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Abstract  

To measure the procedural and conceptual knowledge of functions and to clarify the relationship between them 
in the context of mathematics education in Morocco, a structural equation modeling (SEM) analysis was used. In 
addition, correlation tests between students’ grades at their Mathematical Analysis Assessments and their 
procedural and conceptual knowledge of functions scores were established to investigate whether students' 
grades mainly reflect their performance on procedural knowledge or conceptual knowledge. The sample consisted 
of 337 high school Moroccan students. The study findings indicated that a large group of participants scored high 
in procedural tasks but low in conceptual tasks. Besides, the participants’ grades in their exams correlate much 
more strongly with the estimated procedural knowledge scores than the estimated conceptual knowledge scores. 
On the other hand, the confirmatory factor analysis of the SEM confirmed the reliability, validity, and fitness of the 
measurement model, whereas the path analysis of the SEM supports the genetic view causal relationship that 
procedural knowledge of functions is necessary but not sufficient condition for conceptual knowledge. These 
results provide a theoretical foundation for improving mathematics education by working on the content of the 
assessments, the teachers’ teaching approaches, and the students’ learning strategies. 
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After independence, Morocco has undergone a series of educational reforms to meet the development 

challenges (Saoudi et al., 2020). From 2015 to 2030, a new reform strategy was implemented that 

promises an emphasis on the quality of education, namely the 2015-2030 Strategic Vision (CSEFRS, 

2014; Saoudi et al., 2020). Mathematics education in Morocco has also embarked on a series of changes 

in both programs and pedagogical approaches. Indeed, the program of mathematics in Morocco has gone 

from a program that gives a lot of importance to the theoretical foundations of mathematics (logic, 

algebraic structures ...) to a program that considers mathematics as a tool and not an end, used for solving 

problems in various fields (Mawfik et al., 2003). At the pedagogical level, a shift from an objective-based 

to a competency-based approach to teaching mathematics was decided (Hamouchi et al., 2012). An 

objective-based approach is a traditional approach that considers the teacher responsible for formulating 

the learning objective, breaking it down into sub-objectives, and then seeking to use a stimulus to 

positively change the student's observable behavior, that is indicative of the learning objective being 

achieved (Skinner, 1968), without giving importance to what is going on in his head. Therefore, this 

approach is very efficient for the development of procedures and automatisms. While the current 
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competency-based approach, adopted in 2008, aims to develop competencies to improve the quality of 

the teaching/learning process and the student's achievement (Hirtt, 2009).  

The competency-based approach, based on the constructivist theory, enables students to master 

a competence, at their own pace, using their prerequisites and through an authentic and self-steered 

learning experience (Velde, 1999). To monitor the progress made in student learning throughout the 

process of implementing the reform, a national program for the learning evaluation (PNEA) of Moroccan 

students has been set up to assess students’ language, mathematical and scientific competencies at the 

end of the last years of primary and secondary school and the first year of high school, according to the 

prescribed national education program (CSEFRS, 2016).  Indeed, the PNEA surveys identified a growing 

gap between reforms aspired outcomes and students’ achievement (CSEFRS, 2016). The PNEA 

(CSEFRS, 2016)  survey reported that “students in the first year of high school are deficient in basic 

knowledge/ skills prescribed by the curriculum” This was moreover confirmed by international 

assessments such as TIMSS and PISA. Thus, Morocco remains among the last countries in terms of 

student achievement in Mathematics in TIMSS studies, and as well, the results of the PISA survey for the 

year 2018 indicate that Morocco's average score in mathematics is 368 points, over 100 points below the 

international average of 489, which confirmed that most Moroccan students are below average in basic 

academic competencies (Bourqia et al., 2018; OECD, 2018). There are many factors affecting student 

achievement, including primarily the interaction between teachers, students, and content (Bryk et al., 

2010). In this study, we have tried to explain the key reasons behind this generalized weakness of the 

academic level of Moroccan students through an analysis of the relationship between students and 

knowledge, which thus offers a preliminary idea about other pedagogical aspects such as teachers' 

practices, assessments content, and students' learning strategies. 

           Competence is defined as a set of knowledge, skills, and behaviors (El Faddouli et al., 2011) 

needed to effectively perform tasks and solve problems at school or in various fields of real life (El Asame 

& Wakrim, 2018). We notice then that knowledge is the main component of competence, but the question 

that arises is: what mathematical knowledge do students need to develop competencies? To answer this 

question, Sáenz (2009) studied the role played by the type of school mathematical knowledge in the 

activation of competencies identified by PISA with particular attention to the importance of contextual 

knowledge.  The results indicate that “designing teaching for the development of students’ competencies 

is not radically different from working on concepts and procedures through the curriculum” (Sáenz, 2009), 

which means that the acquisition of conceptual and procedural knowledge (CK and PK) is of paramount 

importance to competencies development. Sáenz (2009) added that contextual knowledge, which 

consists of presenting school situation problems in a story context related to the real world, should be 

included in the teaching methodology of the contents. Besides, Rittle-Johnson & Koedinger (2005) 

claimed that organized knowledge requires integrating conceptual, procedural, and contextual knowledge 

within a domain, and Bransford et al.(1999) stated that organized knowledge enables students to solve 

original problems than having only memorized isolated. In addition, Lauritzen (2012) confirmed that 

students’ ability to apply mathematical functions within economics depends on the two types of 

knowledge, conceptual and procedural knowledge. Therefore, students' competencies depend on their 

conceptual and procedural knowledge, and mathematical incompetence entails deficiencies in students' 

mathematical knowledge (PK and CK). In our study, we focused on Moroccan students’ conceptual and 

procedural knowledge, which we believe would provide information explaining the low performance of 

students in national and international assessments. 

According to Hiebert and Lefevre (1986), mathematical knowledge consists of both procedural and 
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conceptual knowledge. Sfard (1991) used different terminology to name the two categories: operational 

and structural understanding, while Skemp (1978) distinguished between instrumental and relational 

knowledge. Conceptual knowledge can be defined as knowledge of the concepts and their interrelations 

in a domain, whereas procedural knowledge was defined as knowledge of the syntax and algorithms for 

completing mathematical tasks (Rittle-Johnson et al., 2001). Conceptual knowledge develops the ability 

of students to understand problems, choose suitable strategies, or generate a new one for solving original 

problems, and provides students with control mechanisms for examining the executed strategies and 

detecting errors (Byrnes & Wasik, 1991; Heibert & Lefevre, 1986). Procedural knowledge develops the 

ability of students to execute step-by-step actions and algorithms needed for solving problems (Heibert & 

Lefevre, 1986). Procedures require few cognitive resources and limited conscious attention and may not 

be learned meaningfully, contrary to conceptual knowledge  (Lauritzen, 2012; Sáenz, 2009). They can 

easily be automated by solving similar problems. Linking the two knowledge types is beneficial since they 

serve different cognitive functions, and their absence can lead to mathematical incompetence (Heibert & 

Wearne, 1986). In fact, both procedural and conceptual knowledge is important, but it is incomplete that 

one can have a deep understanding of concepts without being able to perform procedures, or one can be 

able to execute calculations without understanding their meaning (Nesher, 1986; Rittle-Johnson & 

Koedinger, 2005). On the other hand, the connection of both procedural and conceptual knowledge 

contributes to procedural flexibility and efficiency (Star & Rittle-Johnson, 2008; Schneider et al., 2011) 

and increases the ability to apply mathematics in practice or in another academic field (Sáenz, 2009; 

Lauritzen, 2012). 

