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Abstract  

Many studies have reported that functional thinking plays a crucial role in mathematical problem-solving, 
particularly in fields requiring analytical reasoning, such as maritime studies. However, existing research has yet 
to comprehensively explore the specific task characteristics that effectively stimulate functional thinking in 
mathematical problem-solving, particularly among maritime students who must apply these skills in solving safety-
of-life problems at sea. Addressing this gap, the present study investigates the potential of mathematical tasks in 
fostering functional thinking among second-semester students enrolled in the Deck Officer Program in Indonesia. 
The study involved three students with different mathematical abilities, who were given problem-solving tasks. 
Their responses were observed, recorded, and analyzed based on their written work. The findings reveal that 
non-routine problems involving functional situations—where students generalize relationships between varying 
quantities to determine function rules—effectively promote functional thinking. This is evidenced by the 
emergence of key functional thinking components, including problem identification, data representation, pattern 
recognition, covariational and correspondence relationships, and the evaluation of generalization rules. These 
results contribute to the development of research instruments in mathematics education and provide valuable 
insights for researchers and educators seeking to enhance functional thinking through task design. 
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Research on functional thinking in mathematics education has been evolving since 1905 and continues to 

develop in contemporary scholarship (Tarida et al., 2024; Team et al., 2021; Vollrath, 1986). This progression 

underscores the critical role of functional thinking in enhancing students’ structural reasoning in mathematics, 

thereby contributing to their success in solving mathematical problems in school and applying mathematical 

concepts to real-world contexts (Frey et al., 2022; OECD, 2023; Wei et al., 2023). As a fundamental gateway 

to algebraic thinking, functional thinking facilitates the comprehension of more advanced mathematical 

concepts by analyzing relationships between varying quantities (Blanton & Kaput, 2011; Smith, 2008; Taguma 

et al., 2023). Although functional thinking is a crucial area of investigation across all educational levels, recent 

research has predominantly focused on its development among primary, middle, and high school students 

(Ding et al., 2023; Martins et al., 2023; Pang et al., 2022; Sun et al., 2023). However, studies explicitly 

examining functional thinking among specific student populations remain limited, particularly in the context of 

maritime students (Tarida et al., 2024; Yuniati et al., 2022). Functional thinking is recognized as an essential 
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competency for maritime students, as outlined in the International Maritime Organization (IMO) Model Course 

7.03 and the International Association of Maritime Universities (IAMU) curriculum. It enables students to 

construct representations based on the generalization of relationships between two or more varying quantities 

(Pittalis, 2023; Smith, 2008; Tanişli, 2011). For maritime students, functional thinking is particularly significant 

in ensuring navigational safety by facilitating the analysis of interdependent factors that may contribute to or 

mitigate the risk of maritime accidents. 

Recent advancements in maritime research have introduced numerous alternative solutions for 

sailors to mitigate the risk of ship accidents through the application of mathematical concepts (Huang, 

2023; Jamaliyatul et al., 2023; Jamil & Bhuiyan, 2021; Mycroft & Sriraman, 2021). While these studies 

involve analyzing relationships between various quantities, they have yet to explore the development of 

functional thinking processes as a means of deriving solutions. Functional thinking is characterized by 

the ability to recognize and analyze relationships between quantities (Frey et al., 2022; Martins et al., 

2023; Stephens et al., 2017). For instance, Jamaliyatul et al. (2023) developed a more precise wind 

speed estimation model by applying a linear functional relationship based on an analysis of wind speed 

data collected on Langkawi Island during the southwest monsoon season in 2019 and 2020. An 

understanding of wind speed enables sailors to regulate ship maneuvers effectively, thereby enhancing 

vessel stability and minimizing the risk of shipwrecks. Similarly, the Komite Nasional Keselamatan 

Transportasi (KNKT, 2018) reported that shipwrecks in Indonesia were often caused by miscalculations 

in ship stability due to improper cargo distribution. The frequent occurrence of maritime accidents has 

prompted Huang (2023) to develop a more precise mathematical model for optimizing shipping routes by 

minimizing travel distance and rudder angle. This model accounts for interrelated factors such as wave 

conditions, wind speed, ocean currents, engine power, hull design, and cargo capacity, all of which 

influence ship velocity and fuel efficiency. 

Building on previous research findings, maritime students require functional thinking skills to 

effectively represent relationships between key navigational variables, such as speed, ocean currents, 

and fuel consumption—factors that are critical to ensuring both navigational safety and operational 

efficiency. This study aims to bridge the gap between mathematics and maritime education by integrating 

functional thinking processes into maritime students' problem-solving approaches concerning shipping 

safety. It is anticipated that strengthening their functional thinking competence will enhance their ability 

to become professional and proficient sailors. 

According to Smith (2008), functional thinking involves generalizing relationships between two or more 

varying quantities. These relationships can be understood through recursive, correspondence, or covariational 

reasoning (Pittalis et al., 2024; Smith, 2008; Stephens et al., 2017) and require an understanding of patterns, 

independent and dependent variables (Pitta-Pantazi et al., 2020). The conceptualization of these relationships 

can be facilitated through representational and linguistic tools, including visual representations, verbal 

descriptions, algebraic variables, tables, and graphs (Blanton & Kaput, 2011; Pitta-Pantazi, 2020; Stephens 

et al., 2017). Synthesizing insights from various experts, functional thinking can be broadly defined as the 

process of generalizing variable relationships. Accordingly, this study identifies six key aspects of functional 

thinking: problem identification, data representation, pattern recognition, covariational reasoning, 

correspondence relationships, and evaluating generalizations.  

Functional thinking processes can be stimulated through tasks that require students to analyze 

relationships between varying quantities in real-world contexts (Aguilar & Telese, 2018; Blanton & Kaput, 

2011; Smith, 2008; Wakhata et al., 2023). Problem-solving tasks necessitate the integration of real-world 

knowledge and the application of mathematical operations to derive conclusions. These tasks share 
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similarities with non-routine mathematical problems, which cannot be resolved using standard procedures 

and thus demand higher-order cognitive processes, including functional thinking (see Khusna et al., 2024; 

Zhang et al., 2023). Numerous studies have been conducted to foster functional thinking through the 

exploration of non-routine mathematical tasks across different educational levels. 

In primary education, functional thinking is developed by incorporating tasks that involve functional 

relationships (Pittalis et al., 2024), pattern recognition in real-world contexts (Pang et al., 2022), arithmetic 

operation sequences, one-to-one correspondence exercises, and pre-functional tasks (Ding et al., 2023). 

Additionally, caterpillar tasks and function machine tasks have been identified as effective strategies for 

enhancing functional thinking at this stage (Wilkie, 2014). At the middle school level, problem-solving 

tasks that facilitate the recognition of numerical and figural patterns, identification of independent and 

dependent variables, derivation of function formulas, and construction of diagrams and graphs play a 

crucial role in the development of functional thinking (Pitta-Pantazi et al., 2020). Among high school 

students, functional thinking is further explored through tasks that emphasize mapping, correspondence, 

covariation, and functional relationships, such as object-thinking tasks (Martins et al., 2023). 

