly braces and numbers, it is not a set, but they are not similar. 

By not similar, we mean there are numbers, and there are also letters.2 

𝛾5, 𝛿6 

{1,2,3, 𝑎, 𝑏, 𝑐} is not a set because its elements cannot be known by the origin/name of the set.2 𝜀2 

{2,3,5,7,10} It is not a set because the numbers are randomly arranged without a clear reason for 

grouping them.2 

𝛿7, 𝜀3 

{1,2,3, 𝑎, 𝑏, 𝑐} not a set because the group's content does not refer to one specific thing and consists 

of two different types of content: numbers and letters.2 

𝛿8, 𝜀4 

{2,3,5,7,10} is not a set because 2 and 10 are even numbers, and 3,5,7 are odd numbers. The 

numbers cannot belong to one set.2 

𝛿9 

{1,2,3, 𝑎, 𝑏, 𝑐} is not a set because 1,2,3 is a set of numbers, and 𝑎, 𝑏, 𝑐 is a set of letters. The 

numbers and letters cannot belong to one set.2 

𝛿10 

1Set 
2Not a set 

 

Based on Table 1 and Table 2, it can be identified that students’ understanding of the set varies, 

namely 𝛼 (set only as something with a well-defined element), 𝛽 (set as a collection), and 𝛾 (set must 

be denoted by a capital letter and expressed in curly braces). At the same time, students understanding 

of the elements in a set is 𝜀 (elements in a set must be subject to a name or classification) and 𝛿 (each 

element in a set must have the same type or characteristic). Lastly, about 

{𝑥|𝑥 𝑡ℎ𝑒 𝑙𝑒𝑡𝑡𝑒𝑟 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝑙𝑒𝑡𝑡𝑒𝑟 𝑎 𝑖𝑛 𝑡ℎ𝑒 𝐿𝑎𝑡𝑖𝑛 𝑎𝑙𝑝ℎ𝑎𝑏𝑒𝑡 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒} and { }, these are 
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examples of empty sets. Many of the students did not accept this as a set. The reason is all the same: 

no element in it can be identified. This is a result of students' understanding of sets as 𝛽. 

Before discussing the type of learning obstacle, it is necessary to emphasize that the set is an 

undefined part of mathematics, where the set can be understood with the set formation notation. 

{𝑥 ∈ 𝑆|𝑃(𝑥)} (Holmes, 1998). Alternatively, a set is formally defined as a collection of objects within a 

well-defined group. The significance of “well-defined” in this explanation should be emphasized in terms 

of its intuitive meaning. Every object is subject to properties governed by a “nature” rule, which can be 

perceived or understood through individual perception or intellectual abilities (Just & Weese, 1996). 

Students’ understanding of sets solely as α, β, or even γ arises from their construction based on 

perceptual experiences and teacher guidance. Consequently, the knowledge formed represents mere 

belief without justification. This outcome suggests that students encounter numerous learning obstacles. 

It was observed that ontogenic obstacles, encompassing psychological and conceptual barriers, 

were prevalent in this case. Interview results revealed that many students, including set material, needed 

more interest in mathematics. The following excerpts from student responses during the interview can 

serve as evidence: 

 

I don’t really like material on sets like it needs to be more critical. The material is like 

elementary school material, for example, mentioning groups of animals, groups of 

vegetables, etc. 

(Interview 1) 

Material on sets doesn’t relate to other materials, so learning about sets is useless.  

(Interview 2) 

 

Both interview excerpts explicitly indicate that students encounter ontogenic obstacles of a 

psychological nature. A diminished interest in mathematics can precipitate learning obstacles, reducing 

motivation and engagement (Skilling et al., 2021). When students are not interested in math, they may 

pay less attention in class, fail to complete their homework or refrain from asking questions when they 

need to help understanding something. Consequently, students need to be more engaged in the subject 

to grasp new concepts and understand the material. This can create a vicious cycle where low interest 

leads to poor performance and further disengagement.  

Additionally, students’ low interest in mathematics can foster negative attitudes and beliefs about 

their abilities in the subject (Gunderson et al., 2012). They may develop a fixed mindset, believing they 

are “not good at math,” which can further undermine their motivation and performance. Overall, low 

interest in mathematics can present a significant obstacle to learning and may lead to various learning 

obstacles that necessitate effective intervention. Lanigan (2021) highlighted sporadic and reactive 

engagement among adult learners in mathematics, suggesting that specific situational triggers may 

impede learning. Sullivan et al. (2006) proposed that a deliberate decision not to engage in mathematics 

learning may be influenced by classroom culture. Furthermore, Brown (2008) explored epistemological 

obstacles to the development of mathematical induction, suggesting that students’ approaches to 

mathematical tasks may be influenced by their understanding of the subject. 