The procedural-conceptual links can be developed through the teaching practices and learning 

strategies (Haapasalo & Kadijevich, 2000). Several research has confirmed that teachers’ beliefs and 

knowledge influence classroom teaching and learning practices, therefore, a teacher who has a good 

understanding of mathematical knowledge can transform the content into knowledge that enables 

students to improve their competencies (Shulman, 1986; Muhtadi et al., 2017) . In the constructivist view, 

the teacher is responsible for facilitating cognitive restructuring and conceptual reorganizations by 

focusing on relational issues and giving more attention to reflections on procedures and solutions (Cobb, 

1988), rather than focusing on rote learning of algorithms and mastery of skills. A similar focus is 

requested in assessments by proposing diversified tasks that evaluate conceptual and procedural 

knowledge instead of limiting the exams to similar problems that often emphasize procedural ski lls, 

especially since several studies have demonstrated that assessment practices have a strong impact on 

students learning strategies “by directing their attention to particular aspects of course content and by 

specifying ways of processing information” (Doyle, 1983). Indeed, learning strategies have been defined 

as cognitive processes that students undertake when studying for a course, and which may be superficial 

or deep strategies (Arend, 2007). Thus, we can say that students' approaches to learning reflect the nature 

and quality of teachers' practices and assessments. 

Realizing that linking procedural and conceptual knowledge has many benefits for teaching and 

learning mathematics, it is obvious to ask how these two types of knowledge are related. Theory suggests 

four conflicting viewpoints on the causal relations between these two kinds of knowledge, each view is 

supported by some empirical studies (Haapasalo & Kadijevich, 2000). Thus, the relation might be 

unidirectional from conceptual to procedural knowledge or from procedural to conceptual knowledge, or 

bidirectional, or entirely the two kinds of knowledge are not related. Each viewpoint is described in detail 

in the following section. 

The first and second objectives of the present study are related, which consist in developing an 
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instrument to measure the procedural and conceptual knowledge of a mathematical concept and 

discovering the causal relationship between these two types of knowledge, supported by our study, in the 

Moroccan context. We chose to work with mathematical function concepts as they are one of the most 

important mathematical objects from kindergarten to graduate school (Breidenbach et al., 1992) and that 

has both conceptual and procedural features (Lauritzen, 2012). Moreover, the courses concerning 

numerical functions represent almost half of the Moroccan program in high school (MNEPS, 2007). To 

measure the conceptual and procedural knowledge of functions and to study the relationship between 

them, we need to develop reliable and valid measures since both types of knowledge cannot be measured 

directly (Haapasalo & Kadijevich, 2000). To meet these objectives, we have drawn particularly to the work 

of Lauritzen entitled “measuring conceptual and procedural knowledge of mathematical functions”. 

Lauritzen's study (2012) investigates which of the four views can be supported using the structural 

equation modeling technique. The first aim of Lauritzen's study was to develop an appropriate set of tasks 

for measuring the conceptual and procedural knowledge of functions and the ability to apply functions, 

and the second one was to analyze their relationships through a large sample of first-year students in 

business school. The study developed one statistical model that consists of, on the one hand, the 

measurement part where conceptual knowledge, procedural knowledge, and ability to apply functions 

were modeled as latent factors, and on the other hand, the structural part where relations between 

different latent factors were investigated through linear regression equations (Lauritzen, 2012). Part of 

Lauritzen’s study results showed that a large group of participants had good procedural knowledge but 

modest conceptual knowledge. Besides, its collected data supported the causal relation that procedural 

knowledge is a necessary but not sufficient condition for conceptual knowledge. In our study, we have 

first adapted the tasks developed by Lauritzen for measuring the two latent variables "procedural 

knowledge of functions" and "conceptual knowledge of functions" to the Moroccan curriculum. Second, 

we have used structural equation modeling (SEM) to investigate the causal relationship between these 

two kinds of knowledge for a large group of Moroccan high school students. It is noteworthy that in our 

SEM model we did not measure the latent variable "ability to apply functions" because, in Lauritzen's 

model, the interest of this variable was to measure the ability of business school students to apply 

functions in solving economic problems. However, our study focused on high school students who have 

not already experienced applying functions in other fields, especially in the economy. 

Another goal of this study is to investigate whether students’ achievement in mathematics analysis 

mainly reflects their performance on procedural knowledge, conceptual knowledge, or both. Student 

achievement is defined as the knowledge or skills learned in the school for a limited time evaluated by 

test scores assigned by teachers (Rice & Carter, 2016). Ourahay's study (2021) on summative evaluations 

in the Moroccan context shows that the assessments target low academic achievement and characterize, 

according to TIMSS, performances below the international average level. Students' achievements are 

reduced to the first cognitive levels of mathematical thinking, namely “knowing” and “applying” or 

“reproducing”  (Heibert & Wearne, 1986; Bourqia et al., 2018; Ourahay, 2021). Through this research, we 

tried to verify to what extent these results correspond to the data of this study and their relation to the 

procedural and conceptual knowledge of students.  

The details of the theoretical framework, as well as the key steps of this study, are further described 

in the next sections. 

Relations between Conceptual and Procedural Knowledge 

As already mentioned, conceptual knowledge denotes abstract knowledge of the concepts of a domain 

and their interrelations. Lauritzen (2012) differentiated two categories of relations between mathematical 
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knowledge. At the primary level in which “the conceptual knowledge consists in recognizing the 

relationship between two pieces of information at the same abstraction level", and at the reflective level, 

"where relationships are constructed at a higher level of abstraction, less tied to context". In the case of 

functions, students at the primary level of conceptual knowledge should be able to shift back and forth 

between the different representations of functions (graphs, algebraic expressions, tables, and words) by 

understanding the isomorphism between them and that they represent the same mathematical object. 

While reflective knowledge is necessary for detecting whether mathematical properties are met or not in 

mathematical practices (e.g., getting a negative function value for a non-negative function) or in another 

context (e.g., economic applications)(Hiebert, 1986; Heibert & Wearne, 1986; Lauritzen, 2012). On the 

other hand, procedural knowledge has been separated into two categories: knowledge of forms and 

syntax which means that students can use symbols correctly, for example, they can readily recognize that 

this writing 𝑓2(=)𝑥 is false and does not express a function, and knowledge of rules and algorithms for 

solving problems (e.g., calculation of function values). Procedures can easily be automatized by force of 

solving repeated problem types, and therefore they required few cognitive resources and limited 

conscious attention, and they can hardly be verbalized and justified by students (Heibert & Lefevre, 1986). 

Theory indicated that there are four possibilities of causal relations between conceptual and procedural 

knowledge: genetic view, dynamic interaction view, simultaneous activation view, and inactivation view. 

The details of each viewpoint are provided in the following sections.  

Supporters of the inactivation view declared that conceptual and procedural knowledge are not 

related or have a very weak link than expected, especially as some students may have high conceptual 

knowledge and lack procedural skills or the reverse (Zucker, 1984, as cited in Lauritzen, 2012). Resnick 

& Omanson's study (1987) revealed that despite students having a good conceptual understanding of 

subtraction, they found great difficulty in performing subtraction calculations. Zucker (1984) worked on a 

large sample of 270 students to study the correlation between understanding decimal notations and 

performing procedures. As a result, the correlation relationship was statistically non-significant which 

means that the two kinds of knowledge should be treated independently. 