At the tertiary level, research by Yuniati (2022) examined functional thinking among mathematics 

education students through the development of a figural pattern sequence task incorporating three variables. 

Given the significance of functional thinking in mathematical reasoning, designing appropriate tasks is 

essential for effectively investigating students' cognitive processes in this domain. The accuracy of task design 

directly influences the reliability and validity of the functional thinking data obtained (see Jamil et al., 2023; 

Khusna et al., 2024). Furthermore, Martins et al. (2023) emphasize the need for further research on task 

characteristics that can enhance students' functional thinking abilities. A synthesis of previous research 

findings suggests a common criterion for tasks that effectively promote functional thinking—namely, tasks 

involving non-routine problem-solving that require students to generalize functional rules. 

Previous research indicates that the development of tasks designed to explore functional thinking 

in maritime students remains limited. This study seeks to address this gap by developing non-routine 

mathematical tasks aimed at fostering functional thinking within the maritime context. The tasks integrate 

maritime safety scenarios that require solutions using linear interpolation, thereby creating a meaningful 

connection between maritime studies and mathematics. Linear interpolation is a mathematical technique 

used to estimate unknown values between two known data points connected by a straight line (Chapra 

& Canale, 2011; Noor et al., 2015; Wahab, 2017). 

Existing studies on tasks that stimulate functional thinking primarily utilize mono-representational 

approaches with constant data addition patterns. In contrast, this study introduces a multi-

representational approach incorporating a non-constant data addition pattern. This variation encourages 

students to employ multiple representations, such as tabular and graphical forms, to interpret and analyze 

data. Specifically, students will translate tabular data into graphical representations to derive the concept 

of linear interpolation. The dataset used in the task represents the relationship between a ship’s average 

speed and its stopping distance. By engaging in this problem-solving process, students are expected to 

enhance their ability to mitigate the risk of ship collisions, thereby strengthening their professional 

competencies as future maritime practitioners. Additionally, this study's findings have the potential to 

contribute to maritime training programs and inspire mathematics educators to develop similar tasks 

aimed at improving students' functional thinking skills. 

Functional thinking can be fostered through problem-solving tasks that guide students through 

structured cognitive processes (Sibgatullin et al., 2022; Stephens et al., 2017; Windsor, 2011). Problem-

solving skills are essential across various professional domains, including maritime industries (OECD, 
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2023; Taguma et al., 2023). This study employs Schoenfeld’s (1985) problem-solving framework, which 

consists of five stages: analysis, design, exploration, implementation, and verification. The adaptation of 

this framework follows the recommendations of Rott et al. (2021), who advocated for incorporating 

mathematical topics beyond geometry to deepen students’ problem-solving experiences. In this study, 

the application of problem-solving stages is distinguished by the specific mathematical content—linear 

interpolation—and the involvement of maritime students as research participants. 

Non-routine problems play a critical role in activating each phase of the problem-solving process. The 

resolution of such problems requires cognitive strategies such as guess-and-check, working backwards, and 

pattern recognition, all of which align with key aspects of functional thinking (Schoenfeld, 2016). Despite the 

relevance of functional thinking in maritime education, tasks designed to cultivate this cognitive process remain 

scarce (Tarida et al., 2024). However, maritime professionals must develop strong functional thinking skills to 

effectively address critical safety concerns, including navigation risk management. Therefore, this study aims 

to explore the potential of non-routine mathematical tasks in stimulating maritime students’ functional thinking 

abilities, particularly in the context of maritime navigation safety. The necessity of developing such problem-

solving tasks to enhance functional thinking is illustrated in Figure 1. 

 

Figure 1. The urgency of developing non-routine problems to trigger functional thinking 

Smith (2008) described functional thinking as a form of representational thinking that emphasizes 

the relationship between two or more varying quantities. This type of thinking enables individuals to 

transition from recognizing specific relationships in individual instances to generalizing these relationships 

across multiple occurrences. The foundational framework for functional thinking was first introduced by 

Confrey and Smith (1991), who identified three key components: (1) recursive reasoning, (2) covariational 

thinking, and (3) correspondence relationships. Furthermore, Stephens et al. (2017) further defined 

functional thinking as the ability to identify and describe correspondence relationships using words or 

symbolic variables. Similarly, Kaput (2008) conceptualized functional thinking as the process of 

recognizing systematic variations across instances, incorporating key ideas such as causality, growth, 

and continuous joint variation. 

Building upon these theoretical perspectives, this study proposes a comprehensive framework for 

functional thinking, encompassing six critical aspects: (1) identifying the problem, (2) representing data, 

(3) recognizing recursive patterns, (4) identifying covariational relationships, (5) determining 

correspondence relationships, and (6) evaluating generalization rules. The coding scheme for these 

functional thinking aspects is presented in Table 1. Functional thinking extends beyond the traditional 

concept of mathematical functions taught in schools; it also involves modeling functional situations in real-
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world contexts that integrate multiple disciplines (Frey et al., 2022; Lichti & Roth, 2018; Martins et al., 2023; 

Warren et al., 2011; Wei et al., 2023). 

Table 1. Coding scheme of functional thinking 

Functional Thinking Code Description 

F1 Identifying the problem 

Noticing the relationship between two quantities 

F2 Representing data 

Transforming data from tabular to graphical form 

F3 Finding recursive patterns 

Finding changes in each variable value based on the graph 

F4 Finding covariational relationships 

Finding the relationship between two variables based on a graph to predict an 

unknown value based on a graph 

F5 Finding correspondence relationships 

Creating general rules based on the graph 

F6 Evaluating generalization rule 

Testing the correctness of the general rule 

 

The development of functional thinking can be fostered through solving mathematical problems that 

incorporate functional situations. These functional situations belong to a broader category of mathematical 

problems, as they represent real-world scenarios that may originate outside of mathematics but require 

mathematical reasoning for their resolution. This study presents functional situations within the real-world 

context of ship maneuvering, a critical aspect of maritime operations (Oneto et al., 2018; Wu et al., 2021). 

Problem-solving serves as a key mathematical tool for engaging students in higher-order mathematical 

thinking, including functional thinking processes (see Schoenfeld, 2016). The problem-solving framework 

utilized in this study follows Schoenfeld’s (1985) stages, which include analysis, design, exploration, 

implementation, and verification. These structured stages provide a systematic approach to solving 

mathematical problems that align with the contextual challenges developed in this study. Finally, Table 2 

further delineates the functional thinking processes involved in solving this problem.  