On the contrary, some students fear learning math in class but not when studying at home with the 

guidance of a tutor. “I always sit in the back row because I fear being told to come to the front of the class 

to do the problems. So, I do not understand some of the material taught by the teacher,” voiced one of 

the subjects. Furthermore, he elaborated, “In a week, I take private lessons twice, specifically for math 
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subjects. During these lessons, I do my assignments with the tutor.” This suggests that math can 

intimidate some students, causing fear and anxiety, impacting their ability to concentrate and comprehend 

mathematical concepts, and ultimately leading to ontogenic (psychological) learning obstacles. Research 

indicates that students can experience anxiety and fear when learning math in a classroom setting (Wang 

et al., 2014). This anxiety may be influenced by genetic factors, such as a predisposition to anxiety and 

mathematical cognition (Wang, 2014). Classroom culture and the perception of effort influencing 

achievement can also affect students’ engagement with mathematics (Sullivan et al., 2006). Moreover, 

the presence of math anxiety in student teachers has been observed, with potential implications for their 

own learning and teaching (Jackson, 2008). 

The indication that students experience ontogenic obstacles that are conceptual in nature, in this 

case, stems from a statement made by one of the subjects, who mentioned, “I had understood the word 

set as a collection long before I learned set material, as I know about the set of students.” This student’s 

statement confirms his belief that the set is adequately understood as 𝛽. This underscores the notion 

that students’ understanding of sets is not solely derived from their mathematical studies but also from 

experiences outside of mathematics. Recognizing that students’ knowledge of mathematical materials 

can be shaped by their experiences beyond mathematics is crucial because mathematical concepts and 

principles extend beyond the confines of the classroom or textbooks (Simamora et al., 2018). Students 

are continuously exposed to mathematical ideas and thinking in their daily lives, often without realizing it 

(Furner et al., 2005; Laurens et al., 2017; Marasabessy, 2021). By acknowledging and linking everyday 

experiences with mathematical concepts, students can deepen their understanding of mathematical 

material and cultivate a more meaningful and intuitive grasp of the subject. However, evidence suggests 

that prior knowledge outside of mathematics can also pose learning obstacles. This is because such 

knowledge may not be fully aligned with the fundamental concepts (Loewenberg Ball et al., 2008). 

Furthermore, it is also evident that a conceptual ontogenic obstacle is associated with the 

conceptual level embedded in the learning design. Students expressed during interviews that they 

perceived their learning orientation, derived from their conceptual perceptions of α, β, and ε, to be 

excessively high. Consequently, they encountered obstacles in solving empty-set problems. The 

cognitive demands that are too high cause students to lose their learning orientation and result in their 

inability to justify their perceptual understanding related to set knowledge cognitively. Conversely, based 

on their previous learning experiences, other students feel that their understanding of 𝛽 is clear, but this 

leads to the incomplete characteristics of the knowledge they build. Their perception of 𝛽 indirectly 

disregards other understandings, as seen in the case of the empty set. The absence of elements in the 

empty set leads students to assert that it is not a set. However, according to the Schema of Separation, 

it should be clarified that the empty set is indeed a collection. This condition is referred to by Suryadi 

(2019a) as a result of conceptual ontogenic obstacles where conceptual challenges are too low, resulting 

in underachieving students. 

The construction of students' knowledge about 𝛼, 𝛽, 𝛾, 𝛿, and 𝜀 is a result of the actualization of 

material in textbooks that are arranged unsystematically. Didactical transposition theory shows that, in 

general, the knowledge imparted to students by teachers (knowledge imparted) refers to what is called 

knowledge to be taught (in this case, textbooks) (Chevallard & Bosch, 2020). So the concept of 

knowledge about the set taught by the teacher is not far from what is in the textbook, including the 

sequence of material structurally and functionally (de Mello, 2017). When discussing sets, it is crucial to 

address the concept of the universe of discourse at the outset before delving into the meaning of sets. 

The universe of discourse, in the context of explaining set material to students, refers to the entire domain 
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or context within which the set is being discussed. The relationship between the meaning of a set and 

the universe of discourse lies in the fact that the universe of discourse provides the contextual framework 

within which the set is defined and applied. It assists in determining which objects or elements are 

pertinent for inclusion in a specific set. The haphazard implementation of set material is the root cause of 

students encountering didactical obstacles in all instances (𝛼, 𝛽, 𝛾, 𝛿, and 𝜀). 

