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Abstract 

Understanding the relationship between cognitive load and brain activity is essential for enhancing learning 
outcomes, particularly in complex subjects such as calculus. Despite its significance, empirical research 
examining the manifestation of cognitive load in brain activity patterns remains sparse, indicating a notable gap 
in the literature. This study aims to investigate the correlation between brain activity and cognitive load in a cohort 
of 30 mathematics education students enrolled in a calculus course, utilizing electroencephalogram (EEG) 
recordings. A quantitative descriptive research design was employed, integrating cluster analysis and data 
visualization techniques to facilitate an in-depth examination. EEG recordings of theta, alpha, and beta wave 
activity were collected during calculus sessions, followed by the administration of a cognitive load questionnaire. 
Descriptive statistics were utilized to analyze the distribution of cognitive load and brain activity, while correlation 
analysis was conducted to explore the relationships between cognitive load and EEG parameters across the 
different brainwave bands. The results revealed that higher cognitive load was positively correlated with increased 
frequency and amplitude in the alpha and beta bands, while a negative correlation was observed with theta 
frequency. Furthermore, cluster analysis effectively categorized participants based on distinct EEG signal 
patterns associated with varying levels of cognitive load. These findings offer valuable insights for the 
development of personalized learning interventions tailored to individual brain activity profiles, providing a 
foundation for future research on adaptive learning environments. 
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In the context of higher education, students encounter substantial cognitive demands, particularly in the 

field of mathematics, where the development of critical thinking and analytical skills is paramount 

(González-Hernández  et al., 2021; Sachdeva & Eggen, 2021; Trinidad, 2020). To evaluate cognitive 

load and its influence on learning outcomes, researchers employ Electroencephalography (EEG), a non-

invasive method for monitoring brain activity through scalp electrodes. EEG offers valuable insights into 

brain activity patterns (Cheng et al., 2022), enabling the exploration of cognitive processes and the 

dynamic relationship between cognitive demands and mental capacity (Pei et al., 2023). Students with 

higher cognitive abilities tend to exhibit more efficient information processing, which is reflected in 

structured brainwave patterns during complex tasks. Specifically, alpha waves (8-12 Hz) are associated 
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with a state of relaxed alertness, facilitating memory retrieval, while beta waves (12-30 Hz) are indicative 

of active engagement and problem-solving. The prominence of these waves during task-focused activities 

suggests effective management of mathematical challenges. Additionally, optimal cognitive performance 

is characterized by reduced theta wave activity (4-8 Hz), as lower theta levels are indicative of efficient 

cognitive load management, preventing mental overload (Lapomarda et al., 2022; Ramírez-Moreno et 

al., 2021; Tan et al., 2024). Conversely, heightened theta wave activity may signal disengagement, 

potentially impairing task performance. Thus, the interplay of alpha, beta, and theta waves is vital for 

student engagement with demanding academic material. By incorporating EEG data, educators can gain 

a deeper understanding of students' cognitive states, thereby informing the development of tailored 

instructional strategies that cater to diverse cognitive profiles. 

Many students experience excessive cognitive load in demanding subjects such as mathematics, 

often due to the complexity of the material exceeding their cognitive capacity (Chen et al., 2023; 

Oktaviyanthi et al., 2024). EEG analyses indicate that students under high cognitive load typically show 

increased theta wave activity, which is associated with mental strain and potential stress (Kramer, 2020; 

Liu et al., 2023). However, it is noteworthy that students with lower cognitive load may perform equally 

well academically, challenging the assumption that higher cognitive load always correlates with greater 

engagement (Souza & Naves, 2021; Xiong et al., 2020). In fact, some students can process information 

efficiently with minimal cognitive load, achieving high performance despite lower brainwave activity. 

Clustering analyses of EEG signals reveal significant individual variability in brain activity patterns 

(Apicella et al., 2022; Bashir et al., 2021; Forbes et al., 2022), further demonstrating that cognitive 

responses to academic challenges differ among students (Gao et al., 2023). These findings underscore 

the importance of recognizing individual differences, as not all students respond uniformly to cognitive 

demands. Consequently, this variability suggests the need for differentiated instructional approaches to 

cater to diverse cognitive profiles. 

This study questions the conventional assumption that higher cognitive load is directly correlated 

with superior academic performance. EEG data reveals diverse responses among students, with some 

achieving optimal academic outcomes despite lower cognitive load. These findings suggest that factors 

such as study strategies, time management, and stress levels may play a more significant role in 

academic performance than cognitive load alone. Current instructional practices often adopt a one-size-

fits-all approach, which overlooks individual differences in cognitive responses (Ke et al., 2023). This gap 

between educational expectations and students' actual needs may contribute to suboptimal learning 

experiences (Mangaroska et al., 2022). Although EEG-based clustering has the potential to identify 

diverse learning needs, its application in educational settings remains limited (Christodoulides et al., 

2022; Kalantari et al., 2021). Despite the promise of EEG technology in enhancing our understanding of 

cognitive processes (Tang et al., 2024), its widespread use in education is hindered by the need for 

specialized equipment and expertise (Zhang et al., 2022). Additionally, the interpretation of EEG data 

requires a combination of neuropsychological and statistical knowledge, presenting challenges to the 

integration of these insights into everyday teaching practices.  