Table 2. Coding scheme of functional thinking in problem-solving 

Functional Thinking in 

Problem-Solving Code 
Description 

PF1 Analysis 

Noticing the existence of a relationship between two quantities with the 

identification of quantity information and the aim of predicting unknown data 

values 

PF2 Design 

Transforming data from tabular to graphical form as a strategy design for 

predicting unknown data values 

PF3 Exploration 

Finding changes in each variable value based on graphs by trying various 

problem-solving strategies 

PF4 Finding the relationship between two variables to predict unknown values by 

trying various problem-solving strategies 
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Functional Thinking in 

Problem-Solving Code 
Description 

PF5 Implementation 

Creating general rules used to predict unknown data values by applying linear 

interpolation/other possible methods 

PF6 Verification 

Testing the correctness of general rules by identifying possible errors and 

discrepancies between the solution and the established problem conditions 

 

Previous studies have successfully explored students' functional thinking at various educational 

levels through problem-solving tasks. For high school students, Martins et al. (2023) designed tasks that 

required students to analyze examples and non-examples of different types of functions (e.g., injective 

functions) to develop conceptual understanding. In this task, students primarily engaged in functional 

thinking through correspondence reasoning and conceptualizing functions as mathematical objects. 

At the college level, Yuniati et al. (2022) extended Wilkie’s (2014) framework by developing tasks involving 

three interrelated quantities, compared to Wilkie’s original two-quantity tasks (Figure 2). Additionally, Oliveira et 

al. (2021) designed tasks specifically for prospective elementary mathematics teachers, incorporating functional 

thinking through activities such as “geometric pattern” tasks, “representations” tasks, and “deposits” tasks, each 

targeting key aspects of functional reasoning. These studies highlight the diverse approaches to fostering 

functional thinking through carefully structured mathematical tasks. 

 

 

Figure 2. Examples of tasks exploring functional thinking in university 

Based on previous research, the criteria for tasks that effectively stimulate functional thinking 

include the following: the incorporation of non-routine problems, the presence of functional issues and 

real-world contexts, and the integration of key aspects of functional thinking with a clear problem-solving 

objective. In alignment with these criteria, this study develops problem tasks designed to guide students 

toward discovering general rules of linear interpolation within the context of maritime navigation safety.  

METHOD 

This qualitative study investigates the potential of mathematical tasks in stimulating students’ functional 

thinking processes when solving mathematical problems. To achieve this objective, the researchers 

designed non-routine problems involving covariational reasoning within the context of linear interpolation. 

Prior research by Pang et al. (2022) has demonstrated that non-routine mathematical problems, such as 

those incorporating growing numeric patterns and input-output structures, can enhance students’ 

functional thinking. These tasks cannot be solved through conventional procedural methods; instead, 

they necessitate the use of multiple representations, including graphs, tables, and numerical patterns. 
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Solving such tasks aligns with the characteristics of non-routine problems, which require advanced 

cognitive engagement, including functional thinking (see Khusna et al., 2024; Zhang et al., 2023). 

Consequently, this study adopts non-routine problem-solving as a strategy to foster students’ functional 

thinking abilities. The selection of non-routine problems is grounded in their requirement for specific 

problem-solving strategies, such as guess-and-check, working backwards, and pattern recognition 

(Schoenfeld, 2016). These strategies support the sequential stages of problem-solving proposed by 

Schoenfeld (1985), including analysis, design, exploration, verification, and implementation, which are 

instrumental in activating students’ functional thinking processes (see Kriegler, 2004; Pang & Sunwoo, 

2022; Stephens et al., 2017; Windsor, 2011). 

The use of non-routine covariational reasoning problems has significant potential in fostering 

students’ functional thinking, as these problems necessitate the analysis and generalization of relationships 

between variables (see As’ari et al., 2019; Blanton & Kaput, 2011; Ding et al., 2023; Pitta-Pantazi et al., 

2020; Rolfes et al., 2021; Smith, 2008). Oliveira et al. (2021) demonstrated that tasks incorporating 

functional relationships can effectively enhance students' functional thinking skills. In the present study, 

functional relationships are explored within the framework of covariational reasoning, which involves 

comprehending how variations in one quantity influence changes in another, a fundamental aspect of 

functional thinking (Blanton & Kaput, 2011; Rolfes et al., 2021; Smith, 2008). Thompson et al. (2017) 

emphasized that covariational reasoning serves as a foundational component in understanding 

mathematical concepts related to functions and variation, which in turn influences the development of 

functional thinking. Furthermore, findings from Rolfes et al. (2021) suggest that covariational reasoning 

facilitates students' ability to employ diverse representations of quantitative relationships, thereby promoting 

the advancement of functional thinking. Similarly, Pittalis et al. (2024) highlighted the role of covariational 

reasoning in deepening students’ comprehension of quantitative relationships. Given its significance, 

covariational reasoning is employed as a conceptual framework for functional thinking in this study. 

The topic of linear interpolation was selected due to its integral role in the study of functions, as 

function-related tasks have been shown to foster students' functional thinking (see Chimoni et al., 2023; 

Günster & Weigand, 2020; Pang & Sunwoo, 2022; Tanişli, 2011). Furthermore, linear interpolation is a 

fundamental concept that maritime students must master to develop competencies essential for safe 

navigation. According to the International Maritime Organization (IMO) Model Course 7.03, which outlines 

the curriculum for the Officer in Charge of a Navigational Watch, proficiency in linear interpolation is 

crucial for students enrolled in the Deck Officer Program. In light of these considerations, the criteria for 

problems designed to enhance students' functional thinking are summarized in Table 3. 

Table 3. Problem criteria to explore students' functional thinking 

Problem Criteria Problem 

Purpose of Problem Problem to Find 

Material Linear Interpolation 

Approach Table Function Analysis 

Stage to Solve Problem-Solving 

Aspect of Mathematical Thinking Functional Thinking 

Type of Problem Non-routine Covariational Reasoning Problem 

 

The researcher provided a draft of the problem along with a solution guide to the validators for 

assessment. The validation process aimed to evaluate the validity of the developed problem. This 
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validation was conducted by four experts, all of whom were lecturers in Mathematics Education. Among 

them, one validator was a professor of Mathematics Education at the State University of Malang, while 

the remaining three were lecturers from the State University of Surabaya. Of these, one specialized in 

research on algebraic thinking, particularly functional thinking, while the other two were instructors in 

numerical methods courses, with expertise in linear interpolation. The validation process yielded several 

recommendations from the validators, based on which the researcher revised the draft task. The 

suggested modifications and corresponding improvements are detailed in Table 4. 

Table 4. Task improvement based on validator suggestions 

No. Validator Suggestions Task Improvement 

1. Use more straightforward 

sentences in the 

instructions/ task questions 

to make it easier for 

students to understand. This 

understanding could trigger 

students' functional thinking 

to the maximum. 