Mathematics builds on concepts and skills learned in previous grades (Miller & Hudson, 2007). If 

students have the necessary foundation, they may be able to grasp new concepts. Not only about the 

unsystematic presentation of material, but the interventions also provided examples of sets and not sets, 

leading to 𝛿 understanding. This is in line with the findings of Bingolbali et al. (2021); students and 

teachers consider that elements of a set must have the same characteristics, so {1,2,3, 𝑎, 𝑏, 𝑐} is 

considered as not a set. "There are no examples in the book or examples given by the teacher like this - 

pointing to the writing {1,2,3, 𝑎, 𝑏, 𝑐}” said one subject, and this is in line with the expression of another 

subject who stated, "All the examples given have similar elements, all numbers, all animals, all 

vegetables, or all letters". This illustrates that students exhibit an over-reliance on examples. Students 

who overly depend on examples may struggle to apply their knowledge to novel situations or problems. 

Therefore, in this scenario, students encountered an epistemological obstacle. This finding aligns with 

research by Sierpińska (1987) and Modestou and Gagatsis (2007), who observed that students' 

dependence on examples can impede their capacity to transfer knowledge to unfamiliar situations. 

Learning Obstacles in Understanding Set Element Notation 

In junior high school mathematics curriculum, students engage with the fundamentals of sets and their 

constituent elements, which constitute a cornerstone of algebraic and geometric principles (Kunen, 1980). 

Proficiency in comprehending sets and their elements is paramount as it forms the groundwork for 

grappling with more intricate mathematical concepts such as functions and relations. Notably, 

mathematical notation plays a pivotal role in facilitating communication within the realm of mathematics, 

serving as a universal language employed by mathematicians, scientists, and engineers globally to 

articulate intricate ideas and concepts (Sterenberg, 2008). Consequently, students must grasp and 

master mathematical notation. However, empirical evidence suggests that students frequently encounter 

challenges in comprehending mathematical notation due to its inherent complexity, characterized by a 

plethora of symbols, syntax, and rules (Bardini et al., 2004; Sterenberg, 2008). Nevertheless, adeptness 

in deciphering mathematical notation empowers students to effectively and precisely communicate 

mathematical ideas through both written and oral mediums. 

The notations of element (∈), non-element (∉), and the use of curly braces ({ }) In sets are 

important elements that students must understand before learning sets material. In this case, two 

problems were posed to see if students experienced any learning obstacles in understanding the notation 

in question. Here are the tasks used to address this issue. 

 

(𝜑) Suppose  𝐴 = {𝑥|2𝑥 = 6, 𝑥 ∈ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠} and suppose 𝐵 = 3, does 𝐴 = 𝐵? 

(𝜔) Suppose 𝑀 = {𝑟, 𝑠, 𝑡} Determine whether the following statements are true or false and include 

your opinion! 

(𝜔1) 𝑟 ∈ 𝑀 

(𝜔2)  𝑠 ∉ 𝑀 

(𝜔3) {𝑟} ∈ 𝑀. 
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The motivation for the 𝜑 and 𝜔3 is the same, which is related to the use of curly braces in sets. 

The results showed that no students correctly answered 𝜑 and 𝜔3. Many students answered 𝐴 = 𝐵 in 

𝜑 and although in the answer sheet, some stated 𝐴 ≠ 𝐵 in 𝜑 dan “wrong” in 𝜔3, no one provided the 

correct justification for their statements. Meanwhile, for the cases of  𝑟 ∈ 𝑀 and 𝑠 ∉ 𝑀, all of them gave 

correct answers. Table 3 shows students’ responses to 𝜑 dan 𝜔3. 

Table 3. Summary of Students’ Answers on 𝜑 and 𝜔3 

Argument Code 

If B is substituted into the equation 2𝑥 = 6, it becomes 2(3) = 6.1 𝜇1 

Integers start from minus, including zeros and integers. Then 𝐵 = 3 Integers start from minus, 

including zeros and integers. 

 2(3) = 6, then 𝐴 = 𝐵.1 

𝜇2 

𝐴 has a value of 3, and 𝐵 also has a value of 3, so it can be concluded that 𝐴 and 𝐵 have the same 

value/content.1 

𝜇3 

If calculated  

𝐴 = 2𝑥 = 6  

𝐴 = 𝑥 =
6

2
= 3 

𝐵 is also worth 3.1 

𝜇4 

The value  𝐴 = 2(3) = 6, 3 is a whole number that, when multiplied by 2, results in 6. While 𝐵 = 3, 

so 𝐴 ≠ 𝐵.2 

𝜇5 

𝑟 is a value of a part, so it uses parentheses, and since ∈ indicates it is a part of something.3 𝜎1 

Although 𝑟 is separate from the set 𝑀, because 𝑟 is also in the set 𝑀.3 𝜎2 

𝑟 is the set of 𝑀, and in that example, the writing is correct, so if read as 𝑟 is the set of 𝑀.3 𝜎3 