Furthermore, this study introduces an innovative approach by combining EEG signal visualization 

with cluster analysis to deepen our understanding of the relationship between cognitive load and brain 

activity in students. Techniques such as brainwave graphs and heatmaps facilitate real-time monitoring 

of brain activity during calculus learning (Gashaj et al., 2024; Mendoza-Armenta et al., 2024), providing 

clear representations of shifts in frequency and amplitude that help identify mental fatigue or heightened 

cognitive engagement (Wang et al., 2020). Cluster analysis complements this by categorizing students 



Exploring the link between cognitive load and brain activity during calculus learning through electroencephalogram ….  1385 
 

 

based on their EEG patterns (Al-Salman et al., 2023; Alyasseri et al., 2021), revealing individual 

differences in cognitive responses that traditional methods often fail to capture (Dalmaijer et al., 2022; 

Finn et al., 2020). For example, while some students exhibit increased alpha and beta wave activity under 

cognitive strain (Qu et al., 2020), others show elevated theta wave activity (Ikotun et al., 2023). The 

integration of visualization with cluster analysis provides novel insights into cognitive load and brain 

activity, opening avenues for personalized learning (Xu et al., 2021). A deeper understanding of individual 

cognitive responses enables educators to design interventions that address each student's unique 

cognitive needs (Chew & Cerbin, 2021), ultimately enhancing the learning experience and academic 

performance in challenging subjects such as calculus. 

This research contributes to the advancement of learning and teaching by integrating EEG 

technology, cognitive load analysis, and clustering, offering new perspectives on effective educational 

practices. Its interdisciplinary approach—spanning educational science, neuropsychology, and data 

mining—uniquely investigates cognitive load and brain activity within the context of higher education (Das 

Chakladar & Roy, 2023; Niso et al., 2023). EEG emerges as a critical tool for monitoring brain activity 

(Wang et al., 2022), providing more comprehensive data on cognitive responses compared to traditional 

surveys or tests (Zhou et al., 2022). This enables more adaptive learning (Budin et al., 2016; Devi et al., 

2021), where instructional decisions are informed by real-time cognitive data (Hernández-Mustieles et 

al., 2024; Srinivasa et al., 2022). Additionally, cluster analysis introduces a novel methodology for 

grouping students based on EEG profiles (Bradley et al., 2022), supporting differentiated instruction by 

tailoring strategies to the specific cognitive needs of each group (Pereira et al., 2020; Wang et al., 2020). 

This study not only deepens our understanding of cognitive load and brain activity but also offers practical, 

actionable strategies for enhancing educational quality. 

METHODS 

To investigate the relationship between cognitive load and students' brain activity during calculus 

learning, this study employs a descriptive quantitative research design, enabling a comprehensive 

analysis of these variables. Data will be collected from Mathematics Education students to identify 

patterns of cognitive engagement that emerge throughout the learning process. The research 

methodology begins with the selection of a representative sample, followed by data collection utilizing 

validated instruments, including a cognitive load questionnaire and EEG to record brain activity. The 

collected data will then undergo systematic processing and analysis to provide a detailed understanding 

of the cognitive dynamics involved. The subsequent sections will provide a detailed description of each 

stage in the research process, including sample selection, data collection methods, data processing 

techniques, and the analytical procedures employed to explore the relationship between cognitive load 

and brain activity. An overview of the research flow is presented in Figure 1. 

The research methodology diagram, illustrated in Figure 1, delineates the steps involved in 

analyzing cognitive load using a quantitative descriptive approach. Data collection incorporates two 

primary techniques: EEG experiments for frequency band analysis and the administration of a cognitive 

load questionnaire. In the data processing phase, clustering and visualization methods are employed to 

organize and present the data, thereby revealing underlying patterns. The subsequent analysis phase 

utilizes descriptive statistics and correlation analysis to investigate the relationships between cognitive 

load and brain activity. Finally, data interpretation facilitates the drawing of conclusions regarding 
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cognitive load patterns and their association with brain activity in the context of learning. This structured 

approach offers a comprehensive framework for examining cognitive load within educational settings. 

 

 
Figure 1. Research flow 

Research Objectives 

The primary objective of this study is to examine the relationship between brain activity and cognitive 

load among 30 Mathematics Education students enrolled in a calculus course. Using EEG, the research 

aims to capture real-time brainwave activity and quantify cognitive load, providing insights into how 

students process complex information during the learning of calculus. 

Research Approach 

This study adopts a descriptive quantitative approach, incorporating visualization techniques and cluster 

analysis (Denis, 2020; Grekousis, 2020). This methodology is selected for its efficacy in elucidating the 

relationships between variables—specifically, cognitive load and brain activity. It offers a clear, data-

driven representation of how cognitive load is experienced by students within a controlled learning 

environment. 