What is the estimated stopping distance required for a ship to stop 

sailing if the ship is sailing at an average speed of 45 Knots? What 

general rule do you use to estimate the stopping distance? Explain! 

2. Explain the correlation 

between problems, 

solutions and aspects of 

functional thinking. 

Examples of improvements in the aspect of finding covariational 

relationships (FT4): 

 

3. The alternative answers still 

only represent one pattern 

(based on the researcher's 

assumptions) and have yet 

to reveal other alternative 

answers that might emerge 

from students. 

4. Use more communicative 

sentences in the alternative 

answers. 

 

The revised task based on the validator's suggestions is presented in Figure 3. The ship-stopping 

distance task is designed to engage students in formulating a general rule using a linear interpolation 

function to predict the ship's stopping distance at a given average speed, based on seven data points 

presented in a table. The problem-solving process begins with students identifying the problem, 

prompting them to recognize the relationship between stopping distance and average speed—namely, 

that as speed increases, the stopping distance extends (F1). Following this initial observation, students 

work toward understanding the problem's requirements. The solution cannot be determined in a single 

step but necessitates intermediate steps that are not explicitly outlined in the task instructions. 

Students are not directly instructed to represent the tabular data as a graph (F2). However, if they 

encounter difficulties in identifying a recursive pattern (F3) through the numerical data, they may choose 

to first visualize the table as a graph (F2). This approach is particularly useful since the pattern of change 

in stopping distance is not a uniform numerical increment, as seen in the pattern of speed changes. The 
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graphical representation enables students to detect a recursive pattern (F3), which can manifest as a 

similar triangle pattern, where the base represents changes in average speed and the height represents 

changes in stopping distance. Additionally, a function graph may prompt students to derive a straight-line 

equation by considering variations between pairs of speed and distance data points. 

By recognizing this recursive pattern, students are expected to establish the relationship between 

speed and stopping distance. For instance, understanding how an increase in speed affects stopping 

distance can serve as the key to estimating the stopping distance at an average speed of 45 knots. This 

process aligns with the aspect of identifying covariational relationships (F4). The requirement to derive a 

general rule fosters the identification of correspondence relationships (F5), as students formulate an 

equation based on their prior analysis of covariational relationships. Finally, the inclusion of the instruction 

"Explain" is strategically designed to prompt students to evaluate their generalization results (F6). 
 

 
SHIP STOPPING DISTANCE 

A ship stops sailing in a berthing area (anchor berth) to wait for the berthing queue at the destination port. The ship 
anchors seven times in one month. The ship anchors safely because it has paid attention to factors that affect the 
ship's movement (maneuver), such as internal factors (ship conditions) and external factors (water conditions). When 
stopping steering, it is assumed that there is no influence from within and outside. The following table provides data on 
the ship's average speed and the stopping distance required for the ship to stop sailing in the berthing area (anchor 
berth) for one month. 

 

Average speed (Knots) 10 20 30 40 50 60 70 

Stopping distance (Nm) 12 21 46 65 90 111 148 

 
What is the estimated stopping distance required for a ship to stop sailing if the ship is sailing at an average speed of 
45 Knots? What general rule do you use to estimate the stopping distance? Explain it! 

 

Figure 3. Tasks developed to trigger functional thinking 

The researcher then implemented the validated task on the participants. Participants in this study 

were 2nd-semester students in the Deck Officer Program at the Nusantara Maritime Academy in Cilacap. 

Participants were selected based on the category of mathematical ability level. Mathematical ability is 

essential because it is one of the predictors of student success in problem-solving (Schoenfeld, 2006). 

Mathematics Test score obtained the participants' mathematical ability (Khusna et al., 2024). Mathematical 

ability is divided into three categories based on the rules in place of research. The categories are high 

mathematical ability if the student gets a score (x) that is in the range (80 < 𝑥 ≤ 100), medium if the score 

(𝑥) is in the range (60 < 𝑥 ≤ 80) and low if the score (x) is in the range (0 ≤ 𝑥 ≤ 60). Participants in 

this study were selected based on the most significant difference in scores between categories of 

mathematical ability so that they have the potential to produce different functional thinking processes that 

can be applied to broader learning. To enrich the research findings, participants were also selected based 

on the emergence of the most functional thinking intensity in each category of their mathematical ability. 

Participants with these categories are possible in every regular class. Participants were given tasks at 

different times, so the research findings are expected to contribute more widely. Based on these selection 

criteria, three out of thirty-six students were obtained as participants with the pseudonyms Niko (high), Dani 

(medium) and Yoga (low). Participants with these categories are possible in every regular class. The results 

of the answers of 33 students were not analyzed because there were no variations in answers that indicated 

the emergence of similar functional thinking. Varied solutions help sailors develop adaptability and make 

the right decisions to improve navigation safety. The small number of participants in this study aims to 
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explore the students' functional thinking processes more deeply (Pitta-Pantazi et al., 2020). On the other 

hand, this number is a limitation in this study. Further research is expected to involve more participants to 

analyze the effectiveness of tasks in significantly improving students' functional thinking. Participants with 

these categories are possible in every regular class.  

Participants completed the tasks at different times, with each session lasting 100 minutes in a 

comfortable and conducive environment. They were permitted to use a calculator provided by the 

researcher but were not given any scaffolding before beginning the task. Additionally, they were not allowed 

to seek clarification from the researcher during the task to ensure that no external influence biased the 

emergence of their functional thinking. Each participant recorded their answers on a worksheet provided by 

the researcher, following specific instructions. Notably, they were instructed not to erase incorrect responses 

but instead to cross them out, allowing for a more comprehensive and in-depth analysis of their thought 

processes. Upon completion, the worksheets were collected and coded according to the scheme outlined 

in Tables 1 and 2, enabling the analysis of the intensity and frequency of functional thinking manifestations. 

This research method was adapted from previous studies that developed problem-solving tasks to 

explore students' cognitive development (Fatmanissa et al., 2024; Khusna et al., 2024). To ensure the 

credibility of the findings and mitigate potential bias arising from subjectivity in qualitative research, the study 

employed prolonged engagement, persistent observation, and triangulation. Triangulation was achieved 

through the analysis of students' work on tasks and task-based interview transcripts (Creswell & Poth, 2016; 

Denzin & Lincoln, 2011; Lincoln & Guba, 1985). The interviews provided deeper insights into students' 

functional thinking processes while solving mathematical problems (Pitta-Pantazi et al., 2020). While the 

study does not aim to generalize its findings, its approach holds potential applicability in broader learning 

contexts with similar characteristics, such as students with varying mathematical abilities and instructional 

settings that incorporate real-world mathematical applications using tables and graphs. 

