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Abstract 

In the context of an increasingly data-intensive society, the integration of Computational Thinking (CT) into 
statistics education is essential to prepare students with the analytical and problem-solving competencies 
required for navigating complex data environments. Despite growing recognition of its importance, existing 
pedagogical practices frequently lack systematic didactical frameworks that effectively embed CT within statistical 
learning, particularly in higher education. Addressing this gap, the present study introduces a novel hypothetical 
didactical design—termed the Cuboid Framework—which systematically integrates CT components into the 
learning of descriptive statistics using the R programming language in a Google Colab environment. This research 
employed the Didactical Design Research (DDR) methodology, emphasizing the prospective and 
metapedadidactic stages to construct and evaluate the framework. Targeted at third-semester undergraduate 
students enrolled in an introductory statistics course, the Cuboid Framework aligns with learners’ developmental 
levels in both statistical reasoning and CT proficiency. The model is organized as a 5 × 4 × 4 structure, comprising 
five core statistical tasks, four structured didactical situations (action, formulation, validation, and 
institutionalization), and four CT elements (decomposition, pattern recognition, abstraction, and algorithmic 
thinking). Validation procedures included expert review through focus group discussions (FGDs) and an initial 
classroom implementation followed by metapedadidactic analysis. Findings reveal that the Cuboid Framework 
fosters a coherent learning progression, enhances students’ engagement in statistical inquiry, and supports the 
development of CT competencies. Classroom observations confirmed that the intentional design of didactical 
situations facilitates students’ cognitive adaptation to computational tasks. While preliminary analyses indicate 
strong theoretical and practical coherence, further retrospective studies and quantitative evaluations are 
necessary to ascertain the long-term effects on student learning outcomes. This study contributes a structured 
and theoretically grounded model for CT integration in statistics education, with implications for improving 
curriculum design and instructional practice in mathematics education. Future research should aim to test the 
scalability and efficacy of the Cuboid Framework across diverse educational settings. 
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The rapid development of technology in the 21st century has encouraged individuals to master 

computational thinking (CT) skills as part of the core competencies of this era. CT is an approach to 

solving complex problems that follows the mindset of computer scientists, involving decomposition, 
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abstraction, pattern recognition, and algorithms (Wing, 2006; 2017). CT is considered an essential skill 

in the 21st century, alongside reading, writing, and arithmetic (Palts & Pedaste, 2020; Wing, 2017). Due 

to its broader relevance, CT is important not only for computer science students but also for students 

across various scientific disciplines (Nouri et al., 2020; So et al., 2020). Therefore, it is crucial to promote 

and develop students’ CT skills, either independently or integrated into existing subjects. 

Statistical learning offers significant potential for the development of plugged-in CT skills. Statistics 

serves as one of the intersections between CT and mathematical thinking (Sneider et al., 2014). 

Statistics—or what Weintrop et al. (2015) refer to as data practices—are included in the CT taxonomy for 

science and mathematics. The R programming language, as a tool for programming-based statistical 

analysis, enables students to deepen their understanding of statistical concepts while simultaneously 

developing CT skills (Benakli et al., 2017). This demonstrates a strong opportunity to foster students’ CT 

through plugged-in statistics learning using R and relevant statistical tasks. 

To date, studies on CT integration have largely been limited to practical implementations, with 

limited attention to didactic design. Many such studies have not included pedagogical-didactic anticipation 

in their frameworks. Existing studies generally fall into four main categories. First, several studies have 

focused on the definition and components of CT (Aho, 2012; Angeli & Giannakos, 2020; Guzdial, 2008; 

Haseski et al., 2018; Weintrop et al., 2015; Wing, 2006; 2017). Second, a number of studies have 

analyzed CT trends and research developments using bibliometric analyses (Chen et al., 2023; Ilic et al., 

2018; Irawan et al., 2024b; 2024d; Irawan & Herman, 2023; Roig-Vila & Moreno-Isac, 2020; K.-Y. Tang 

et al., 2020; Tekdal, 2021), scoping reviews (Acevedo-Borrega et al., 2022; Cutumisu et al., 2019), and 

systematic reviews (Agbo et al., 2019; Irawan et al., 2024a; 2024c; X. Tang et al., 2020). Third, some 

studies have developed CT learning trajectories (Rich et al., 2018; 2022). Fourth, some research has 

evaluated students’ CT outcomes through plugged and unplugged learning interventions. These include 

CT assessment (Allsop, 2019; Chen et al., 2017; Prahmana et al., 2024; Purwasih et al., 2024; Zhong et 

al., 2016), reliability and validity of CT instruments (Korkmaz et al., 2017), effects of augmented reality 

(Abdul Hanid et al., 2022), and CT development in early childhood (Akiba, 2022). Despite these trends, 

the specific design of didactic interventions for CT integration, particularly in descriptive statistics, remains 

underexplored. 

Mapping results indicate that research on didactic design—especially for CT integration in 

statistical learning—is still minimal. However, the integration of CT into statistics learning necessitates 

thorough planning, including pedagogical-didactic anticipation (Suryadi, 2019). Such anticipation can be 

enacted through stages of action, formulation, validation, and institutionalization (Brousseau, 2002). 