The element of the set 𝑀 is not just 𝑟, but 𝑟, 𝑠, 𝑡.4 𝜗1 

{𝑟} Is not an element of the set 𝑀.4 𝜌 

The writing is wrong, and the statement {𝑟} ∈ 𝑀 can be written 𝑀 = {𝑟} whereas 𝑀 = {𝑟, 𝑠, 𝑡}.4 𝜗2 

1𝐴 = 𝐵 
2𝐴 ≠ 𝐵 
3{𝑟} ∈ 𝑀 (Correct) 
4{𝑟} ∈ 𝑀 (Wrong) 

 

An ontogenic obstacle of conceptual nature was detected in the case of 𝜑 and 𝜔, related to the 

previous response 𝛾. The student who responded 𝛾1, 𝛾2, and 𝛾3 when asked if 𝐴 in 𝜑 and {𝑟} in 𝜔3 

sets, the answer was, “𝐴  is a set, but {𝑟} is not a set because {𝑟} does not have a capital letter, only 

curly braces.” This answer contradicts his response (𝜇5). In the case of 𝜑, he understands that 𝐵 is not 

a set and 𝐴 is a set. However, the answer 𝐴 ≠ 𝐵 is not because 𝐴 is a set and 𝐵 is not a set but because 

she made a computational error, which resulted in 𝐴 = 6.  

Furthermore, she was asked, "Is it 𝐴 or 𝑥 that is worth 6?” His answer was still “𝐴”. This fact shows 

that the person concerned has not fully understood the set element, even though he understands the 

concept of writing sets in general. Her response also supports this (𝜗2) to 𝜔3. On the other hand, 𝜗 is 

a student's response who cannot distinguish between ∈ and =. This phenomenon can be categorized 

as an instrumental ontogenic obstacle.  

Similarly, 𝜎’s response is evidence of an instrumental ontogenic obstacle, i.e., they cannot 

distinguish between sets and set elements. This is consistent with the findings of Lutfi et al. (2021) and 
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Ferdianto and Hartinah (2020), who both identify instrumental ontogenic obstacles as a significant 

contributing factor to students' struggles with technical subjects such as triangle and quadrilateral 

problems, as well as mathematical visualization. These obstacles are characterized by students' lack of 

preparedness in essential technical aspects. Marquet (2011) further delves into this concept within the 

context of e-learning and m-learning, emphasizing the challenges arising from integrating disciplinary, 

pedagogical, and technical components. 

Next, regarding the responses 𝛽3, 𝜇3, and 𝜌 and ρ, which were the responses of a subject (with 

Waluyo as pseudonym), his understanding of the set was only 𝛽 and this was consistent when faced with 

𝜑 and 𝜔. The following is an interview excerpt on the case of 𝜑 and 𝜔3. 

 

Researcher : Why 𝐴 = 𝐵 (case 𝜑) 
Waluyo : 𝐴 and 𝐵 are the same because they both have a value of 3, and they are not sets. 
Researcher : Is 𝐴, not a set? (case 𝜑) 
Waluyo : No, because there is only one value or content of 𝐴 which is 3 
Researcher : What is the element of 𝑀? (case 𝜔3) 
Waluyo : Elements of 𝑀 are 𝑟, 𝑠, 𝑡 
Researcher : Then what is this? Pointing to the {𝑟} (case 𝜔3) 
Waluyo : This is 𝑟, but it is different from the 𝑟 in  𝑀 if this 𝑟 (pointing to {𝑟}) stands alone 

outside of  𝑀 
Researcher : What should the correct notation be, then? (case 𝜔3) 
Waluyo : It should be like this (writing ∉) 
Researcher : If so, is {𝑟} A set? (case 𝜔3) 
Waluyo : No, it is not. 

 

Responses 𝛽3, 𝜇3, and 𝜌 and 𝜌 consistently rejected sets with one element, but Waluyo accepted 

that ∅ is a set. When confirmed regarding this, he explained, "In the book and explained by the teacher, 

there is such a thing as an empty set." However, when given a rebuttal, "The empty set has no elements, 

why can it be called a group?". Waluyo was silent and could not explain. This shows that Waluyo 

constructed knowledge about the empty set based on testimonials only. Concerning learning obstacles, 

Waluyo's case shows that he experienced epistemological obstacles. Waluyo's reliance on testimonials 

for constructing knowledge about the empty set may have been hindered by interpretive blindness, a bias 

that can impede learning from testimony (Asher & Hunter, 2021). This is particularly relevant in the context 

of non-reductionism in the epistemology of testimony, which argues for the positive epistemic status of 

some testimonial beliefs (Perrine, 2014). However, the recovery problem in the epistemology of 

testimony, which posits that audiences may not always reliably recover asserted contents, could have 

further complicated the learning process (Peet, 2016). These obstacles underscore the necessity for a 

more nuanced understanding of the role of testimonials in knowledge construction. 