RESULTS AND DISCUSSION 

This section examines the potential challenges encountered in fostering students' functional thinking 

within problem-solving contexts. The analysis of these challenges is conducted by comparing the 

problem-solving activities of two participants, aligning their responses with established problem-solving 

stages. The participants’ activities are systematically presented using the coding scheme detailed in 

Tables 1 and 2. In accordance with research ethics protocols, the data utilized in this study are publicly 

accessible, as all participants provided informed consent, ensuring confidentiality through the 

anonymization of their identities and other personal information. 

The findings of this study reveal the emergence of various aspects of functional thinking, identified 

through an analysis of task responses from 36 students categorized into high, medium, and low 

mathematical ability groups. Notably, none of the students demonstrated all aspects of functional thinking. 

Five functional thinking aspects (F1–F5) were observed in three students, comprising two with high 

mathematical ability and one with medium mathematical ability. Additionally, seven students exhibited four 

functional thinking aspects (F1–F4), including four students from the high-ability group, two from the 

medium-ability group, and one from the low-ability group. The most common occurrence was the 

emergence of three functional thinking aspects (F1–F3), identified in 26 students, with a distribution of 10 

students from the high-ability group and 16 from the medium-ability group. Notably, no students 

demonstrated only two (F1–F2) or a single (F1) functional thinking aspect. The data distribution is presented 

in Table 5. To gain a deeper understanding, further qualitative analysis was conducted through interviews 
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with three participants—Niko, Dani, and Yoga—who exhibited the highest functional thinking emergence 

within their respective mathematical ability categories (highlighted with a red circle in Table 5). 

Table 5. Distribution of the emergence of participant functional thinking aspects based on mathematical ability 

Emergence of Functional Thinking 

Aspects 

Mathematical Abilities Sub-Total of 

Students High Medium Low 

All aspects (F1-F6) 0 0 0 0 

Five aspects (F1-F5) 2 1 0 3 

Four aspects (F1-F4) 4 2 1 7 

Three aspects (F1-F3) 10 16 0 26 

Two aspects (F1-F2) 0 0 0 0 

One aspect (F1) 0 0 0 0 

Total of Students 16 19 1 36 

 

Niko is one of two students with high mathematical ability who demonstrated the highest occurrence of 

functional thinking across five aspects. He was selected for further analysis due to his use of a more 

diverse range of problem-solving approaches. Dani is the only student with high mathematical ability who 

exhibited functional thinking in all five aspects. Meanwhile, Yoga is the sole student with low mathematical 

ability who demonstrated the highest occurrence of functional thinking across four aspects.  

Participants with High Mathematical Ability (Niko) 

1. Identifying the Problem 

Niko read the question and began to identify the problem of the ship's stopping distance by noticing the 

relationship between two quantities (F1). These quantities include stopping distance and average speed. 

Niko noticed that the higher the average speed of the ship, the longer the stopping distance required for 

the ship to stop completely. Based on this, Niko noticed the existence of a relationship between two 

quantities with the identification of quantity information and the aim of predicting unknown data values 

(PF1). Niko's method of identifying the problem was not implicitly included in the answer to the task, so 

the researcher conducted an interview based on the answer to the task. The following is a transcript of 

the interview that marks the emergence of Niko's activity in identifying the problem. 

 

Niko : The relationship is one seen from the first, second, and third 
anchoring attempts, where if the ship's speed is greater, then the 
stopping distance will also be greater (F1). 

Researcher : Does that mean it can be said to be comparable? 
Niko : Yes, it does. 

 

2. Representing Data 

Niko had difficulty seeing the relationship between the average speed and the stopping distance of the ship 

from the table, so Niko represented the data in the table in a graphical form (F2). The function graph can be 

seen in Figure 4a. The graphical representation occurred at the design stage because Niko transformed the 

data from tabular to graphical form as a strategy design for predicting unknown data values (PF2).  

3. Finding Recursive Patterns 

Niko noticed changes in the average speed and stopping distance values on the graph (F3). These 

changes are represented by dots on the graph. From these dots, Niko found three recursive patterns, 
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including straight lines, rectangles and triangles. Niko found these patterns by trying various methods. 

In the first method, Niko connected every two closest points with a straight line. Niko focused on the 

straight-line DF connecting point D (40,65) and point F (50,90) to estimate the stopping distance when 

the average speed was 45 knots (Figure 4b). Niko chose to focus on the straight-line DF because it is 

the closest line that passes through the 45 knots point, so it has the potential to produce a more 

reasonable stopping distance estimate. In the second method, Niko made auxiliary lines at point D 

(40,65) and point F (50,90) to find a rectangular pattern. For example, in the DIFN rectangle, the length 

of DI represents the change in average speed and the width of IF represents the change in stopping 

distance (Figure 4b). Niko also found a triangular pattern. In the DIF triangle, the base DI represents the 

change in average speed and the height IF represents the change in stopping distance (Figure 4b). Niko 

discovered the recursive pattern during the exploration stage because he tried various ways to find 

changes between variable values (PF3). 

 

  
(a) (b) 

Figure 4. (a) Function graph representation by Niko, (b) Recursive pattern finding by Niko 

4. Finding Covariational Relationships 

In the table data, Niko found that "every ten increase in average speed means that the stopping distance 

does not increase more than 37". The non-constant increase in stopping distance prompted Niko to find 

the relationship between speed and stopping distance using a graphical approach. In the previous 

answer, Niko found three recursive patterns based on the graph. The recursive pattern prompted Niko 

to find three covariational relationships, including several straight lines passing through two points, 

several rectangular images and several triangular images. Niko highlighted the straight-line DF passing 

through point E when the average speed was 45 knots to estimate the ship's stopping distance (Figure 

4b). The points on the graph appear to be increasing upwards, representing that the relationship 

between the quantity of average speed and stopping distance is increasing (F4). Furthermore, Niko 

found two similar quadrilaterals that were closest to point E, namely the small quadrilateral DJEO and 

the large quadrilateral DIFN (Figure 4b). In both quadrilaterals, a relationship was found that every time 

the length increases, the width increases (F4). Niko also found two similar triangles that are closest to 

point E, namely the small rectangle DJE and the large rectangle DIF (Figure 4b). In both triangles, a 

relationship was found that each time the base increases, the height increases (F4). The discovery of 
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the covariational relationship occurred at the exploration stage because Niko found the relationship 

between two variables to predict unknown values by trying various problem-solving strategies (PF4). 

5. Finding Correspondence Relationships 

Niko finds the correspondence relationship based on the previous covariational relationship. Niko 

obtains a general rule based on the correspondence relationship by representing the average speed 

as the variable 𝑥 and the stopping distance as the variable 𝑦. Furthermore, Niko assigns an index to 

each variable. Niko obtains the same estimate by applying the three general rules (marked with red 

rectangles in Figure 5). The three general rules lead to the linear interpolation rule. The general rule 

is obtained because Niko finds the relationship between two variables based on a graph to predict an 

unknown value based on a graph/correspondence relationship (F5). Niko finds the correspondence 

relationship at the implementation stage because Niko creates general rules used to predict unknown 

data values by applying linear interpolation (PF5). 