Didactic design grounded in the Theory of Didactical Situations (TDS) has been shown to support the 

achievement of learning objectives and address potential learning barriers (Irawan, 2024). Accordingly, 

this study raises the question: How can a hypothetical didactic design for integrating CT into descriptive 

statistics be constructed based on the TDS framework? 

In contrast to earlier studies that focus predominantly on theoretical discourse or application-based 

integration of CT, this research presents a systematically constructed didactic framework grounded in the 

TDS. By emphasizing pedagogical-didactic anticipation, this framework integrates CT into descriptive 

statistics instruction while also anticipating potential learning challenges to improve students’ conceptual 

understanding. Furthermore, this study offers a replicable model adaptable to diverse educational 

contexts—including schools with limited computational infrastructure—by utilizing cloud-based tools such 

as Google Colab. 
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This study aims to bridge the gap in CT integration by proposing a didactic framework that supports 

a structured, problem-based approach to learning descriptive statistics using R. A well-formulated didactic 

design is key to maximizing the use of R in Google Colab, allowing students to engage in statistical 

exploration while developing CT skills such as abstraction, decomposition, and algorithmic reasoning. 

Through this integrated approach, CT development in statistical learning is expected to reinforce students' 

understanding of statistical concepts while nurturing essential 21st-century problem-solving 

competencies. 

Cuboid Framework 

A hypothetical didactical design was developed to ensure that the processes of knowledge dissemination 

and acquisition occurred effectively within the learning environment. This design was constructed based 

on three foundational pillars: the TDS, the four core components of CT, and a structured progression of 

descriptive statistics learning tasks. 

First, TDS, as proposed by Brousseau (2002), delineates four principal learning situations: action, 

formulation, validation, and institutionalization. These stages guide the pedagogical flow and anticipation 

of students' learning responses. Second, CT encompasses four key components: decomposition, pattern 

recognition, abstraction, and algorithmic thinking (Dong et al., 2019; Wing, 2017), each of which plays a 

critical role in developing problem-solving and analytical skills. Third, the domain of descriptive statistics 

is divided into five sequential learning tasks: (1) an introduction to descriptive statistics, (2) data 

presentation, (3) measures of central tendency, (4) measures of data dispersion, and (5) measures of 

data position (Raykov & Marcoulides, 2013). Integrating these three dimensions, a hypothetical didactical 

design model referred to as the Cuboid Framework was developed. This model adopts a three-

dimensional structure with dimensions of 5 × 4 × 4, as illustrated in Figure 1. 

 

 

Figure 1. Cuboid framework for didactical design integrating CT into descriptive statistics learning with R 

The Cuboid Framework, as shown in Figure 1, is a conceptual three-dimensional model that maps 

the integration of CT components with didactical stages and statistical content in an R-based learning 

environment. It is specifically designed to support students' CT development within the context of 

descriptive statistics learning. The five layers of the framework represent the sequential learning tasks; 

each linked with corresponding didactical and CT components. The first layer outlines the didactical 

design for Task 1, which introduces fundamental statistical concepts such as data types, scales, and 
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variables. The second layer corresponds to Task 2, which focuses on data presentation using R in Google 

Colab. The third layer covers Task 3, where students compute measures of central tendency (mean, 

median, and mode) using R. The fourth layer represents Task 4, guiding students in calculating measures 

of data dispersion, including range, mean deviation, variance, and standard deviation. The fifth layer 

addresses Task 5, where students analyze measures of data position such as percentiles and quartiles. 

The Cuboid Framework offers a systematic and pedagogically informed approach to facilitating CT 

within statistical learning. It provides structured guidance that aligns instructional content with CT 

components across different didactical situations, leveraging the capabilities of R programming through 

a cloud-based platform (Google Colab). This model not only fosters a deeper understanding of statistical 

concepts but also enhances students’ computational thinking in an integrated, contextually rich learning 

environment. 

METHODS  

This study focuses on the development of a hypothetical didactical design that integrates CT into 

descriptive statistics instruction using the R programming language. The design aims to support effective 

and meaningful learning tailored to the needs of third-semester undergraduate students enrolled in the 

Basic Statistics course within the Mathematics Education program at IAIN Ponorogo. This didactical 

design was formulated as part of the instructional planning process, emphasizing three interrelated 

components essential to the learning process: (1) the components of CT, (2) the theoretical foundation 

of the didactical situation, and (3) the learning objectives of descriptive statistics. Furthermore, the CT 

components incorporated in the design include decomposition, abstraction, pattern recognition, and 

algorithmic thinking (Wing, 2017; Dong et al., 2019). These elements are essential for enhancing 

students' problem-solving and reasoning skills in statistical contexts. The didactical structure follows the 

TDS, which comprises four learning situations: action, formulation, validation, and institutionalization 

(Brousseau, 2002). The content domain of descriptive statistics includes foundational competencies such 

as understanding data and variables, data collection methods, data presentation techniques, measures 

of central tendency, measures of dispersion, and measures of data position (Raykov & Marcoulides, 

2013). 