Another form of epistemological obstacle that occurs in the case of 𝜑 is the response 𝜇. All agreed 

that the tasks that had been given about identifying elements of a set were only like the cases of 𝑟 ∈

𝑀(𝜔1) and 𝑠 ∉ 𝑀(𝜔2). The case of 𝜑 is very different from the examples or exercises done in the set 

learning process. Students who do not clearly understand the underlying concepts and principles may 

struggle to apply them to new and unfamiliar problems (Carpenter et al., 2015). Students need to understand 

the concept behind the example, not just the specific steps used to solve it. This is often due to a reliance 

on memorization of steps rather than understanding the subgoals and subtasks involved (Catrambone, 

1994). To address this, it is important to help students learn the relations between principles and examples 
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through generating explanations and making analogies (Nokes & Ross, 2007). Providing a conceptual 

framework that visually illustrates the relationships between concepts can also be beneficial (Ellis & Turner, 

2003). Lastly, understanding the meaning of concepts and relationships is crucial, and a meticulous analysis 

of problem types is necessary to identify sources of difficulty (Quintero, 1983). 

Learning Obstacles in Understanding Finite and Infinite Sets 

Students’ understanding of finite and infinite sets must be discussed because many explanations are 

incomplete or wrong. This is based on the analysis of textbooks and interviews with teachers. Put, finite 

sets are only explained as sets whose elements can be counted in number, while infinite sets have 

elements that cannot be counted or are infinite (As’ari et al., 2017). This kind of explanation makes it 

undoubtedly challenging to achieve an understanding of the consequences of the definition of finite and 

infinite sets: “Suppose 𝐴 is a finite set, then there is an integer 𝑘  such that 𝑛(𝐴) = 𝑘, and if there is no 

𝑘 then 𝐴 is an infinite set.” (Enderton, 1977).  It is more ironic that it is explained in the textbook and 

understood by teachers that infinite sets have no cardinality. This is a fatal mistake because an infinite 

set is known by the term Aleph (ℵ) to express its cardinality (Enderton, 1977). However, in terms of 

cognitive development, it is not the time junior high school students recognize the term, Aleph. At least 

the knowledge conveyed is not out of the basic theory. Next is about the dual meaning in interpreting the 

notation of the colon “...”. While it is interpreted as a notation to express infinite sets, on the other hand, 

it states “and so on following the pattern” for the case of finite sets whose elements are difficult to count. 

Indeed, the textbook and the teacher serve as pivotal sources of knowledge for students, significantly 

shaping their understanding of mathematical concepts (Sievert et al., 2019). When teachers’ understanding 

of mathematical materials requires correction, it can have several adverse effects on students: 

1. Misunderstanding: A teacher needs clarity on mathematical concepts to avoid inadvertently 

conveying misconceptions to students (Alwan, 2011). Consequently, students may develop 

erroneous beliefs about the topic, which can be challenging to rectify later. 

2. Confusion: Inadequate clarity from the teacher regarding mathematical concepts can confuse 

students and impede their comprehension (Bray, 2011). Confusion may lead to frustration and 

diminish students’ motivation to engage with the subject matter. 

3. Inaccuracy: If a teacher’s understanding of mathematical material is flawed, it may disseminate 

incorrect information to students (Sitorus & Masrayati, 2016). Inaccuracies can lead to errors on 

assignments and exams, adversely affecting students’ academic performance. 

4. Limited Instruction: A teacher’s limited grasp of mathematical material may restrict their ability to 

provide students with a comprehensive understanding of the topic (Ganal & Guiab, 2014). 

Consequently, students’ capacity to apply knowledge to real-world scenarios may be curtailed. 

 

Addressing these issues necessitates ongoing professional development for teachers to enhance their 

understanding of mathematical concepts and pedagogical strategies, ensuring effective instruction and 

fostering optimal student learning outcomes. 

This phenomenon has a vast potential to shape false knowledge, so something known as a 

didactical obstacle emerges. All students agreed that {2,4,6,8, … }(𝜏1) was an infinite set and 

{2,5,3,7, … ,23}(𝜏2) It was a finite set. However, when asked, “What is the difference between “...” in 

𝜏1 and 𝜏2” no student answered. Even though 𝜏1 can be written as {2, … ,4,8,6} or “…” in 𝜏2 can be 

filled with any number because the set does not pay attention to the order of writing its elements, for 

example {1,2,3} = {3,1,2}. The concept of didactical obstacles, which can lead to the formation of false 
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knowledge, is explored in various contexts. Serradó et al. (2005) and Prediger (2008) discuss the 

influence of these obstacles on learning probabilistic knowledge and the multiplication of fractions, 

respectively. Bingolbali et al. (2021) further examine the didactic phenomenon in the context of 

knowledge of sets. These studies highlight the need to consider these obstacles in the teaching and 

learning process. Buford and Cloos (2018) add a philosophical perspective, presenting a dilemma for the 

"knowledge despite falsehood" strategy, which is relevant to forming false knowledge. 