Research Subjects 

The participants in this study comprise 30 first-year Mathematics Education students from Universitas 

Serang Raya, all of whom are enrolled in a calculus course. Purposive sampling was employed to select 

participants at a comparable stage of learning, ensuring consistency in the measurement of cognitive 

load and brain activity. During the calculus learning session, each student was fitted with an EEG device 

to record their brain signals in real time. Following the session, participants completed a questionnaire to 

assess their perceived cognitive load. 
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Data Collection Instruments 

Two primary instruments were utilized in this study. The first instrument, EEG, was employed to record 

brain activity signals during the learning session. The EEG captured the frequency and amplitude of brain 

waves, particularly theta, alpha, and beta waves, which are associated with varying cognitive levels 

(Khosla et al., 2020; Morales & Bowers, 2022). The second instrument was a Cognitive Load 

Questionnaire, designed to assess the cognitive load experienced by students while learning the concept 

of limits. This questionnaire measured intrinsic, extraneous, and overall cognitive load using a validated 

Likert scale (Oktaviyanthi et al., 2024). A sample of the questions used to assess mathematical cognitive 

load is provided in Table 1. 

Table 1. Sample questions assessing cognitive load 

Type Cognitive Load Indicator Sample Question 

Intrinsic Cognitive Load 

(ICL) 

Assesses students' perception of the 

inherent complexity of the formal limit 

concept, including the difficulty of 

understanding it without prior knowledge. It 

reflects the cognitive load experienced as 

students navigate the concept’s 

interconnected and challenging content 

within calculus. 

 

- Do I find the formal limit concept 

challenging to comprehend?  

- Is the explanation of the formal 

limit difficult for me to 

understand?  

- Do I consider the content of the 

formal limit concept to be highly 

complicated? 

 

Extraneous Cognitive 

Load (ECL) 

Measures the effectiveness of learning 

media in helping students understand the 

structure, interrelationships, and 

information related to the formal limit 

concept. It also evaluates whether the 

design of the learning media facilitates or 

hinders cognitive processing, access to 

relevant information, and focus on the 

formal limit concept. 

 

- Does the learning media help me 

understand the overall structure 

of the formal limit concept?  

- Does the design of the learning 

media for the formal limit concept 

make it challenging for me to 

recognize the relationships 

between concepts? 

Germane Cognitive 

Load (GCL) 

Measures students' engagement in 

cognitive processing to understand the 

formal limit concept through learning 

media. It focuses on the mental effort 

required to integrate new information with 

prior knowledge and build a 

comprehensive understanding, contributing 

to deep learning. 

- Do I actively visualize the formal 

limit concept?  

- Do the learning media encourage 

me to actively think about the 

formal limit concept?  

- Do I strive to understand the 

formal limit concept?  

- Do I find it challenging to fully 

understand the formal limit 

concept? 

 

 

Data collection was conducted by placing EEG devices on each participant to record brain signals 

throughout the controlled calculus learning session. Following the session, students completed the cognitive 

load questionnaire. The EEG data were processed using Python programming to extract the frequency and 
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amplitude of the recorded brain signals. These data were then visualized and analyzed using cluster analysis 

techniques, which grouped subjects based on their EEG signal characteristics. This approach allowed for the 

identification of variations in cognitive responses corresponding to different levels of cognitive load. 

Data Analysis 

The analysis consisted of four main steps aimed at understanding the relationship between cognitive load 

and brain activity, as well as identifying groups of students based on their EEG signal patterns: 

1. Descriptive Statistics 

The initial step involved calculating the mean, standard deviation, and distribution of data related 

to cognitive load and brain activity (Rahman et al., 2020; Choubey & Pandey, 2021). This provided 

a preliminary overview of the data characteristics and facilitated the identification of distribution 

patterns, including potential outliers. 

2. Correlation Analysis 

Correlation analysis was conducted to examine the relationship between cognitive load, as 

assessed by the questionnaire, and various brain activity indicators, including the frequency and 

amplitude of theta, alpha, and beta waves (Kästle et al., 2021; Šverko et al., 2022). Depending on 

the normality of the data distribution, either Pearson or Spearman correlation was employed. 

3. Data Visualization 

Visualization techniques were utilized to enhance the interpretation of the relationship between 

cognitive load and brain activity (Fu et al., 2021; Magnotti et al., 2020). These visual 

representations helped identify general trends (Wang et al., 2022) and specific patterns that might 

not be readily apparent through numerical analysis alone (Donohoe & Costello, 2020). 

4. Cluster Analysis 

The K-means clustering method was applied to group subjects based on their EEG signal patterns 

(Bablani et al., 2020; Wen & Aris, 2022). This analysis enabled the identification of clusters of 

subjects with similar brain activity profiles, allowing for the determination of significant differences 

in cognitive responses to calculus learning. 

Data Interpretation Techniques 

Each analytical step provides layered insights into the relationship between cognitive load and brain 

activity. Descriptive statistics offer a comprehensive understanding of the data characteristics, while 

correlation analysis identifies significant associations. Data visualization helps to elucidate underlying 

trends, and cluster analysis uncovers individual differences in cognitive responses (Atiomo, 2020; 

Cabañero et al., 2020; Cezar & Maçada, 2023; Qin et al., 2024). Collectively, these analytical methods 

illustrate the influence of cognitive load on brain activity, providing valuable insights for the development 

of adaptive learning strategies tailored to individual cognitive profiles. 