The causal relations between procedural and conceptual knowledge may be bidirectional, which is 

referred to as the simultaneous activation view. In other words, procedural knowledge is a necessary and 

sufficient condition for conceptual knowledge which means that enhancing students’ procedural 

knowledge leads to better conceptual understanding and vice versa (Hiebert, 1986; Byrnes & Wasik, 

1991). Lauritzen (2012) added that, in this viewpoint, "other explanatory variables for conceptual 

knowledge should be considered redundant". For the simultaneous activation view, computational errors 

in adding fractions are caused by a lack of conceptual knowledge of rational numbers (e.g., mathematical 

symbols are meaningless), and that developed conceptual knowledge allows detecting the presence of 

computational errors and procedures will be performed correctly. Therefore, the development of 

procedural and conceptual knowledge takes place simultaneously (Hiebert, 1986; Byrnes & Wasik, 1991). 

 The dynamic interaction view, also called concepts-first theory, suggests unidirectional relations 

from conceptual to procedural knowledge (Gelman & Williams, 1998; Halford, 2014). In other words, 

conceptual knowledge is a necessary but not sufficient condition for procedural knowledge. This view 

represents a synthesis of Inhleder & Piaget's theory (1958) that confirmed that acquiring new procedures 

begins with in-depth conceptual understanding. But once acquired, mastering these procedures can be 

done in two ways: first, discrimination and generalization processes as feedbacks of the environment 

specifying the contexts of when and where applying a given procedure (Byrnes & Wasik, 1991); second, 

the repeated practice of problems solving and the "proceduralization" process leads to automatized and 
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efficient procedures. In addition, reflections on the results of procedures contribute to the enrichment of 

conceptual knowledge. Thus, the two kinds of knowledge affect each other diachronically and not 

synchronically (Inhelder & Piaget, 1958; Braine, 1988). 

In contrast, the genetic view, also called the procedures-first theory, suggests unidirectional causal 

relations from procedural to conceptual knowledge (Siegler & Stern, 1998). In other words, procedural 

knowledge is a necessary but not sufficient condition for conceptual knowledge, and therefore students 

who develop rich procedural knowledge, do not necessarily develop conceptual knowledge. In this view, 

the concept is a process that is encapsulated as an object  (Dubinsky, 1991; Sfard, 1991; Lauritzen, 2012) 

stated that the transition from operational to a structural understanding of a concept is done through three 

stages: interiorization, condensation, and reification. Interiorization is the first stage for learning a new 

mathematical notion. Students get acquainted with the processes (processes are operations performed 

on lower-level mathematical objects) that turn into a new concept at a later stage, for example, 

manipulating algebraic expressions that give rise to functions object (Sfard, 1991). The phase of 

condensation is a period when students become able to think about a process as a whole and encapsulate 

it as an object. This stage resembles transforming "a recurrent part of a computer program into an 

autonomous procedure". At the end of this stage, students should be able to generalize, compare, and 

combine processes (Sfard, 1991). Reification is an instantaneous qualitative change where a new concept 

will be encapsulated into a familiar object detached from the process that produced it. Therefore, a higher-

level concept can now be developed such that the ex-reified construct is an input of its interiorization stage 

(Sfard, 1991). For example, the function is a building block for differentiation (Lauritzen, 2012). Sfard's 

(1991) theory is supported by the historical view confirming that the development of mathematical 

concepts should be in the same order as the development of concepts in history (e.g., the notion of 

numbers emerges through the process of counting). On the other hand, Lauritzen’s (2012) study results 

support, by using structural equation modeling, the genetic view that procedural knowledge precedes 

conceptual knowledge of functions. 

Functions’ Conceptual and Procedural Knowledge 

The function concept describes the relationship between input and output variables and can be 

represented in four different forms: words, tables, graphs, or algebraic expressions (Janvier, 1978). 

Understanding the different representation forms of functions, especially graphs and algebraic 

expressions, are among the main objectives of the mathematics curriculum for high school education in 

Morocco (Abouhanifa & Benkenz, 2018). The Moroccan educational guidelines state that care should be 

taken to present this concept in relation to other fields by solving engineering, physics, economics, and 

public life problems (MNEPS, 2007). Based on the constructivist theory, the guidelines insist that teachers 

are responsible for preparing the environment that helps students to construct the meaning of new function 

concepts in an explorative way (Boutin, 2000). For the content, students in the first year of Moroccan high 

schools should learn the concepts related to a domain of functions, even and odd functions, variations, 

minimum and maximum values, the graphical representation of some common functions (𝑥 ↦ 𝑎𝑥2 + 𝑏𝑥 +

𝑐 and 𝑥 ↦  
𝑎𝑥+𝑏

𝑐𝑥+𝑑
) and solving equations and inequalities graphically (MNEPS, 2007). The second year is a 

fundamental class where students have an opportunity to learn about composite functions, limits, 

derivation, infinite branches, concavity, and drawing the curve of any function. Students in their third and 

final year of high school learn about continuity, reciprocal functions, logarithmic functions, and exponential 

functions (MNEPS, 2007). 

Functions are considered one of the best examples of a mathematical object for evaluating the 
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relationship between procedural and conceptual knowledge (Lauritzen, 2012). The proposed tasks for 

measuring these two types of knowledge were limited to graph and algebraic expression forms. Students' 

procedural knowledge of functions' algebraic expression is reflected in their ability to execute a step-by-

step procedure without necessarily having an in-depth understanding of functions (Lauritzen, 2012). For 

example, calculate functional values algebraically, and calculate the limits and derivative function. To 

measure the conceptual knowledge of functions' algebraic expressions, the designed tasks should 

present the function as a unit without giving its explicit algebraic expression, and therefore, students do 

not need to use algorithmic strategies for solving them (Sfard, 1991). For example, deduce the nature of 

the product of two functions (e.g., 𝑓(𝑥) × 𝑔(𝑥)) presented by names (e.g., 𝑓 and 𝑔) and defined only 

by some properties given as a text (e.g., 𝑓 is a second-degree polynomial function and 𝑔 is a first-degree 

polynomial function) (Lauritzen, 2012). 

In the same vein, measuring the procedural knowledge of functions' graphical representation 

consists of tasks where students are asked to draw a graph or read values from the graph (Lauritzen, 

2012). For measuring the conceptual knowledge of graphs, the proposed tasks should evaluate the ability 

of students to perform operations on a graph as a unit without having an idea about its corresponding 

algebraic expression (Lauritzen, 2012). For example, sketch the graph of the function −𝑓 from the graph 

of 𝑓. Another aspect of functions’ conceptual knowledge is reflected in students’ ability to shift between 

the different representation forms, realizing the isomorphism between them and that they represent the 

same mathematical object (Duval, 1993; Lauritzen, 2012). For example, solve an algebraic equation using 

the graph of the corresponding function. Duval (1993) introduced the concept of registers of semiotic 

representations as "productions constituted by the use of signs belonging to a system of representation 

that has its constraints of meaning and operation". He claimed that for fully understanding the concept of 

functions, it is necessary to know all their different registers of semiotics representations (graphic, 

algebraic, and table) and to be able to convert the representations produced in a system into 

representations of another system (Duval, 1993). 

On the other hand, the student’s prior knowledge and experiences have been taken into 

consideration when creating the measurement tasks. Procedural knowledge is measured by routine tasks, 

while conceptual knowledge is often measured by unfamiliar problems where students must use their 

knowledge of functions to construct new solution strategies (Schneider & Stern, 2010). 