 
 

↔ 𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1) 

↔ 𝑦 − 𝑦1 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

(𝑥 − 𝑥1) 

↔ 𝑦 − 65 =
90 − 65

50 − 40
(45 − 40) 

↔ 𝑦 = 77,5 

 

𝑙2

𝑙1

=
𝑝2

𝑝1

 

𝑦 − 𝑦1

𝑦2 − 𝑦1

=
𝑥 − 𝑥1

𝑥2 − 𝑥1

 

↔ 𝑦 − 𝑦1 =
𝑥 − 𝑥1

𝑥2 − 𝑥1

(𝑦2 − 𝑦1) 

↔ 𝑦 = 𝑦1 +
𝑥 − 𝑥1

𝑥2 − 𝑥1

(𝑦2 − 𝑦1) 

↔ 𝑦 = 65 +
45 − 40

50 − 40
(90 − 65) 

↔ 𝑦 = 77,5 

 

𝑡2

𝑡1

=
𝑎2

𝑎1

 

𝑦 − 𝑦1

𝑦2 − 𝑦1

=
𝑥 − 𝑥1

𝑥2 − 𝑥1

 

↔ 𝑦 − 𝑦1 =
𝑥 − 𝑥1

𝑥2 − 𝑥1

(𝑦2 − 𝑦1) 

↔ 𝑦 = 𝑦1 +
𝑥 − 𝑥1

𝑥2 − 𝑥1

(𝑦2 − 𝑦1) 

↔ 𝑦 = 65 +
45 − 40

50 − 40
(90 − 65) 

↔ 𝑦 = 77,5 

(a) (b) (c) 

Figure 5. (a) General rules for equations of straight lines by Niko, (b) General rules for comparison of two 

similar quadrilaterals by Niko, (c) General rules for comparison of two similar triangles by Niko 

6. Evaluating General Rule 

The results of the generalization are in the form of general rules found when analyzing the 

correspondence relationship. The evaluation of the results of the generalization is not implicitly included 

in Niko's task answers, so the researcher dug up data through interviews with the following transcripts: 

 

Researcher : Please calculate the estimated stopping distance from speeds of 
41, 45 and 46. 

Niko : At 41, the stopping distance is 67.5. At 45, the stopping distance 
is 77.5. At 46, the stopping distance is 80. 

Researcher : What can be concluded from these results? 
Niko : The estimated stopping distance is reasonable because it is 

between 65 and 90 Nm. So, the general rule can be used for all 
unknown data. If we enlarge the image here (GeoGebra), we can 
also see the results (F6). 
 

Based on the transcript, Niko evaluated the general rules created by checking other stopping distance 

data between 40 and 50 knots (F6). From the check results, Niko concluded that the three general rules 

can be used to estimate unknown data among known data. This general rule evaluation occurs at the 
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verification stage because Niko tests the truth of the general rules by identifying possible errors and 

inconsistencies between the solution and the established problem conditions (PF6). 

Participant with Medium Mathematical Ability (Dani) 

1. Identifying the Problem 

Dani concluded that there is a relationship between speed and the stopping distance of the ship (F1). 

The emergence of the F1 aspect is marked by the following interview transcript. Dani identified the 

problem by identifying the information, objectives and conditions provided (PF1). 

 

Researcher : What information did Dani get after reading the question? 

Dani : After the engine is turned off, the ship does not stop immediately; 

there is a distance until the average speed is 0. If the ship is getting 

faster, it means the stopping distance is also getting further (F1) 

 

2. Representing Data 

After knowing that the stopping distance is affected by the average speed, Dani changes the data in 

the table into a function graph (F2). Dani represents the data in the form of a graph to analyze changes 

between quantities so that the results of the analysis can be used in solving problems (PF2). 

3. Finding Recursive Patterns 

Dani found a recursive pattern in the graph representation results. Dani found changes in each variable 

value based on the graph (F3). The changes are in the form of a triangle pattern, where the change in 

average speed is represented as the base of the triangle, while the change in stopping distance is 

represented as the height of the triangle. The discovery of the recursive pattern occurred at the 

exploration stage because Dani found changes in each variable value based on graphs by trying various 

problem-solving strategies (PF3).  

4. Finding Covariational Relationships 

In the previous answer, Dani found that the change in speed is a representation of the base of the 

triangle and the change in stopping distance is a representation of the height of the triangle so that the 

relationship between the change in speed and stopping distance forms a right triangle. So Dani found a 

covariational relationship in the form of several similar right triangles (F4). This discovery occurred at the 

exploration stage because Dani found the relationship between two variables to predict unknown values 

by trying various problem-solving strategies (PF4). 

5. Finding Correspondence Relationships 

The correspondence relationship found by Dani is in the form of a comparison of the base and height 

of two similar triangles. Dani symbolized the base and height of the triangle so that he found a general 

rule that can be seen in Figure 6 (marked with a red rectangle). The general rule of comparison of two 

similar triangles leads to the linear interpolation rule. This general rule was obtained because Dani 

found the relationship between two variables based on a graph to predict an unknown value based 

on a graph (F5). This general rule occurs at the implementation stage because Dani creates general 

rules used to predict unknown data values by applying linear interpolation (PF5). 
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Figure 6. Correspondence relationship findings by Dani 

6. Evaluating General Rule 

In Dani's task answer, the evaluation of the generalization results was not implicitly included, so the 

researcher dug up data through interviews using the following transcript. 

 

Researcher : Why are you confident in the general rules that have been 
discovered? 

Dani : If you look at the graph, that's the most likely option. It can also 
be used for other data.  

Researcher : Try to work out the meaning of your statement. 
Dani : (start working) I estimated the stopping distance at an average 

speed of 48 knots. The result is 85 Nm (F6). 
Researcher : What do you think of the results? 
Dani : The results show that the general rules created can be used for 

any data, ma'am, as long as there is data among the known ones 
(F6). 

 

Dani evaluates the general rule by checking other stopping distance data between 40 and 50 knots (F6). 

Dani concludes that the general rule of comparison of two similar triangles is suitable for use in 

estimating unknown data among known data. This general rule evaluation occurs at the verification 

stage because Dani tests the validity of the general rule by identifying possible errors and inconsistencies 

between the solution and the established problem conditions (PF6). 

Participants with Low Math Ability (Yoga) 

1. Identifying the Problem 

The researcher collected data on yoga problem identification by confirming the task answers through 

interviews using the following transcript. 

 

Yoga : This average speed has the same effect on the stopping distance. 
If the ship is faster, the stopping distance will also be longer (F1). 

Researcher : Is it possible that as the ship speeds up, its stopping distance will 
be shorter? 

Yoga : Based on this data, it is impossible. 
 