RESULTS AND DISCUSSION 

The study collected data from 30 students, focusing on two primary variables: cognitive load and three 

types of brainwave frequencies—Theta (Hz), Alpha (Hz), and Beta (Hz). Figure 2 illustrates the 

distribution of the collected data and reveals variations in relaxation levels and mental activity among the 

participants. Cognitive load ranges from 50 (low) to 97 (high), while Theta frequencies span from 1.15 Hz 

(minimal relaxation) to 3.50 Hz (enhanced relaxation). Alpha frequencies fall between 12.50 Hz and 14.85 

Hz, reflecting mostly stable or heightened states of relaxation, and Beta frequencies range from 20.0 Hz 
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to 24.7 Hz, with higher values associated with intense mental activity. Participants with elevated cognitive 

load generally exhibit high Beta and low Theta frequencies, indicative of a focused mental state, whereas 

those with lower cognitive load demonstrate higher Theta frequencies, signaling greater relaxation. 

 

 

Figure 2. Distribution of cognitive load and brainwave frequencies 

Furthermore, in Figure 2 also shows participants with high cognitive load (represented by red dots, 

n=9) consistently display low Theta frequencies (1–2 Hz) and very high Beta frequencies (23–25 Hz), 

characteristic of intense focus and elevated cognitive effort. The moderate cognitive load group (orange 

dots, n=9) exhibits medium Theta frequencies (2–3 Hz) and relatively high Beta frequencies (21–23 Hz), 

suggesting a balanced focus level. The low cognitive load group (blue dots, n=12) is characterized by 

higher Theta frequencies (3–4 Hz) and lower Beta frequencies (20–21 Hz), indicative of reduced 

engagement and greater relaxation. 

Descriptive Statistics 

This study involved 30 participants, with the key variables consisting of cognitive load and brainwave 

frequencies in the Theta, Alpha, and Beta bands. Table 2 provides the descriptive statistics for the 

collected data. 

Table 2. Descriptive Statistics of Research Data 

  Subject 
Cognitive 

Load 
Frequency 

(Hz) 
Amplitude Theta (Hz) Alpha (Hz) Beta (Hz) 

count 30 30 30 30 30 30 30 

mean 15.50 71.03 12.10 0.71 2.45 13.55 22.10 

std 8.80 14.28 1.43 0.14 0.71 0.71 1.43 

min 1 50 10 0.50 1.15 12.50 20 

25% 8.25 59 10.90 0.59 1.84 12.95 20.90 

50% 15.50 70.50 12.05 0.71 2.48 13.53 22.05 

75% 22.75 83.25 13.33 0.83 3.05 14.16 23.33 

max 30 97 14.70 0.97 3.50 14.85 24.7 
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The mean cognitive load of the participants was 71.03 as presented in Table 2, indicating a 

relatively high overall cognitive load. The standard deviation of 14.28 highlights considerable variability 

in cognitive load across individuals. The cognitive load scores ranged from 50 (low) to 97 (high), further 

demonstrating substantial variation in the cognitive load experienced by the participants. 

Regarding brain activity frequencies, the mean Theta frequency was 2.45 Hz, with values ranging 

from 1.15 Hz (indicating minimal relaxation) to 3.50 Hz (representing greater relaxation) (Basharpoor et 

al., 2021; Finley et al., 2024). The average Alpha frequency was 13.55 Hz, reflecting that most 

participants were in a stable or heightened mental state. The Alpha frequency range, from 12.50 Hz to 

14.85 Hz, illustrates the variation in mental stability across participants (Basharpoor et al., 2021; Dos 

Anjos et al., 2024). 

The mean Beta frequency was 22.10 Hz, with a minimum of 20.00 Hz and a maximum of 24.70 

Hz, typically associated with heightened mental activity. The average amplitude was 0.71, indicating a 

relatively consistent brain signal across participants. The amplitude range, from 0.50 to 0.97, reflects 

variability in the intensity of brain activity (Basharpoor et al., 2021; Curham & Allen, 2022). 

Overall, the findings suggest that participants with higher cognitive load tend to exhibit higher Beta 

frequencies and lower Theta frequencies, indicating a more focused mental state. In contrast, participants 

with lower cognitive load generally show higher Theta frequencies, signifying a more relaxed state. 

Correlation Analysis and Data Visualization 

A correlation analysis was performed to examine the linear relationships between cognitive load and 

various brain activity indicators, including EEG frequency (in Hz), amplitude, and brainwave frequencies 

(Theta, Alpha, and Beta). A correlation matrix was utilized to assess the strength and direction of the 

relationships between these variables, with correlation coefficients ranging from -1 to 1 (Moscarelli, 2023). 

A coefficient of 1 represents a perfect positive correlation, -1 indicates a perfect negative correlation, and 

0 denotes no linear relationship (Armitage et al., 2013; Hadd & Rodgers, 2020). The results are presented 

in Table 3. 