The purpose of the current study is to investigate the conceptual and procedural knowledge of 

functions for a large group of Moroccan students using structural equation modeling (SEM). Relying on 

existing theory and empirical studies, the SEM is specified by combining (a) a measurement model, which 

measures latent variables (constructs) from observed variables (items), and (b) a structural model, which 

examines the causal relationships among latent variables. In our study, the measurement part of the 

model was used to measure two latent variables, procedural and conceptual knowledge of functions, 

through observed variables by developing a set of tasks adapted to the Moroccan curriculum. For the 

structural part, the hypothesized genetic view relation between procedural and conceptual knowledge was 

assessed. Otherwise, a correlation study was established between students' grades in mathematical 

analysis and their scores on procedural and conceptual knowledge. Thus, this study seeks to answer the 

three research questions. Firstly, how procedural, and conceptual knowledge of functions can be 

measured in the Moroccan context? Secondly, how procedural, and conceptual knowledge of functions 

do relate to each other? Lastly, do students’ grades mainly reflect their performance on procedural 

knowledge or conceptual knowledge? 
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METHODS  

Participants   

The proposed test is addressed to students of the scientific branches of high school who have already 

learned all the essential concepts related to numerical functions and who must be generally average or 

well-performing so that they can have minimum knowledge of this concept. Indeed, participants were 337 

Moroccan high school students ranging from 16 to 17 years and drawn from seven experimental science 

classes. The sample comprised 196 females and 141 males. All participants received the same content 

on the theme of numerical functions according to the Moroccan curriculum during two years of high school. 

Participants' grades, ranged from 0 to 20, from the Mathematical Analysis Exams were reported. The 

mean value was 15.08 with a standard deviation of 2.7, and the minimum and maximum values are 8 and 

20. Thus, the participants’ background in mathematics analysis could be described as good with some 

marked variations between them. 

Conceptual Model  

The principal research questions of this study are formulated as hypotheses that are included in one 

statistical model. Based on the Lauritzen model and existing theories, our model was set up and 

implemented in the IBM SPSS AMOS Graphic Version 24 to verify if the collected data supports the 

model. Figure 1 presents the research model that explains the relationship between measured and latent 

variables, and the relationship between two latent variables. The latent variables are conceptual 

knowledge and procedural knowledge that cannot be measured directly (Haapasalo & Kadijevich, 2000). 

Procedural knowledge of functions was measured through two observed variables (items): the algebraic 

procedures variable and the graphic procedures variable. Whereas students' conceptual knowledge of 

functions is reflected in their ability to solve problems about the different forms of a function (graph or 

algebraic expression) represented as units without using procedural steps, as well as their ability to 

understand the isomorphism between the different representations forms and easily switch between them.  

Conceptual knowledge of functions was measured through four observed variables: algebraic 

interpretation, graphic interpretation, the relation between graphic and algebraic forms, and the ability to 

apply functions. As already discussed, Lauritzen has considered "Apply functions" as a latent variable 

that measured the ability to apply functions for solving economic problems and as a building block for 

differentiation. In this study, the ability to apply functions was considered as a part of conceptual 

knowledge of functions for two principal reasons: first, many researchers confirm that solving problems 

needs a depth understanding of mathematics concepts, for example, Cobb (1988) claimed that students 

who have constructed powerful conceptual structures are more able to solve problems in a wide variety 

of situations, in the same vein, Lauritzen (2012) claimed that procedural knowledge alone is insufficient 

for the student to be able to apply functions; second, the target sample in this study are high school 

students with absolutely no knowledge of economics or any other specific fields, especially that the 

teaching of mathematics in Morocco emphasizes the abstract side of concepts without making a 

connection with the real-world applications. Thus, the developed task for measuring the observed variable 

"Apply functions" involves a basic problem situation modeled by a linear function. More details about the 

tasks describing the above-mentioned observed variables will be given in the next section. On the other 

hand, the structural part of the model reflects the assumed relation between the two latent variables 

connected through linear regression equations where procedural knowledge serves as the independent 

variable and conceptual knowledge as the dependent variable (the genetic view causal direction).  
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Data Collection 

The data in this study is quantitative, comprising the students’ responses on a paper-and-pencil test 

containing 22 tasks, of which twelve tasks are from the Lauritzen test, and ten new tasks were developed 

according to the content of the Moroccan curriculum (see Appendix). The ten tasks fully respect the 

theoretical framework validated by the Lauritzen model with a change of examples. The validation process 

involves two mathematics teachers plus the research team. One of these two teachers participated in the 

correction of the students' tests. The results of the validation show that the test is adapted to the content 

of the mathematics curriculum in Morocco and can be used to measure the participants' knowledge of 

numerical functions. The second step was to verify that the questions were clear and concise, the time 

devoted was sufficient, and that students' solution strategies were coherent with the theoretical 

framework. Thus, a pilot test was applied to five students. Therefore, the content adequacy assessment 

was validated, and two hours was sufficient for students to answer all the test questions. On the other 

hand, the confirmatory factor analysis of the structural equation model was applied to assess the reliability 

and validity of the measurement instrument. The participants' grades in the Analysis exam were reported 

by their mathematics teachers. Participants were divided into five groups and passed the test for two 

hours. Before beginning, students were encouraged to answer the questions, even if they were unsure of 

their answers. It should be noted that the tasks for the different items were randomly ordered. The 

objective is to find out if participants answer the questions of the different types of knowledge according 

to the proposed order, or if they would choose the questions they are used to answering. The new 

proposed tasks of the test will be justified and described in the following paragraphs. 

Questions Measuring Procedural Knowledge  

The questions that measure procedural knowledge of functions are related to the graphic procedures 

(GrphPr) or the algebraic procedures (AlgPr). All these questions can be solved by following well-known 

and familiar algorithms, they test the students' ability to execute a plan (the third stage of  Polya’s model 

about problem-solving processes) (Polya, 1945) without a need of spending time understanding the 

problem statement and conceiving the solution plan (the first and second stage of Polya's model) or in 

choosing the appropriate solution strategy since the students are used to solve similar problems and are 

more likely to be attached to one particular strategy even if they know alternate approaches (Star & Rittle-

Johnson, 2008); which means that any need for conceptual knowledge was avoided. 

To measure the algebraic procedures item, tasks from the Lauritzen test (tasks 1 and 2 in Appendix) 

about calculating images and pre-images of a function and solving equations and inequations 

algebraically were proposed (Lauritzen, 2012). In addition, we have developed routine tasks, with different 

degrees of difficulty, on the calculation of limits, the calculation of derivative functions, and tasks for 

determining if a function is even or odd (tasks 3, 5, and 14 in Appendix). On the other hand, and for 

measuring the graphic procedures item, questions about sketching the graph of usual functions, 

identifying images, and pre-images of a function from its graph were proposed (tasks 4 and 18 in 

Appendix).   

Questions Measuring Conceptual Knowledge  

The conceptual knowledge of functions was measured via four items: graphic interpretation item (GrphInt), 

algebraic interpretation item (AlgInt), relations between graphic and algebraic representations item 

(RelationAlgGrph), and apply functions item (ApplyF) (Lauritzen, 2012). The designed tasks respect two 

main conditions: first, they can be solved without a need for procedural solution strategies; and second, 

that they are easy but unfamiliar in the way that they require more conscious thinking for understanding 

the problem statement and conceiving the solution plan (the first and second stage of Polya's model). In 
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the graphic and algebraic interpretation items, the aspect of reification (Sfard, 1991) is present, and 

functions are treated as units. In the graphic interpretation item, the function is represented by its graph 

that contains enough information for answering the questions and lacks information for procedural 

solutions. For example, students were asked various questions to sketch the graph of 

𝑓(−𝑥), −𝑓(𝑥), 𝑓(𝑥) + 𝑔(𝑥), the derivative of 𝑓(𝑥), based on the given graphs of 𝑓(𝑥) and 𝑔(𝑥) 

(Lauritzen, 2012)(see tasks 12, 13, 19 and 20 in Appendix). In the algebraic interpretation item, the 

function is represented by a name and defined by some properties given as a text with no information 

about its algebraic expression and graph (Lauritzen, 2012) (see tasks 10 and 11 in Appendix). Therefore, 

we developed a task where a function 𝑓 is defined as an absolute value of ℎ and ℎ is given as an odd 

function defined on ℝ, students were asked to determine the domain and the parity of 𝑓, and the solutions 

to the inequality  𝑓(𝑥) ≥ 0. In addition, we have proposed two tasks that aim to evaluate, respectively, 

the ability of students to identify among a set of graphical representations the curves of functions as well 

as their ability to select among a set of equalities those which represent algebraic expressions of functions 

(see tasks 7 and 8 in Appendix). 