The next task, {𝑥|𝑥 𝑖𝑠 𝑎 𝑤𝑜𝑟𝑑 𝑡ℎ𝑎𝑡 𝑐𝑎𝑛 𝑏𝑒 𝑓𝑜𝑟𝑚𝑒𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑙𝑒𝑡𝑡𝑒𝑟𝑠 𝑎, 𝑖, 𝑠, 𝑤} (𝜏3) 

and {1,2, {3}, {{1}, {2,3}, 1}} (𝜏4) became the object of ontogenic and epistemological obstacle 

indications on finite and infinite sets. Many say that 𝜏3 is a finite set because the words that can be formed 

are limited, while others state that 𝜏3 is an infinite set because its elements are very many. When 

confronted with the question, “Is it an infinite set when there are so many elements?”, then an example 

was shown “Suppose 𝑆 is the set of rivers on earth. Is 𝑆 an infinite set?” The student who answered 𝜏3 

as an infinite set stated that 𝑆 is a finite set, how many are there? “It is hard to count,” he replied. 

Furthermore, interpreting the words “very many elements” as an infinite set result from constructing their 

prior knowledge outside of mathematics. This is evidence that an actual conceptual ontogenic obstacle 

occurs in the case of 𝜏3. Other research has shown that students can experience ontogenic learning 

obstacle when they construct mathematical understanding through their experiences outside of 

mathematics, leading to errors in translation among mathematical representations (Afriyani et al., 2019). 

Students’ inability to state 𝜏3 as an infinite set because “there is no need to pay attention to the repetition 

of letters in forming words from the letters 𝑎, 𝑖, 𝑠, 𝑤” and incorrectly mentioning the cardinality of 𝜏4 is 

evidence that students experience instrumental ontogenic obstacles. This relates to the student’s promise to 

pay attention to important technical matters. According to other research, this obstacle may stem from a lack 

of understanding of the underlying mathematical principles, as seen in other studies on epistemological 

obstacles in mathematics learning (Moru, 2009). Concerning epistemological obstacles, both teachers and 

students stated that 𝜏3 and 𝜏4 were types of problems that they had never encountered. “An example of a 

problem that I often encounter, for example, 𝐸 is the set of letters in the word “matahari”,” said one of the 

subjects. Similarly, with 𝜏4, no examples or problems wrote the set in the set. The diversity of types of 

exercises students carry in learning mathematics can result in epistemological barriers. This also includes 

students' habits of only solving routine questions with the same difficulty level.  

A variety of research studies have highlighted the influence of different forms of physical activity 

on the cognitive processes involved in mathematical learning among students. Supandi et al. (2021) 

observed that students may encounter epistemological challenges when they struggle to transfer their 

mathematical knowledge to novel or intricate problems, a phenomenon particularly notable in tasks 

involving integer operations and word problems. Brown (2008) and Bolden and Newton (2008) further 

investigated these challenges, with Brown focusing on the complexities of mathematical induction and 

Bolden examining the barriers to implementing inquiry-based teaching methods in elementary 

mathematics. Taken together, these investigations underscore the importance of adopting a more diverse 

and innovative approach to mathematics education, one that enhances students' capacity to apply 

mathematical concepts across a range of problem-solving scenarios. 

Learning Obstacles in Understanding the Similarity of Two Sets 

The fundamental skills expected from students in the Indonesian school mathematics curriculum following 

the study of sets include the ability to solve contextual problems (Indonesia, 2018). Consequently, the 
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material presented in the textbook is heavily imbued with contextual nuances (As’ari et al., 2017). This 

emphasis on contextualization in mathematics teaching allows educators to integrate mathematics 

beyond its abstract realm (Ramos-Rodríguez et al., 2022). However, chaos may arise when mathematics 

is divorced from its real-world context (Hendriyanto et al., 2023). Therefore, the task format in this section 

is designed employing contextualization, as referred in Figure 4. 
 

Lukman and Sani each have three ballpoint pens with identical brand, type, and color (identical). 

Suppose each of Lukman and Sani's ballpoint pens becomes a set 𝐿 and a set 𝑆 determine and explain 
whether 𝐿 = 𝑆? 