Table 3. Correlation Matrix of Cognitive Load and EEG Variables 

 Cognitive Load Frequency (Hz) Amplitude Theta (Hz) Alpha (Hz) Beta (Hz) 

Cognitive Load 1 0.83 0.88 -0.93 0.86 0.91 

Frequency (Hz) 0.83 1 0.76 -0.77 0.63 0.73 

Amplitude 0.88 0.76 1 -0.81 0.80 0.82 

Theta (Hz) -0.93 -0.77 -0.81 1 -0.82 -0.81 

Alpha (Hz) 0.86 0.63 0.80 -0.82 1 0.78 

Beta (Hz) 0.91 0.73 0.82 -0.81 0.78 1 

 

The correlation data presented in Table 3 reveals several notable relationships. Cognitive load 

shows strong positive correlations with EEG frequency (0.83), amplitude (0.88), as well as Alpha (0.86) 

and Beta (0.91) wave frequencies. These results indicate that as cognitive load increases, EEG 

frequency, brainwave amplitude, and brain activity at Alpha and Beta frequencies also increase 

proportionally. In contrast, Theta frequency exhibits a strong negative correlation with cognitive load ( -

0.93), amplitude (-0.81), and Beta waves (-0.81), suggesting that higher cognitive load is associated with 

a decrease in Theta activity (Curham & Allen, 2022). The negative correlation with Alpha waves (-0.82) 

further reinforces the idea that increased cognitive load corresponds with reduced Theta activity 
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(Gnambs, 2023). 

Therefore, it can be concluded that cognitive load is positively correlated with enhanced brain 

activity at higher frequencies, particularly in the Alpha and Beta bands, as well as with increased 

amplitude. Conversely, it is negatively correlated with Theta activity, which is typically associated with 

lower mental engagement (Makowski et al., 2020). The visualization of the relationship map between 

cognitive load and EEG frequency, shown in Figure 3, further illustrates these findings. 

 

 

Figure 3. Relationship between cognitive load and EEG variables: Heatmap 

Figure 3 presents a heatmap of the correlation matrix, offering a visual representation that 

highlights the strong relationships between cognitive load and EEG frequency variables, amplitude, and 

the Alpha and Beta frequencies. The red regions indicate a strong positive correlation (approaching 1), 

while the blue areas represent negative correlations (approaching -1) between Theta and the other 

variables. The heatmap reveals that cognitive load is strongly positively correlated with EEG frequency 

and amplitude, while it shows a negative correlation with Theta frequency (Fernandez et al., 2017; Gu, 

2022). The strong correlations between cognitive load, frequency, and amplitude suggest that increased 

cognitive load is associated with heightened brain activity in both frequency and amplitude. 

In conclusion, the analysis confirms a significant relationship between cognitive load and various 

brain activity indicators. Increased cognitive load consistently correlates positively with EEG frequency, 

amplitude, and brain activity in the Alpha and Beta frequency ranges, while it negatively correlates with 

Theta activity. Higher cognitive load, therefore, is closely associated with increased brain activity at higher 

frequencies, while Theta activity tends to decrease as cognitive load rises. 

Cluster Analysis and Data Visualization 

The cluster analysis conducted in this study examines the distribution patterns of EEG data, which have 

been dimensionally reduced through advanced statistical techniques. The primary visualization method 

used to present the clustering results is the PCA (Principal Component Analysis) plot. This approach 

aims to reveal the relationship between cognitive load and brain activity patterns based on EEG 

characteristics, while also validating the clustering outcomes. The clusters are illustrated in Figure 4, 
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which provides a comprehensive depiction of these relationships. The findings from Figure 4 can be 

described as follows. 

 

 
   (a)      (b) 

Figure 4. Visualization of EEG cluster analysis: PCA 

Figure 4 illustrates the results of the Principal Component Analysis (PCA), which reduced the 

dimensionality of the EEG data into two primary components, PCA1 and PCA2. The plot shows the 

distribution of EEG data, which has been grouped into three distinct clusters. Firstly, in cluster 0 (Purple), 

subjects in this cluster are located on the negative side of PCA1, indicating that their EEG characteristics 

are significantly different from those of other clusters, suggesting unique cognitive responses under 

cognitive load (Demšar et al., 2013). This cluster includes Subjects 1, 4, 7, 8, 12, 14, 15, 17, 18, 21, 22, 

24, 26, and 27. Furthermore, in cluster 1 (Teal), the EEG data from this cluster are distributed around the 

center of the plot, indicating balanced and stable EEG features that reflect moderate levels of cognitive 

engagement (Gewers et al., 2021). This cluster includes Subjects 2, 5, 6, 9, 11, 13, 16, 19, 20, 23, 25, 

28, and 30. Finally, in cluster 2 (Yellow), positioned on the positive side of PCA1, this cluster exhibits 

distinct EEG characteristics compared to the other clusters, suggesting unique cognitive responses within 

this group. This cluster includes Subjects 3, 10, and 29. 