The item "relation between graphic and algebraic representations" aimed at testing whether 

students can understand the relation between the algebraic and graphic representation and then solve 

problems by shifting fluidly between the two representations forms. Three tasks were taken from 

Lauritzen's test (see tasks 15, 16, and 17 in Appendix). In three others, the example functions proposed 

by Lauritzen have been modified (see tasks 6, 9, and 21 in Appendix). For example, a question was asked 

about solving the equation𝑓(𝑥) = 𝑥 + 2, the given graph of 𝑓 should be used as an intermediate tool 

for finding the intersection points of the graph, and the line of equation 𝑦 = 𝑥 + 2 and then deducing the 

algebraic solutions of equation 𝑓(𝑥) = 𝑥 + 2 (see task 9 in Appendix). The most challenged stage of 

Polya's model is the second one where students should interpret the equation 𝑓(𝑥) = 𝑥 + 2 as the 

intersection of two geometric objects (the graph and the line) and then conceive the plan of the solution 

strategy (find two points for drawing the line, determine the intersection, and deduce the algebraic 

solutions which are the abscissae of the graphically drawn intersection points).  

To find out how students would react to a problem situation that they are not used to practicing in 

class, we designed a task, of the "apply function" item, where students should model a simple problem of 

melting ice by a linear function (see task 22 in Appendix). Thus, students should mobilize their conceptual 

knowledge about linear functions to succeed in the first and second Polya's model stages (Polya, 1945), 

understanding the problem statement and conceiving the solution plan. Solving this problem requires 

procedural knowledge to calculate the value of the slope and the y-intercept of the linear function, but it 

is a less challenging step because most of the students who succeed in the first and second stages do 

not find difficulty in the algebraic and numerical calculation, so we considered this item as a measured 

variable of the conceptual knowledge of functions.  

Data Analysis 

The tasks were scored on different ranges scales. The item's score is calculated by adding the scores of 

all the tasks that belong to it. The sum of scores of the items of each knowledge (procedural and 

conceptual) ranged from 0 to 22. Table 1 contains the scale of each item. The Cohen’s kappa value for 

measuring the inter-rater reliability of each item was between 0.83 and 0.92, and the disagreements were 

solved by the coders. It is noteworthy that many students did not answer all the questions on the test, but 

no one left their paper blank, and they at least tried to answer the familiar tasks. 
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Table 1. Range of scores for each item 

Latent Variables Procedural Knowledge Conceptual Knowledge 

Items AlgPr GrphPr AlgInt GrphInt RelationAlgGrph ApplyF 

Scale 0-17 0-5 0-5 0-7 0-8 0-2 

 

The model is over-identified (Byrne, 1998) with 8 degrees of freedom. The items were normally 

distributed. The structural equation modeling was used to test the hypothesis causal relationship between 

PKF and CKF. The method used for parameter estimation in structural equation modeling is the maximum 

likelihood estimator. Confirmatory factor analysis was utilized to verify the measurement quality by 

assessing the reliability and validity of the measurement model. We used the following measures for 

goodness-of-fit: CMIN/DF, CFI, TLI, RMSEA, to verify if the hypothesized model fits the data well. The 

Chi-square p-value was ignored because it is very sensitive to the sample size (more than 200) 

(Vandenberg, 2006). On the other hand, a correlation test (the Pearson correlation coefficient) between 

the students' grades in mathematics analysis assessments and their scores on PKF and CKF was applied 

to answer the third research question.  

RESULTS AND DISCUSSION 

In this section, we will provide the answers to the three research questions. Figure 1 shows the complete 

model with the standardized estimated parameters and errors term. Overall model analysis shows that all 

factor loadings are within the range from 0.62 to 0.91 and the relation between procedural and conceptual 

knowledge is significant. The measurement model part and the structural model part will be investigated 

separately in the next sections to answer the first and second research questions.  

 

 

 

 

 

 

 

 

 

Figure 1. The 

structural equation models 

Measurement Model Assessment  

As shown in Table 2, the standardized factor loadings for every item exceed 0.7 except for the “Apply 

functions” item, which might be explained by the fact that students’ conceptual knowledge is a necessary 

condition for applying functions (factor loading higher than 0.5), but not sufficient since students also need 

to apply procedures to solve problems involving functions. Lauritzen (2012) claimed that “the ability to 

apply functions depends significantly on conceptual knowledge of functions” and that “procedural 

knowledge clearly affects the ability to apply functions when intermediated by conceptual knowledge.” On 

the other hand, the “algebraic procedures” item has more impact on procedural knowledge than the 

“graphic procedures” item. As well, the “graphic interpretations” item and the “relations between graphic 
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and algebraic representations” item have similar greater impacts on conceptual knowledge than the 

“algebraic interpretation” item and much more than the “Apply functions” item.   

 
Table 2. Factor loading of each Item 

Latent Variable Procedural Knowledge Conceptual Knowledge 

Items AlgPr GrphPr AlgInt GrphInt RelationsAlgGrph ApplyF 

Factor Loadings  0.816 0.841 0.756 0.892 0.914 0.619 

 

To evaluate the quality of the measurement model, we measured reliability and validity. Reliability 

refers to the internal consistency of the measurement instrument, while construct validity is used to 

determine whether the instrument measures what is intended to measure. To demonstrate construct 

validity, we measured the convergent and discriminant validity. For each latent variable, the Composite 

Reliability (CR) score should be greater than 0.7 to measure reliability, while the Average Variance 

Extracted (AVE) value should be greater than 0.5 to confirm convergent validity (Hair et al., 2010). The 

AVE square root value of each latent variable should be larger than the correlation between them to 

confirm discriminant validity. As presented in Table 3, the composite reliability (CR) value of procedural 

knowledge (CR= 0.814) and conceptual knowledge (CR=0.877) exceeded 0.7. The items that measure 

each latent variable correlate strongly with each other since the convergent validity of each latent variable 

was confirmed with AVE values equal to 0.687 for procedural and 0.646 for conceptual knowledge. The 

square roots of the AVE (0.804 and 0.829) were higher than its correlation that equal to 0.793; thus, the 

observed variables (items) of procedural knowledge correlate more highly with each other than with the 

observed variables of conceptual knowledge and vice versa and therefore the discriminant validity was 

confirmed. For the model fit assessment, the following fit indices should satisfy these conditions to confirm 

that the model fits the data well: CMIN/DF smaller than 3.0 (Hair et al., 2010) and RMSEA smaller than 

0.08 (Browne & Cudeck, 1989) while CFI and TLI should be higher than 0.9 (Bentler & Bonett, 1980). 

Therefore, the confirmatory factor analysis model showed good fit indexes since CMIN/DF=2.364, 

RMSEA=0.064, CFI=0.991, and TLI=0.983. 