Figure 4. Form of Contextual Problem about the Similarity of Two Sets 

In practice, the explanation of the similarity of two sets is unified with the explanation of two 

equivalent sets. “two sets 𝐴 and 𝐵 are said to be equal if and only if  𝐴 ⊂ 𝐵 and 𝐵 ⊂ 𝐴, notated by 

𝐴 = 𝐵. If  𝑛(𝐴) = 𝑛(𝐵), then set 𝐴 is equivalent to set 𝐵” (As’ari et al., 2017). However, students may 

have misconceptions about interpreting two sets as equal because they do not fully understand the 

concept of sets and their properties. Figure 5 and Figure 6 are the real evidence found. 
 

 

English version:  

Set 𝐿 = set 𝑆 is a true statement because 
both sets have 3 elements (ballpoint pens) 
with the same brand, type, type, and color, 

so it can be said that 𝐿 = 𝑆 

Figure 5. Siti's (Pseudonym) Answer on the Topic of Two Equal Sets 

Figure 5 shows that the suspicion of confusion between similarity and equivalence was answered 

during the interview. In the interview, Siti explained, “I understand that the pens owned by Lukman and 

Sani are different, but the number is the same.”  This expression shows that Siti confuses the idea of two 

sets that are the same (i.e., have the same elements) with the idea of two sets with the same number of 

elements. Furthermore, her hesitation and inability were demonstrated when asked to make her 

mathematical modeling. It adds to the belief that what is understood about two sets being equal is that all 

three have the same number of elements. Shindi (pseudonym), on the other hand, understood the 

concept of the similarity of two sets (Figure 6) correctly. 
 

 
 
English version: 

𝐿 = 𝑆 set 𝐿 and set 𝑆 have the same content. Each set has the content of three ballpoint pens with 
the same brand, type, type, and color. 
From the above statement, we can conclude that if two sets have the exact content criteria, then the 

set can be denoted by 𝐿 = 𝑆 

Figure 6. Shindi's Answer on the Topic of Two Sets being Equal 
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The important thing distinguishing the answers in Figure 5 and Figure 6 is that in Shindi’s answer, 

it is written, “If two sets have the same content criteria, then they are the same set.” This shows that 

Shindi understands the concept of two sets being the same (𝐴 = 𝐵 ⇔ 𝐴 ⊂ 𝐵 ∧ 𝐵 ⊂ 𝐴). However, 

Shindi’s answer to the problem (Figure 4) was incorrect because 𝐿 ≠ 𝑆 should have been (for example, 

if a pen is symbolized by 𝑝, then 𝐿 = {𝑝1, 𝑝2, 𝑝3} and 𝑆 = {𝑝4, 𝑝5, 𝑝6}). Shindi’s inability to identify the 

different elements in the contextual problem resulted from the presentation of material that focused too 

much on surface-level applications without providing students with a deep understanding of the 

underlying mathematical concepts. For example, when explaining the example of 𝐸 being the set of 

letters in the word “matahari”. Everyone understands that 𝐸 = {𝑚, 𝑎, 𝑡, ℎ, 𝑟, 𝑖}, this is the translation of 

the explanation: “In a set, the elements must be different from each other or in writing the elements of a 

set there must be no repetition (∝).” In the context of set 𝐸, the explanation ∝ is acceptable. However, 

the lack of further explanation for recurring elements in contextual problems can give rise to didactical 

obstacles, as illustrated in Shindi’s case. Meanwhile, Siti’s case exemplifies a form of conceptual 

ontogenic obstacle. The absence of problems akin to Figure 4, resulting in all students being unable to 

provide the correct answer, manifests the epistemological obstacle. 

Shindi’s struggle with grasping mathematical concepts due to superficial teaching methods is a 

prevalent issue, as evidenced in Maarif et al. (2021) study on sequence and series problems. This 

challenge is further compounded by the contextual nature of knowledge, as explored by Vassallo (2001), 

Guazzini (2018), and Giunchiglia (1993). Vassallo’s (2001) analysis of epistemological challenges 

underscores the necessity of a contextualized approach to understanding knowledge, while Guazzini’s 

(2018) proposal for resolving the Symbol Grounding Problem highlights the significance of context in 

establishing objective reference points. Giunchiglia’s (1993) theory of reasoning with contexts 

emphasizes the importance of considering the environment in which cognitive processes unfold. 