The results of this cluster analysis provide valuable insights into the distinctive brain activity 

patterns associated with varying cognitive load levels. Each cluster represents a group of subjects with 

similar EEG characteristics, allowing for the categorization of individuals based on their brain activity 

patterns. By mapping these brain activity patterns to cognitive load, the study contributes to a deeper 

understanding of how brain activity correlates with cognitive load levels. These findings offer a foundation 

for the development of personalized learning strategies, where instructional approaches can be tailored 

to the unique brain activity patterns of individual learners. 
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EEG Analysis of Subject Calculus Task 

The EEG analysis conducted during the calculus tasks confirms the relationship between cognitive load 

and brain activity. Participants were categorized into high, moderate, and low cognitive load groups based 

on their Theta and Beta frequencies. In the high cognitive load group, low Theta (1-2 Hz) and high Beta 

(23-25 Hz) frequencies were observed, indicating focused mental effort. Conversely, the low cognitive 

load group exhibited higher Theta (3-4 Hz) and lower Beta (20-21 Hz) frequencies, which are indicative 

of a more relaxed state. Clustering analysis further identified three distinct groups: Cluster 0, which 

exhibited unique EEG patterns; Cluster 1, characterized by balanced EEG features; and Cluster 2, 

displaying distinct traits that suggest varying cognitive responses. These findings underscore the 

influence of cognitive load on Beta and Theta frequencies, which in turn impact task performance. 

This section presents EEG recordings from subjects exhibiting different levels of cognitive load—

high, moderate, and low—while performing a calculus problem-solving task. It investigates how varying 

cognitive states, as indicated by EEG patterns, are associated with task performance, as shown in Table 

4.  

Table 4. EEG Recording and task solution of subject 3 and subject 10 

Subject 3 

 

  
 
Question: 
Based on the following figure, can I find the values of 𝑓(2) dan lim

𝑥→2
𝑓(𝑥)? 

 
 
Answer: 
"I find this question quite complex because there's a lot of information to process from the graph. But after 

looking at it in detail, I can see that the function's value at 𝑥 = 2 is 3, since there's a point there. However, for 

the limit, I need to check how the graph approaches 𝑥 = 2 from both sides. From this, I'm confident that 
lim
𝑥→2

𝑓(𝑥) is actually 7, as that's the value the graph approaches. So, the answer is 𝑓(2) = 3 and 

lim
𝑥→2

𝑓(𝑥) = 7." 
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Subject 10 

 

 
 
Question: 
Based on the following figure, can I find the values of 𝑓(2) dan lim

𝑥→2
𝑓(𝑥)? 

 
 
Answer: 

"This question makes me dizzy because the graph is a bit confusing. I see there's a point at 𝑦 = 3 when 𝑥 =
2, so maybe 𝑓(2) = 3? But it also asks for the limit. Since the graph seems to rise toward 7 as it approaches 
𝑥 = 2, maybe the limit is 7? I'm not too sure." 
 

 

Table 4 presents the EEG signal recordings for Subject 3 and Subject 10, both of whom exhibit 

high cognitive load, as evidenced by increased Beta wave activity within the green frequency band, 

indicative of concentrated mental effort. Simultaneously, both subjects demonstrate low Theta wave 

activity within the purple frequency band, which is typically associated with relaxation, further 

emphasizing their focused cognitive state. Despite these similar EEG patterns—high Beta (green) and 

low Theta (purple)—Subject 3 performs more effectively in problem-solving tasks and displays higher 

confidence compared to Subject 10. This performance disparity may be attributed to several factors, 

including Subject 3’s greater familiarity with calculus tasks, stronger cognitive strategies, or an enhanced 

ability to maintain focus under conditions of high cognitive load. These factors likely enable Subject 3 to 

better utilize the heightened Beta frequency state to optimize task performance. 

Table 5 presents the EEG recordings for Subject 4 and Subject 1, both of whom exhibit low 

cognitive load, primarily indicated by their Theta frequency band (purple frequency band). Elevated Theta 

activity is typically associated with a more relaxed or less focused mental state, common in situations 

with lower cognitive demands. While both subjects share this low-load Theta characteristic, Subject 4 

outperforms Subject 1 in problem-solving tasks and displays higher confidence. This performance 

difference may be attributed to factors such as Subject 4’s deeper understanding of the calculus material 

or a greater adaptability in problem-solving. These attributes likely enable Subject 4 to maintain effective 
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performance, even in a low cognitive load state. 

Table 5. EEG Recording and Task Solution of Subject 4 and Subject 1 

Subject 4 

 

  
 
Question: 
Based on the following figure, can I find the values of 𝑓(2) dan lim

𝑥→2
𝑓(𝑥)?  

 
 
Answer: 

"This question is quite easy for me, and the graph is clear. I can immediately see that 𝑓(2) = 3 because the 

point at 𝑥 = 2 is at 𝑦 = 3. For the limit, I see that the graph approaches y=7 from both directions as x 
approaches 2. So, the answer is 𝑓(2) = 3 and lim

𝑥→2
𝑓(𝑥) = 7. This answer seems quite clear to me." 

 

Subject 1 

 

 
 
Question: 
Based on the following figure, can I find the values of 𝑓(2) dan lim

𝑥→2
𝑓(𝑥)?  
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Answer: 

"I don't find it too hard to look at the graph, but I’m still confused about what I need to find. At 𝑥 = 2, there’s a 

point at 𝑦 = 3, so I think 𝑓(2) = 3. But the question also asks for the limit, and I don’t really understand how 
that’s different from the function value at that point." 
 