To answer the first research question, the quality of our measurement model of conceptual and 

procedural knowledge of functions in the Moroccan context is good, valid, and reliable. Therefore, the 

designed tasks purport to measure what they are supposed to measure and align well with the theoretical 

framework. Indeed, as already mentioned, tasks measuring procedural knowledge of functions should 

measure the ability of students to apply algebraic procedures such as calculating images and pre-images, 

calculating the derivative and limits, and thus, their ability to apply graphical procedures such as 

constructing the curve of a usual function. On the other hand, tasks measuring conceptual knowledge of 

functions measure the ability of students to consider a function as a unit, such as defining a function 𝑓 as 

the absolute value of a function ℎ without knowing any information about their algebraic expressions and 

then proposing questions about𝑓. We can also measure conceptual knowledge of a function by evaluating 

the ability of students to easily switch from one representation to another (algebraic, graphical) and 

understand the isomorphism between the two representations.  It remains to mention that the variable 

"apply functions" has a loading factor barely exceeding 0.5, which means that solving real problems needs 

certainly a depth understanding of mathematical concepts and their interrelationships, but not in itself 
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sufficient since students need also procedural knowledge and contextual knowledge to develop problem-

solving competencies (Saénz, 2009; Lauritzen, 2012). 

 

Table 3. Validity and reliability analysis 

 CR AVE Conceptual Knowledge Procedural Knowledge  

Conceptual Knowledge 0.877 0.646 0.804  

Procedural Knowledge 0.814 0.687 0.793 0.829 

 

Structural Model Assessment  

The results of the structural regression analysis model suggest that procedural knowledge of functions 

has a direct and positive effect on conceptual knowledge of functions ( = 0.79, tvalue = 13.34,  < 0.001). 

The findings yielded clear evidence for the genetic view that procedural knowledge of functions (PKF) is 

a necessary but not sufficient condition for its conceptual knowledge (CKF), at least in the case of this 

group of Moroccan students; Thus, supporting our second hypothesis. To have more transparent visual 

information on the relationship PKF-CKF, we created a scatterplot of participants' scores on procedural 

and conceptual knowledge of functions (Figure 2). For each student, the PKF score was calculated by 

summing the scores of the procedural knowledge items (algebraic procedures and graphical procedures) 

multiplied by the corresponding factor loading, and the same for the CKF score (Lauritzen, 2012). As we 

see in Figure 2, the scatterplot indicates a positive relationship between PKF and CKF. As the procedural 

knowledge of functions increases, the conceptual knowledge of functions also tends to increase, which 

confirms that procedural knowledge is a significant explanatory variable for conceptual knowledge in the 

case of Functions. The reverse is not true, as no one of the participants scored high on conceptual 

knowledge and lower on procedural knowledge, thus the dynamic activation view is absent in this study. 

In the same vein, the inactivation view was denied as the two kinds of knowledge were correlated. The 

students’ scores at the diagonal may support the simultaneous activation view that conceptual and 

procedural knowledge develop iteratively. The results obtained on the relationship PKF-CKF are like those 

of Lauritzen’s study (2012). 

The genetic and simultaneous activation views on the relationship between procedural and 

conceptual knowledge give an idea about the pedagogical approach that should generally be adopted to 

teach mathematical functions, which is the development approach (Haapasalo & Kadijevich, 2000;  

Eronen & Haapasalo, 2010). In this approach, the teacher can opt for procedures at first, but without 

neglecting the conceptual understanding. However, traditional teachers exaggeratedly focus on teaching 

procedures, and even when students make a comprehension error that is evidence of a lack of conceptual 

knowledge, they consider them as a memorization problem and try to prevent the error by recalling 

procedures (Ma, 2020). Furthermore, the causal relationships between procedural and conceptual 

knowledge may vary according to the subjects taught; that is why it is necessary to teach these two types 

of knowledge with balance and understand that mathematical knowledge is developed iteratively between 

the two types of knowledge (simultaneous activation view) and that both are critical conditions for 

competencies development (Sáenz, 2009). 
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Figure 2. The scatterplot between PKF and CKF scores 

Relationships between Mathematics Grades, Procedural, and Conceptual 
Knowledge Scores 

The last purpose of the current study was to investigate whether students' scores on the mathematics 

analysis class exams primarily reflect their levels of procedural knowledge or conceptual knowledge (the 

third research question). For this purpose, the Pearson correlation test between students’ grades and 

their scores of PKF and CKF was conducted. The results from Table 4 indicate that students' grades 

correlate significantly and positively with the PKF and CKF scores but with remarkably different 

coefficients of collinearity (0.79 for Grades-PKF and 0.52 for Grades-CKF), meaning that the students 

grades correlate much more strongly with the procedural knowledge scores than the conceptual 

knowledge scores.  

As shown by the analysis of the scatterplots in Figure 3, as the students’ grades increase, the 

procedural knowledge of functions scores increases as well, which means that students who scored high 

on their mathematical analysis exams scored high on the tasks measuring the procedural knowledge of 

functions. However, the increase in students’ grades does not necessarily imply an increase in their scores 

on the tasks measuring the conceptual knowledge of functions, in other words, most observations don’t 

“line up” and remain under the horizontal line of the equation CKF-score=5, which explains the weak 

positive correlation between students’ grades and CKF scores. Indeed, in general, the scores of 

conceptual knowledges of functions only really started to rise for almost half of the students who achieved 

grades higher than 16. 

 

Table 4. The correlation test results between grades and PKF and CKF scores 

 Score PKF Score CKF Grades 

Grades Pearson Correlation .790** .529** 1 

Sig. (2-tailed) .000 .000  

**. Correlation is significant at the 0.01 level (2-tailed). 
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We concluded that students’ grades on their mathematical analysis exams do not reflect their 

conceptual knowledge of functions but especially their procedural knowledge of functions. Otherwise, the 

mathematical analysis exams in the Moroccan school emphasize the evaluation of procedures and give 

much less importance to the evaluation of conceptual knowledge of functions. Therefore, the students 

who get high grades in the class assessments do not necessarily have a deep conceptual understanding 

of functions. This is also supported by Ourahay's (2021) study, which reported that "the TIMSS survey 

grants 30% to the reasoning activity while the summative evaluation, conveyed by Moroccan 

mathematics teaching, only grants it 15%" and less than 10% on the baccalaureate exam. Therefore, the 

baccalaureate exams emphasize the technical and computational aspects of mathematics and orient 

students towards the use of automatisms, and adopt a guided resolution (CSEFRS, 2021; Ourahay, 

2021).  

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Scatterplot between students' grades and their PKF scores and CKF scores 

The last reform of the mathematics curriculum in Morocco has introduced new approaches for 

teaching and learning mathematics within the framework of the competence-based approach based 

primarily on the constructivist theory. From the constructivist’s view (Piaget, 1977), the student should 

construct his own knowledge by mobilizing his prior knowledge to solve new problematic situations, which 

allows him to make connections and to put meaning into new mathematical concepts and, therefore, 

enrich his cognitive structures (Boutin, 2000). This mathematical knowledge accompanied by a mastery 
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of procedures is necessary for developing competencies (Sáenz, 2009) that are the current focus of the 

curricula of many countries, including Morocco. While in the traditional teaching approaches theories, 

transmission, and behaviorism, the teacher holds the information, and it is through his actions and words 

that the students learn. They emphasize the rote learning of procedures and the development of 

automatisms (Boutin, 2000). Pedagogical guidelines for teaching mathematics at Moroccan high school 

(MNEPS, 2007) have underlined the need to teach conceptual knowledge rather than superficial skills; 

they stated that: "the mathematical education of students should not be limited to the formal possession 

of definitions, theorems, results, and techniques, but rather to make these achievements alive and 

meaningful by employing and synthesizing them to meet challenges and solve problems." Indeed, the 

reality of most Moroccan students today, as proved by our study, did not meet these needs. The findings 

indicate that many students can perform procedures correctly but lack conceptual understanding. In other 

words, most students seem to be procedurally bounded learners since they focus on the mastery of 

procedures (how to do) without developing their conceptual knowledge (Why to do), as opposed to 

procedurally oriented learners that advance from procedural to conceptual knowledge if they receive the 

suitable teaching approaches (Ma, 2020). Several studies proved that the lack of conceptual 

understanding of mathematical objects, which means the lack of cognitive networks, will make solving 

unfamiliar problems, including “connection” and “reflection” tasks a very complex activity for students 

(Sáenz, 2009) since it requires high order cognitive process. Therefore, this explains very well the low 

performance of students in international assessments such as TIMSS and PISA, which place a lot of 

emphasis on these higher-order cognitive processes and on problem-solving in different contexts. On the 

other hand, we think that the assessments, the teaching approaches, and students' perceptions are the 

main factors that impact the students' learning approaches to be towards procedural knowledge or both 

procedural and conceptual knowledge. 