Contextual learning in mathematics involves teaching mathematical concepts and skills that emphasize 

their practical application in real-world scenarios and their interconnectedness with other disciplines 

(Smith & Morgan, 2016). While this approach effectively helps students recognize the relevance of 

mathematics in their lives, it is essential to recognize that it can potentially compromise the integrity of 

fundamental mathematical principles and concepts. In addition to the examples mentioned earlier, 

contextualized learning may dilute mathematics by oversimplifying or distorting mathematical concepts 

to make them more “accessible” to students (Wood, 2013). This can result in students possessing a 

superficial understanding of concepts (Nicol, 2010) but lacking the ability to apply them in complex 

situations or relate them to other mathematical ideas.  

In conclusion, while contextual learning can be a valuable tool for engaging students and 

demonstrating the applicability of mathematics to real-life scenarios, educators must ensure that it upholds 

fundamental mathematical concepts and principles. Teachers should strive to teach students a deep 

understanding of mathematical concepts and provide them with the skills and strategies necessary for 

applying them across various contexts. Furthermore, once teachers have successfully contextualized 

mathematics and fostered students’ acceptance of the subject, they should guide students in 

recontextualizing the mathematics they have learned and encourage them to explore its applications further. 

CONCLUSION 

Upon analyzing the data and deliberating on the findings, this study concludes that students encounter 

various learning obstacles about the material on sets. These obstacles encompass ontogenic, didactic, 
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and epistemological factors. An ontogenic obstacle emerges from students’ diminished interest in 

mathematics learning, coupled with their inadequate understanding of the significance of material on sets 

within mathematics, thereby leading to psychological ontogenic impediments that can detrimentally affect  

their overall learning journey and academic performance. Additionally, students’ lack of readiness 

concerning essential aspects of sets of material, such as understanding set concepts, contributes to 

instrumental ontogenic barriers when tackling subsequent topics, including set elements, finite and infinite 

sets, and comparing two sets. Moreover, conceptual ontogenic hurdles manifest when students need 

help to fully grasp the underlying essence of the set concept, as formal definitions may appear overly 

intricate or overly simplified. 

Didactical obstacles arise when the presentation of the material needs to facilitate effective 

learning about sets. For instance, the unstructured arrangement of the material may lead students to 

reject sets with a single element and empty sets, while an overemphasis on examples of similar problems 

and tasks can result in students dismissing elements with differing characteristics (e.g., {1, 2, 3, a, b, c} 

as a set). Moreover, an excessively contextualized delivery method is the primary cause of didactical 

hurdles. Additionally, teachers’ incomplete understanding of specific topics is crucial to address, as this 

can pave the way for the perpetuation of didactical obstacles across generations. These obstacles persist 

and become entrenched over time.  

Epistemological obstacles to the set concept emerge when students require assistance in 

comprehending the overarching meaning of sets. A robust foundation is essential for students to grasp 

the essence of sets, as misconceptions may arise while constructing more advanced knowledge, 

including understanding element notation, finite and infinite sets, and comparing two sets. Another form 

of epistemological obstacle within the function concept involves students’ inability to tackle non-routine 

problems that demand a higher cognitive level than typical tasks. 

Didactic design encompasses a teaching approach that highlights the teacher's role in imparting 

knowledge to students and how the realization of this knowledge, often referred to as the curriculum, is 

executed. The emergence of learning obstacles among students is not inherently attributed to the 

curriculum itself but rather to inaccuracies in implementing didactic design, both in terms of material 

design within textbooks and the delivery by teachers during instruction. Mathematics poses challenges 

for many students, and presenting the material in an appropriate, clear, engaging, and accessible manner 

is crucial to mitigate barriers to learning. To alleviate such obstacles, educators should endeavor to offer 

engaging mathematics materials that are appropriately leveled and provide ample scaffolding to support 

student learning. This study suggests that students require more opportunities to practice applying set 

theory concepts to problem-solving scenarios and to receive feedback on their efforts. Overall, when the 

didactic design fails to captivate students, constrains their autonomy, emphasizes rote memorization, and 

neglects individual differences in learning styles and abilities, it can lead to learning impediments. 

Effective teaching demands a nuanced approach that considers individual students' unique needs and 

interests. Consequently, this research on the analysis of learning obstacles in set materials could hold 

significant implications for developing more suitable materials, more effective teaching strategies, 

educational policies, and interventions to enhance student learning and achievement in mathematics. 

However, this research still possesses several limitations. Firstly, it solely scrutinizes set theory, 

with the scientific knowledge referenced being confined to Cantor's version of set theory. Additionally, 

this study exclusively concentrates on the phenomena encountered by students, overlooking the process 

of knowledge inheritance from its original source through various institutions. It is also crucial but still 

needs to be studied. Recommendations for future research encompass analyzing other topics or 
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exploring set theory with more contemporary scientific knowledge. Understanding how curriculum 

developers and teachers conceptualize a subject is also imperative. Ultimately, developing an effective 

didactic design to alleviate learning obstacles is paramount. 
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