For example 𝑥 =speed dan 𝑦 =stopping distance, 
∆1= ∆𝐷𝑄𝐸 is a right triangle with base =𝑎1 = 𝑥1 − 𝑥0 and 

heighti=𝑡1 = 𝑦1 − 𝑦0 

∆2= ∆𝐷𝑅𝑂 is a right triangle with base=𝑎2 = 𝑥 − 𝑥0 and 
height=𝑡2 = 𝑦 − 𝑦0 

Because ∆1 and ∆2 are similar triangles, the equation is obtained 
𝑦 − 𝑦0

𝑦1 − 𝑦0

=
𝑥 − 𝑥0

𝑥1 − 𝑥0

 

↔ 𝑦 − 𝑦0 =
𝑥 − 𝑥0

𝑥1 − 𝑥0

(𝑦1 − 𝑦0) 

↔ 𝑦 = 𝑦0 +
𝑥 − 𝑥0

𝑥1 − 𝑥0

(𝑦1 − 𝑦0) 

↔ 𝑦 = 65 +
45 − 40

50 − 40
(90 − 65) = 77,5 
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Based on the transcript, Yoga began to identify the problem by recognizing the changes in each quantity, 

namely the quantity of the average speed of the ship, which was getting faster with the quantity of the 

stopping distance getting longer. This change prompted Yoga to notice/realize that there was a relationship 

between the average speed and the stopping distance of the ship (F1). Based on this, Yoga identified the 

problem at the analysis stage by noticing the existence of a relationship between two quantities with the 

identification of quantity information and the aim of predicting unknown data values (PF1). 

2. Representing Data 

Yoga tries changing the data from tabular to graphical (F2). Graphical representation occurs at the 

design stage because, at this stage, Yoga transforms data from tabular to graphical form as a strategy 

design for predicting unknown data values (PF2). Furthermore, Yoga represents the average speed 

of 45 knots, with point H as the initial step in estimating the unknown stopping distance. 

3. Finding Recursive Pattern 

Yoga did not find a recursive pattern based on the previously created graph, even though he had 

marked the average speed of 45 knots with point H. Yoga found that the average speed increased by 

10 knots with each anchoring attempt (F2). Yoga also found that the stopping distance increased but 

could not determine the number of additions with each anchoring attempt (F2). The discovery of a 

recursive pattern occurred at the exploration stage because Yoga found changes in each variable 

value by trying various problem-solving strategies, even though not through the graph (PF3).   

4. Finding Covariational Relationships 

Yoga found a relationship that every 10-knot increase in average speed increases the stopping 

distance by a maximum of 37 Nm (F4). This discovery occurred at the exploration stage because 

Yoga found the relationship between two variables to predict unknown values by trying various 

problem-solving strategies (PF4). 

5. Finding Correspondence Relationships 

Yoga found a correspondence from the previous statement that "every average speed increases by 

10 knots, the stopping distance increases by a maximum of 37 Nm". The relationship is then arranged 

using mathematical calculations to produce a general rule (F5). The general rule found by Yoga does 

not reach mathematical symbolization (Figure 7). This general rule is obtained at the implementation 

stage because the activity of creating general rules used to predict unknown data values (PF5) occurs.  

 
Yoga Answers (Indonesian) 

 

Yoga Answers (English) 
𝑆𝑝𝑒𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 50 − 40 = 10 𝑘𝑛𝑜𝑡𝑠 

𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 90 − 65 = 25 𝑁𝑚 

𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝑠𝑝𝑒𝑒𝑑 𝑠𝑜𝑢𝑔ℎ𝑡 − 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

 𝑠𝑝𝑒𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒
× 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
45 − 40

10
× 25 

𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
5

10
× 25 

𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
25

2
= 12,5 

𝑆𝑡𝑜𝑝𝑝𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 45 = 65 + 12,5 = 77,5 

Figure 7. Correspondence relationship finding by Yoga 

6. Evaluating General Rule 

The evaluation data of the generalization results were confirmed by the researcher to Yoga through 

an interview based on the task answers. Yoga evaluated the general rules by checking the known 

stopping distance data in the question table (F6) with the following transcript. 
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Researcher : Can the general rule estimate every unknown data among the 
known data? 

Yoga : Yes, it can. This can be checked from the data that is already 
known. 

Researcher : How do I check the data? 
Yoga : (start working) this uses data when the speed is 30 knots, ma'am 

if the question is the stopping distance is 46 Nm. If this rule is used, 
the distance becomes 43 Nm, ma'am. Speed difference = 40 −
20, stopping distance difference = 65 − 21 = 44, stopping 

distance = (
30−20

20
) × 44 = 22, stopping distance = 21 +

22 = 43  (F6). 
 

Based on the results of the check, Yoga concluded that the general rule is suitable for estimating 

unknown data among known data. Evaluation of this general rule occurs at the verification stage 

because Yoga tests the truth of the general rule by identifying possible errors and inconsistencies 

between the solution and the established problem conditions (PF6). 

 

The findings of this study indicate that participants across different mathematical ability categories 

exhibited functional thinking aspects; however, variations emerged in the manner in which these aspects 

developed. Niko employed multiple strategies to identify recursive patterns (F3), covariational relationships 

(F4), and correspondence relationships (F5). These strategies involved graphical representations, including 

straight lines, similar right triangles, and similar rectangles, to derive the general rules of linear interpolation. 

In contrast, Dani relied on a single approach for F3, F4, and F5, using a comparison of two similar triangles to 

determine the general rules of linear interpolation. Both Niko and Dani successfully derived these general rules 

through graphical representation. Meanwhile, Yoga was unable to establish the general rules of linear 

interpolation, despite modifying tabular data within the graph. Furthermore, the general rules identified by Yoga 

lacked formal mathematical notation, yet he consistently attempted to verify their validity. These results 

suggest that tasks incorporating non-routine mathematical problems have the potential to foster the 

development of functional thinking in maritime students with varying mathematical abilities. 

The study further revealed that functional thinking emerged in all participants, regardless of their 

mathematical ability levels, through engagement with mathematical tasks. These tasks included 

representations illustrating how a ship's average speed influences its stopping distance, necessitating 

students’ application of functional thinking. This finding aligns with the research conducted by Pittalis et al. 

(2024), which demonstrated that task-based approaches could effectively develop students' functional thinking 

in relation to quantitative relationships. Similarly, Smith (2008) emphasized that representations of 

relationships between quantities encourage students to formulate general function rules. Differences in 

mathematical ability levels appear to influence variations in the approaches employed across different aspects 

of functional thinking. These differences begin with the identification of recursive patterns, ultimately leading 

to variations in the discovery of general function rules. Both Niko and Dani successfully formulated general 

rules of linear interpolation by analyzing recursive patterns within graphical representations. However, Yoga 

encountered difficulties in interpreting graphs, preventing him from deriving general rules of linear interpolation. 