At the certificate evaluations, Moroccan students are exposed to similar tasks that focus on 

performing procedures and lack conceptual knowledge (Ourahay, 2021). Therefore, even students who 

are procedurally bounded learners get high grades and sometimes higher than the conceptually oriented 

learners' grades. The more we decrease the "reasoning" tasks in assessments, the more we minimize 

the requirements of the success threshold (Ourahay, 2021). This explains why participants' grades in their 

exams correlated strongly with the estimated score of procedural knowledge of functions (PKF) and much 

less with the estimated score of conceptual knowledge of functions (CKF). The fact that the assessments 

focus on similar problems based on the execution of procedures has negatively impacted the teachers' 

approaches and the students' interests. As we have already mentioned, the literature confirmed that 

assessment practices have a strong impact on students learning strategies (Doyle, 1983; Arend, 2007; 

Ourahay, 2021). Thus, the determination of students to succeed and achieve good grades will push them 

to rely on rote learning by memorizing procedural steps and developing automatisms, and most of them 

will not be interested in understanding "the why" or solving problems in unknown contexts. For the same 

reason, teachers may often adopt teaching by objectives (behaviorism) or transmissive teaching as their 

teaching strategy. Ourahay (2021) stated that “these standardized assessments established over the 

years lead teachers and students to rely on the old assessment tests as the main teaching and learning 

resources, they lead them to undervalue mathematical reasoning and its skills, and consequently, the 

development of scientific thinking” (Ourahay, 2021). Therefore, if there is a general focus on teaching for 

understanding based on the competence approach, an adaptation of the assessments is an obligation. 

Thus, the assessments' tasks should measure both procedural and conceptual knowledge on the one 

hand and measure the ability to apply the required concepts for solving new problems (contextual 
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knowledge) on the other hand. As Sáenz stated, “assessment of the mathematical competencies of 

participants (in PISA terms) includes assessment of the extent to which they have school mathematical 

knowledge (contextual, conceptual, and procedural) which they can productively apply to problem 

situations of any kind (personal, working, public, scientific, etc.)” (Sáenz, 2009). 

The second factor that affects students’ mathematical knowledge is teachers’ teaching strategies, 

as claimed by several studies. Leikin & Levav-Waynberg (2007) revealed that teacher knowledge explains 

the gap between theory-based recommendations and school practices. We believe through the obtained 

results that teachers attach greater importance to the mastery of procedures than developing conceptual 

knowledge. Indeed, many teachers do not spend enough time building the meaning of new concepts and 

discussing relations, but they expose their students to numerous similar situations where procedures are 

applied and then ask them to follow the same procedural steps until they master them. As already 

mentioned, the error is not considered a learning opportunity but a lack of reinforcement by the teacher 

or exercises and memorization by students. It is avoided by re-explaining the procedural steps thoroughly 

rather than explaining the meanings of the procedures and correcting misconceptions (Boutin, 2000). This 

problem is claimed by several studies in different countries around the world. Thus, Sáenz claimed that 

“giving excessive importance to the algorithm over the underlying concept is particularly serious among 

those who are to be future teachers”, Tambwe (2019) found that “the majority of teachers (78%) were not 

able to prepare a competency-based lesson plan and even deliver lessons using competency-based 

approaches”, and Sáenz (2009) reported that there are “serious difficulties for future teachers when it 

comes to leading a process of teaching/learning with their students in line with the PISA proposals”. 

Traditional assessments can be one of the reasons of procedurally oriented teachers as already 

explained. Otherwise, many teachers claim that students have low performance and modest prior 

knowledge that are certainly not sufficient to develop conceptual knowledge (CSEFRS, 2021). Whereas 

Ma’s (2020) research confirmed that teachers’ knowledge level impacts their teaching approaches and 

that teachers with low conceptual knowledge were procedurally oriented in their teaching by emphasizing 

rote learning of procedures. 

The results of USAID (2014) surveys in Morocco claimed that the candidates for the teaching 

profession have low academic skills. A further possibility is that even teachers who have a deeper 

understanding of mathematical concepts are not aware of the necessity of teaching conceptual knowledge 

and especially how to teach conceptual knowledge in combination with procedural knowledge. For these 

reasons, we believe that the main effort should be devoted to initial and in-service teachers’ training. 

However, the effort made to train teachers doesn’t meet the exigencies for quality education (CSEFRS, 

2014). Tamani et al. (2021) stated that the results of their study “reveal the dissatisfaction of these trainee 

teachers with the qualifying training they have carried out “The USAID study in 2014 showed that most 

teachers (87%) of teachers who are in training and (70%) of teachers practicing in educational institutions 

are not satisfied with their training that is very theoretical and does not meet the requirements of their 

profession. Based on this research, here are some practical recommendations for improving the quality 

of teachers' training. We think that more attention should be given to initial and in-service training for 

teachers to learn more about the teaching approaches for conceptual and procedural knowledge. 

Teachers should be provided with functional knowledge and didactic tools needed to help students to 

develop competencies for solving problems in different contexts. We believe that teaching mathematics 

according to the competence approach requires rich and deep procedural and, above all, conceptual 

mathematical knowledge, two main knowledge to develop students' cognitive processes. The importance 

of contextual knowledge in linking academic mathematics (concepts and procedures) and the activation 
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of students' skills (knowledge in action) to solve real-life problems; requires its integration into the 

methodology of teaching mathematical content at school. Besides, teachers should be trained in how to 

help students to construct their knowledge based on their own prior knowledge. The teacher should link 

a new concept to different situations and contexts and present it in different forms, which enables students 

to be aware of the multiple meanings of the concept, and therefore, have a deep understanding of this 

concept and its applications (Rico, 1997), in particular, in teaching the concept of mathematical functions. 

Another issue that needs to be tackled is related to students’ learning strategies affected by their 

beliefs and emotions about learning mathematics. Traditional assessments and procedurally bounded 

teaching approaches are two factors that lead students to believe that mathematics learning is achieved 

when the mastery of procedures is established (Ma, 2020). This makes them procedurally bounded 

students that have surface comprehension of mathematical concepts, and therefore they lose their self-

confidence and their interest to even attempt to solve problems in unknown contexts (Ourahay, 2021). On 

the other hand, students' extrinsic motivation regarding exam grades leads them to put more effort into 

practicing the procedures and much less into understanding their meaning. A study by Benmansour 

(1999) showed that Moroccan students are “predominantly oriented towards obtaining good grades and 

gaining more social status” and that correlational analyses proved that students with “a stronger 

orientation towards grades reported higher perceptions of test anxiety, and greater use of passive 

strategies.” She defined “passive strategies” as strategies that involve passive cognitive engagement like 

memorization of rules. Therefore, we believe that improving the quality of teachers and their pedagogical 

practices, as well as orienting assessments towards the different levels of cognitive processes and 

especially "reasoning" activities and towards the assessment of competencies instead of rote learning will 

certainly impact positively students' beliefs about mathematics and their learning strategies. 