 

Table 6 presents the EEG recordings for Subject 2 and Subject 6, both of whom are experiencing 

a moderate cognitive load, as indicated by their Alpha frequency band (blue frequency band). The 

moderate level of Alpha activity reflects a state of mental alertness and engagement, typical of tasks 

requiring sustained focus without overwhelming cognitive strain. Despite exhibiting similar cognitive load 

characteristics, Subject 2 provided an incorrect answer, whereas Subject 6 answered correctly and with 

greater confidence. This performance discrepancy may be due to factors such as Subject 6’s familiarity 

with the specific type of calculus problem, which may have facilitated more effective information 

processing. Additionally, Subject 6’s higher resilience under moderate cognitive demands or more refined 

problem-solving strategies could have contributed to their ability to achieve both accuracy and confidence 

within the same cognitive load range. 

Table 6. EEG recording and task solution of Subject 2 and Subject 6 

Subject 2 

 

  
 
Question: 
Based on the following figure, can I find the values of 𝑓(2) dan lim

𝑥→2
𝑓(𝑥)?  

 
 
Answer: 

"I'm trying to understand the graph. From what I see, when 𝑥 = 2, there’s a point at 𝑦 = 3, so I think 

𝑓(2) = 3. But the question also asks for the limit, and I’m not too sure about that. Maybe the limit is the 
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same as the function value, so I'll answer lim
𝑥→2

𝑓(𝑥) = 3. I know this might not be entirely correct, but that’s 

what I can conclude from the graph." 
 

Subject 6 

 

 
 
Question: 

Based on the following figure, can I find the values of 𝑓(2) dan lim
𝑥→2

𝑓(𝑥)?  

 
 
Answer: 
"I feel focused enough to solve this question without feeling too pressured. Looking at the graph, I can quickly 
see that the function value at 𝑥 = 2 is 3 because there’s a point there. For the limit, I notice the graph 

approaches 𝑥 = 7 as x approaches 2 from both sides. So, I’m confident the answer is 𝑓(2) = 3 and 

lim
𝑥→2

𝑓(𝑥) = 7. I’m quite sure this is the correct answer." 

 

 

These findings underscore the significance of EEG recordings in elucidating the relationship 

between cognitive load and brain performance. By monitoring brainwave activity across Beta, Theta, and 

Alpha frequency bands, EEG data offers an objective, real-time perspective on cognitive states, such as 

focus, relaxation, or mental engagement (Apicella et al., 2022). For example, high Beta activity is typically 

indicative of concentrated mental effort, while Theta waves are more closely associated with relaxed, less 

focused states (Liu et al., 2023). This neurophysiological data enhances our understanding of cognitive 

load, providing insights that go beyond subjective self-reports and revealing how brain activity patterns 

correlate with cognitive demands in problem-solving scenarios. 

EEG recordings are therefore essential in illustrating how different levels of cognitive load—high, 

moderate, or low—affect brain performance (Wirth et al., 2020). In high cognitive load states, increased 

Beta activity (green frequency band) is commonly linked to focused attention. However, individual 

performance may still vary, influenced by factors such as task familiarity or cognitive resilience, as 

observed in Subjects 3 and 10. Similarly, in low cognitive load conditions, characterized by higher Theta 

activity (purple frequency band), the absence of high engagement does not necessarily indicate a lack of 

task involvement, especially when individuals utilize effective problem-solving strategies. 
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Discussion 

Brain Response Patterns Based on EEG Cluster Analysis 

This study illustrates a meaningful connection between cognitive load and brain activity as captured 

through EEG signals. The utilization of visualization and cluster analysis techniques allowed the 

identification of distinct brain activity patterns among participants based on their cognitive load levels. 

Through the EEG cluster analysis, three primary clusters of brain activity were observed: 

1. Low Cognitive Load - Theta Dominant Cluster 

Cluster 0, characterized by dominant Theta activity, reflects a relaxed mental state, conducive to 

efficient information processing and indicating a lower cognitive load. This aligns with Gruzelier's 

Brain State-dependent Learning (BSL) theory, which posits that optimal brain states are essential 

for effective learning (Horwitz et al., 2000; Kunze et al., 2016). The heightened Theta activity 

observed in this cluster correlates with internalization and memory consolidation, emphasizing the 

importance of relaxation in facilitating learning. Educational environments that promote relaxation 

could foster enhanced cognitive engagement and processing. 

2. Moderate Cognitive Load - Alpha Dominant Cluster 

Cluster 1, marked by prominent Alpha activity, indicates a state of mental alertness and focused 

attention, reflecting a moderate cognitive load. Increased Alpha activity enhances the brain's ability 

to receive and process information effectively, supporting the notion that a balance between 

relaxation and engagement is optimal for learning. These findings align with those of Chikhi et al. 

(2022), Emami & Chau (2020), and Wang et al. (2024), who suggest that moderate cognitive load, 

characterized by Alpha activity, plays a pivotal role in maintaining cognitive engagement while 

avoiding strain. 

3. High Cognitive Load - Beta Dominant Cluster 

Cluster 2, characterized by dominant Beta activity, represents heightened mental alertness and 

concentration, but also signals a risk of cognitive overload. This observation aligns with Sweller's 

Cognitive Load Theory (2011, 2020), which argues that excessive cognitive load reduces working 

memory capacity and impairs learning efficiency. Increased Beta activity, often seen during 

complex cognitive tasks, underscores the delicate balance needed in learning environments. While 

Beta waves reflect focused attention, prolonged high Beta activity could hinder cognitive 

processing and task performance, indicating the need for careful management of cognitive load 

during demanding tasks. 