The cognitive processes underlying students’ mathematical problem-solving are influenced by their respective 

levels of mathematical ability. According to Sanjaya et al. (2018), students with high mathematical ability tend 

to employ a wider range of problem-solving strategies, whereas students with moderate ability adopt a more 

intuitive approach but demonstrate limited depth in justifying their solutions. Meanwhile, students with lower 
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mathematical ability often struggle to devise effective solution strategies. 

The findings also highlight that the use of task-based instruments alone is insufficient for 

comprehensively exploring students' functional thinking. Therefore, supplementary instruments, such as task-

based interview protocols, are necessary to gain deeper insights into students’ cognitive processes beyond 

what is captured during problem-solving activities. Interviews revealed that when participants experienced 

uncertainty regarding their answers, they tended to repeat the problem-solving stages. Variations in 

mathematical ability appear to influence the frequency with which students revisit these stages. According to 

Schoenfeld (2006), mathematical ability is a crucial factor in students' success in problem-solving, as it 

determines how they comprehend problems, make decisions, and apply relevant knowledge in appropriate 

contexts. The frequency of repetition in problem-solving stages reflects the extent of participants' engagement 

in the problem-solving process, thereby shaping differences in their approaches. Figure 8 illustrates the 

sequence of task completion by each participant, highlighting the problem-solving stages that facilitated the 

emergence of functional thinking aspects. Notably, Yoga perceived that he had completed the exploration 

stage only once, leading to his difficulty in interpreting graphical representations. His inability to derive general 

rules suggests an avenue for further research focused on designing tasks that incorporate diverse 

representations beyond tables and graphs. Such instructional enhancements would enable the development 

of learning approaches tailored to students' varying mathematical ability levels, thereby optimizing their 

functional thinking in mathematical problem-solving. 

 

 

Figure 8. Functional thinking flow in mathematical problem-solving 

Previous studies have employed interviews as a data collection technique to examine functional 

thinking based on students’ responses (Günster & Weigand, 2020; Sun et al., 2023; Utami et al., 2023). 

Analyzing interviews based on student responses provides deeper insights into the development of functional 

thinking in higher education students. The design of tasks that align with functional thinking aspects plays a 

crucial role in fostering students' functional thinking skills. This aligns with the research findings of Günster and 

Weigand (2020), Sun et al. (2023), and Utami et al. (2023), who developed tasks based on a functional thinking 

framework. Moreover, the present study extends the findings of previous research by incorporating numerical 

and multi-representational methods, thereby enriching the existing body of knowledge. Other studies have 

also emphasized the potential of interviews to provide deeper insights into findings derived from students' 

written responses to tasks (Blanton et al., 2015; Pang et al., 2022; Pitta-Pantazi et al., 2020). While previous 

research has primarily focused on analyzing the development of functional thinking in primary and middle 

school students, the present study contributes to the literature by offering insights into the development of 

functional thinking among students in higher education. Additionally, this study establishes a connection 
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between mathematical concepts and navigation safety, supporting the enhancement of graduate 

competencies for maritime students. 

The findings of this study indicate that tasks incorporating non-routine mathematical problems, which 

involve representations of relationships between quantities, can enhance students’ functional thinking and 

contribute to reducing the risk of maritime accidents. These tasks serve as problem-solving simulations aimed 

at mitigating ship collision risks by enabling students to generalize the relationship between average speed 

and stopping distance. By integrating navigation safety with linear interpolation, these tasks bridge the gap 

between maritime education and mathematics, equipping students with the necessary analytical skills to 

become proficient sailors. Furthermore, these tasks can be incorporated into the syllabus and semester lesson 

plans as part of a teaching strategy in the Applied Mathematics Course, in accordance with the International 

Maritime Organization (IMO) Model Course 7.03 and the International Association of Maritime Universities 

(IAMU) curriculum. The implementation of such tasks is not limited to maritime education; educators in other 

disciplines with similar mathematical learning characteristics may also benefit from adopting these 

approaches. Additionally, training programs can be organized to support educators in developing and 

implementing similar tasks, thereby extending their application to a broader range of educational contexts. 

CONCLUSION  

This study demonstrates that non-routine mathematical problem-solving tasks serve as effective 

instruments for fostering students’ functional thinking through diverse cognitive processes. The findings 

reveal that each aspect of functional thinking emerged as students engaged with the structured problem-

solving stages embedded in the task. Unlike conventional exercises that rely on fixed procedural 

approaches, the problem presented in this study required students to analyze quantitative relationships 

characterized by non-fixed addition patterns. Consequently, students were encouraged to employ 

multiple representations to construct meaningful solutions. Furthermore, the integration of linear 

interpolation within the context of navigation safety provided an authentic simulation of real-world 

problem-solving, thereby strengthening the connection between mathematical concepts and maritime 

applications. By incorporating these tasks into mathematics education, particularly within maritime 

institutions, students can develop essential problem-solving skills that are fundamental to their future 

professional competencies. Additionally, this study contributes to the body of research on task design by 

introducing an innovative approach to representing functional relationships, thereby expanding the range 

of problem-solving strategies available to educators and researchers. 

Despite its contributions, this study is subject to several limitations. One primary constraint is the 

relatively small sample size, which restricts the generalizability of the findings. A larger participant pool 

would provide a more comprehensive understanding of the extent to which students develop functional 

thinking when engaging with non-routine mathematical tasks. Furthermore, while task-based interviews 

were employed as a supplementary instrument to explore students’ thought processes, relying solely on 

students' written responses may not have fully captured the depth of their reasoning. Although structured 

interview guidelines were utilized to confirm and clarify functional thinking aspects, further research could 

integrate additional data collection techniques to enhance the validity and reliability of findings. Another 

limitation pertains to the scope of representational formats used in the study, as it primarily focused on 

tabular data. Future investigations could expand this scope by incorporating alternative representations 

such as algebraic equations, graphical models, function tables, and verbal descriptions to provide a more 

comprehensive assessment of students’ functional thinking development. Finally, future research should 
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consider evaluating the effectiveness of non-routine mathematical tasks in fostering functional thinking among 

a larger and more diverse cohort of students. Employing quantitative research methodologies, including 

statistical analyses, could provide more robust empirical evidence regarding the impact of these tasks on 

students’ problem-solving abilities. Additionally, refining and expanding task designs by incorporating multiple 

representations would accommodate a broader range of learners, enabling them to generalize mathematical 

concepts across different contexts. Furthermore, future studies should explore instructional strategies that 

maximize the pedagogical benefits of these tasks, ensuring their applicability in both mathematics education 

and professional maritime training. By addressing these areas, future research can contribute to the ongoing 

development of innovative pedagogical approaches that enhance mathematical problem-solving and 

functional thinking in real-world applications. 
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