CONCLUSION 

To measure the procedural and conceptual knowledge of functions and to clarify the relationship between 

them in the context of mathematics education in Morocco, a structural equation modeling (SEM) analysis 

was used. The results indicate that the quality of the measurement model, where conceptual knowledge 

and procedural knowledge of functions were modeled as latent factors, is good valid and reliable. In the 

structural part where relations between procedural and conceptual knowledge were investigated, the 

findings yielded clear evidence for the genetic view that procedural knowledge of functions is a necessary 

but not sufficient condition for conceptual knowledge of functions. Thus, this study's findings support the 

genetic view theory. On the other hand, the correlation tests between students' grades at their 

mathematical analysis assessments and their procedural and conceptual knowledge of functions scores 

indicate that students' grades correlate much more strongly with the procedural knowledge scores than 

the conceptual knowledge scores. Therefore, students' grades mainly reflect their performance on 

procedural knowledge, and students who get high grades do not necessarily have a rich conceptual 

knowledge.  

These results have several applications and allow us to draw several conclusions about the 

Moroccan educational system. Firstly, many Moroccan students can perform procedures correctly but 

lack conceptual understanding. Secondly, at the evaluations, Moroccan students are exposed to similar 

tasks that focus on performing procedures and lack conceptual knowledge, and therefore, even students 

who are procedurally bounded learners get high grades. Thirdly, teachers’ practices attach greater 

importance to the mastery of procedures than developing conceptual knowledge. Fourth, students' 

extrinsic motivation to obtain good grades leads them to put more effort into practicing the procedures 
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and much less into understanding their meaning. These findings have been confirmed by another 

research but remain very limited. Therefore, future research projects should be devoted to teachers' 

knowledge and practices and students' learning strategies evaluation. On the other hand, studies on 

pedagogical interventions and their effects on the development of students' conceptual and procedural 

knowledge will be of great use. 
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APPENDIX 

1. Given the function : 𝒇(𝒙) = 𝟐𝒙𝟐 − 𝟖𝒙 + 𝟔 

Calculate 𝒇(𝟏)  𝑒𝑡 𝒇(𝟐) 
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Solve 𝒇(𝒙) = 𝟎 ?  

Solve 𝒇(𝒙) ≤ 𝟎 ?  

 

2. Given the function  𝒇(𝒙) = √𝒙𝟐 − 𝟏 

Mark the real numbers that belong to the domain of the function 𝑓:                

𝟎. 𝟕𝟔𝟓                  1                𝝅            -6 

Mark the real numbers that belong to the images range of the function 𝑓 : 

           𝟎                   −√𝟑              −𝝅             𝟐. 𝟔 

 

3. Evaluate the following limits:  

             𝐥𝐢𝐦
𝒙→+∞

𝟔𝒙𝟐−𝟏

𝟑𝒙+𝟒
                                                 𝐥𝐢𝐦

𝒙→−∞
√𝒙𝟐 + 𝟏 + 𝒙 

 

4. The graph of 𝑓 is shown below. 

 

 

 

 

 

 

 

 

• Mark the real numbers that belong to the domain of the function 𝑓:        

       𝟎. 𝟕𝟔𝟓            √𝟐               -6            𝝅          −𝟏. 𝟑𝟒𝟓      1 

• Mark the real numbers that belong to the images range of the function 𝑓 : 

                     𝟎                
𝟏

𝟐
                −𝟏               −𝝅              𝟐. 𝟔 

 

5.  Determine whether the following functions are even or odd or neither even nor odd:  

• 𝒇(𝒙) = −𝟑𝒙𝟐 + 𝟏          

• 𝒈(𝒙) = 𝐜𝐨 𝐬(𝒙) +
𝟏

𝒙
 

 

6. The graph of 𝑓 is shown below 

 

•  State the domain of the function 𝑓  

• State the domain on which 𝑓 is differentiable 

• Deduce the table of variations of the function  𝑓  

• Is the function even or odd or neither even nor odd?  

 

 

 

7. Determine which graphs show relations that are functions. Justify your answers 
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8. Determine which expressions show relations that are functions. Justify your answers 

𝒙𝟐 + 𝒚𝟐 = 𝟒            𝒚 =
𝒙+𝟓

𝒙−𝟒
            𝒇(𝒙) = 𝟑         𝒇(𝒙) = 𝟐𝒙 + 𝟑        𝒙𝟐 + 𝟐𝒙 − 𝒚 = 𝟑 

 

9. Let 𝑓 be the function defined over ℝ by the following graph 

       Solve the following equation and inequation graphically:  

•  𝑓(𝑥) = 𝑥 + 2 

•  𝑓(𝑥) > 0 

 

10.  𝒇 is an odd function and the function ℎ is a definite by:  ℎ(𝑥) = |𝑓(𝑥)|.  

• Knowing that the domain of 𝑓 is ℝ , deduce the domain of ℎ  

• The function ℎ is even or odd? 

• Deduce the solutions of the inequation ℎ(𝑥) ≥ 0  

 

11. Suppose 𝑓(𝑥) is a function of third degree and that g(x) is a function of second degree 

and that f(x) can be divided by g(x). What kind of function is ℎ(𝑥) =
𝑓(𝑥)

𝑔(𝑥)
 ? 

 

12. The graph of 𝑓(𝑥) is shown below.  Sketch the graph of  −𝑓(𝑥).  You  don’t need to 

put more numbers on the axis. A rough sketch is enough 

 

13. The graph of 𝑓(𝑥) is shown below.  Sketch the graph of  𝑓(−𝑥).  You don’t need to put 

more numbers on the axis. A rough sketch is enough 
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14. Calculate the derivative:  

                𝑓(𝑥) = 𝑥√𝑥                            ℎ(𝑥) = (
𝑥

2𝑥−1
)

2
 

 

15. Let the function 𝑓(𝑥) be given by 𝑓(𝑥) = 𝑥2 + 2𝑥. Suppose 𝑔(𝑥) is given by the graph 

below. What is the expression for ℎ(𝑥) = 𝑓(𝑥) × 𝑔(𝑥)?  
 

 

 

 

 

 

16. The graph of a function is shown below. Which of the following expression can the 

function be divided by:  𝑥 + 1, 𝑥 + 3, 𝑥 − 3, 𝑥 − 4, 𝑥.   Justify your answer  
 

 

 

 

 

 

17. A function of third degree has the form 𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑. The graph of 

𝑓(𝑥) is sketched below. Find 𝑑.  

 

 

 

 

 

18. Sketch the graph of the following functions. 

𝑓(𝑥) = 𝑥2 − 3𝑥 + 2                                      𝑔(𝑥) = √𝑥 − 1 

 

19. The graphs of two functions are shown below. Sketch the graph of the sum of the two 

functions. You don’t need to put more numbers on the axis. A rough sketch is enough.  
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20.  The graph of a function 𝑓(𝑥) and its derivative is shown in the same coordinate 

system. Decide whether A or B is the derivative.   

                          

 
21. The graph of 𝑓(𝑥) is shown below. Write down the expression for 𝑓(𝑥) 

 

 

22. During the coldest winter months, the city of Ifrane is covered with a 2 m thick layer 

of ice. When spring arrives, the warm air gradually melts the ice, and the thickness of the 

ice layer decreases constantly. After three weeks, this thickness is only 1.25 m.  

Let S(t) be the thickness (in m) of the ice sheet as a function of time (expressed in weeks). 

Determine the expression of the function which describes the melting of this ice sheet.  
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