 

Broader Implications and Practical Applications 

This study contributes to the growing body of research linking cognitive load and brain activity, particularly 

by demonstrating the utility of EEG-based cluster analysis in educational contexts. The identification of 

distinct brainwave clusters—especially Beta-dominant clusters associated with high cognitive load—

provides valuable insights for adaptive learning. By enabling real-time assessments of students' cognitive 

states, EEG-based clustering offers a dynamic way to tailor learning strategies to individual cognitive 

conditions (da Silva, 2022; Tetzlaff et al., 2021). This aligns with previous studies that highlighted the 

importance of monitoring Beta activity and its relationship to cognitive load (Feldmann et al., 2022), 

emphasizing the role of real-time feedback in alleviating cognitive strain and improving learning outcomes 

(Skulmowski & Xu, 2021). 
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Moreover, the combination of visualization and cluster analysis in EEG research represents a 

methodological advancement, enhancing the understanding of cognitive load’s impact on brain activity 

patterns. This approach, used in recent EEG studies (Gao et al., 2020), allows for the mapping of specific 

EEG patterns to distinct cognitive states, offering deeper insights into how brain responses vary under 

different cognitive demands (Hassan et al., 2024). By identifying clusters with similar brain activity, this 

method also supports the identification of unique response profiles, allowing for a more individualized 

understanding of cognitive engagement in complex tasks (Ismail & Karwowski, 2020). Given the study’s 

focus on university students, these insights are particularly valuable in the context of higher education, 

providing actionable information for effective cognitive load management and adaptive learning 

strategies. 

Furthermore, the practical implications of this research are far-reaching. The integration of EEG-

based assessments into adaptive learning systems holds significant promise for personalizing 

instructional materials based on real-time cognitive states (Fuentes-Martinez et al., 2023). EEG 

technology provides educators with direct insights into students' mental states, enabling tailored 

interventions that support cognitive resilience, emotional regulation, and sustained task engagement 

(Zanetti et al., 2022). This personalized approach to learning could enhance overall learning 

effectiveness, particularly in complex and high-stakes cognitive tasks. 

Finally, this study paves the way for further exploration into how EEG-driven insights can inform 

adaptive education models. By incorporating real-time cognitive load assessments into educational 

practices, it may be possible to optimize learning environments, supporting students at various cognitive 

load levels. Future research could expand on these findings by examining the long-term impact of EEG-

based interventions on student performance, as well as exploring the potential for cross-disciplinary 

applications of EEG in educational settings. Such investigations could provide valuable evidence for 

integrating EEG monitoring as a tool for enhancing cognitive performance and learning outcomes in 

diverse contexts. 

CONCLUSION 

This research successfully explored the relationship between cognitive load and brainwave activity 

among 30 mathematics education students enrolled in a calculus course. Using EEG signals and 

employing visualization and cluster analysis techniques, the study identified three distinct brain activity 

patterns. One cluster, characterized by Beta wave dominance, reflected high alertness and concentration, 

potentially indicating cognitive overload. A second cluster, dominated by Theta waves, represented a 

more relaxed state conducive to efficient information processing and lower cognitive load. The third 

cluster, exhibiting prominent Alpha waves, suggested a balanced state of relaxation and focus, 

associated with moderate cognitive load. These findings highlight a clear correlation between brainwave 

frequencies and cognitive load, providing valuable insights into how brain activity patterns can inform the 

optimization of learning strategies in educational settings. Tailoring interventions based on individual EEG 

profiles may enhance cognitive efficiency and improve learning outcomes for students. 

While the findings offer substantial contributions to understanding cognitive load dynamics, several 

limitations should be considered. The study's relatively small sample size (n=30) may limit the 

generalizability of the results, and future research should aim to include larger, more diverse participant 

groups to enhance the applicability of the findings. Additionally, the research focused exclusively on 

isolated learning tasks, overlooking other factors such as emotional, environmental, and social influences, 
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which could also impact cognitive load. Incorporating these variables in future investigations would 

provide a more holistic understanding of cognitive load and its interaction with brainwave activity. 

Moreover, the use of advanced analytical methods, such as machine learning, could further refine the 

detection of complex brainwave patterns and offer more accurate real-time insights into student 

engagement and cognitive processes. 

Future studies should also explore the longitudinal evolution of brain activity patterns in response 

to repeated exposure to challenging learning material, such as calculus concepts. Investigating the 

influence of individual learning styles, prior knowledge, and cognitive resilience on cognitive load could 

yield valuable insights into personalized learning approaches. Furthermore, addressing factors like 

emotional state and task familiarity, which can influence performance under cognitive load, is crucial. 

Examining EEG pattern shifts over time may also provide insights into cognitive fatigue and guide the 

development of adaptive learning interventions that support student well-being and enhance academic 

performance. Ultimately, this research sets the foundation for further studies into the interplay between 

cognitive load and brain activity, with potential applications in adaptive learning technologies and the 

improvement of educational outcomes. 
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