A qualitative research approach was employed, adopting the Didactical Design Research (DDR) 

framework proposed by Suryadi (2019). DDR is particularly well-suited for achieving the objectives of this 

study, which center on the development of a hypothetical didactical design that integrates CT into 

descriptive statistics learning using the R software environment in Google Colab. The adoption of DDR 

also aligns with the critical-interpretive paradigm underpinning the research. The DDR framework 

consists of three interrelated phases: prospective analysis, metapedadidactic analysis, and retrospective 

analysis (Suryadi, 2013). In the prospective analysis, the initial stage, the researcher designed both a 

hypothetical learning trajectory (HLT) and a hypothetical didactical design. The HLT outlines the expected 

progression of student learning and anticipates how CT elements and statistical concepts will be 

introduced and developed. The metapedadidactic analysis involved the classroom implementation of the 

previously constructed HLT and hypothetical design, with a focus on observing how students utilized CT 

in analyzing descriptive statistics using R. The retrospective analysis, which focuses on interpreting 

students’ learning outcomes and the development of CT competencies, was not the primary focus of this 

study. This research is thus limited to the prospective and metapedadidactic phases, concentrating on 

the design and implementation of the hypothetical didactical framework. 
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To ensure the credibility and validity of the design, a focus group discussion (FGD) was conducted 

involving five experts: two mathematics education specialists, two didactical design experts, and one 

statistics education expert. All participants had substantial academic and research experience in their 

respective domains. The FGD was structured into three phases: Initial Presentation – Introduction of the 

preliminary Cuboid Framework and hypothetical didactical design, Critical Discussion – Expert feedback 

and critique of the conceptual and technical dimensions of the design, and Refinement – Revision of the 

design based on expert recommendations. To guide the expert evaluation process, the following 

validation framework was used (see Table 1). 

Table 1. Aspect and questions for validations of the hypothetical didactical design 

No Aspect Questions 

1 Alignment with Research 

Objectives 

How well does the didactical design align with the research 

objectives? 

2 CT Integration Does the design effectively integrate the components of CT? 

3 Theoretical and Pedagogical 

Coherence 

To what extent does the design follow HLT and TDS? 

4 Feasibility of Classroom 

Implementation 

Can the design be implemented feasibly in actual classroom 

settings? 

5 Clarity, Coherence, and 

Practicality 

How can the design be refined to enhance clarity, coherence, and 

practicality? 
 

As this study involved expert consultation and did not collect personal or sensitive data, formal 

ethical clearance was not required. Informed consent was obtained from all participants after providing 

them with a clear explanation of the study’s objectives and procedures. All responses were anonymized 

to ensure confidentiality, and no personally identifiable information was collected. 

RESULTS AND DISCUSSION 

In accordance with the stages of DDR, the first phase of this study was the prospective analysis. During this 

phase, after the initial cuboid framework was developed, it underwent validation by experts through an FGD. 

All experts agreed that the framework fulfilled the critical aspects outlined in Table 1. However, they also 

provided several constructive suggestions to improve the didactical design, as summarized in Table 2.  

Table 2. Comments and suggestions from the experts 

No Suggestions Follow-Up Actions 

1 Emphasize the use of R in all didactical 

situations 

Integrated the use of R software into the action, 

formulation, validation, and institutionalization phases. 

2 Include statistical context in each 

didactical situation 

Contextualized each phase with relevant statistical 

content. 

3 Improve visualization of the cuboid 

framework 

Revised visual design of the framework to enhance 

clarity and attractiveness. 
  

These expert recommendations were used to revise and refine the hypothetical didactical design. 

Once finalized, the design was implemented across five classroom meetings, representing the 

metapedadidactic analysis stage of the DDR process. An example of the classroom implementation is 
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depicted in Figure 2. 

 

 

Figure 2. Implementation of the didactical design integrating CT in descriptive statistics learning using R 

Figure 2 illustrates the classroom application of the didactical design in a computer laboratory 

setting, utilizing the R programming language. The instructional implementation was divided into five 

tasks. Below, we present the detailed didactical design and evidence from its implementation for Task 1: 

Introduction to Descriptive Statistics. 

Didactical Design of Task 1: Introduction to Descriptive Statistics 

Task 1 aimed to introduce students to fundamental concepts in descriptive statistics by integrating 

components of CT with R programming. The design employed a 4×4 framework that combines four CT 

components—Decomposition, Pattern Recognition, Abstraction, and Algorithm Design—with four phases 

of Didactical Situations based on TDS: Action, Formulation, Validation, and Institutionalization, as shown 

in Figure 3. 

 

Figure 3. Framework of didactical situations for task 1 (Introduction to descriptive statistics) 
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Figure 3 is a framework of didactical situations in Task 1, which is introductory descriptive statistics 

material. The detailed design of activities in each didactical situation is presented in Table 3. 

Table 3. Didactical situation in task 1 (Introduction to descriptive statistics) 

CT 

Component 

Action 

Situation 

Formulation 

Situation 

Validation Situation Institutionaliza-

tion Situation 

Decomposi-

tion 

Complex 

problems related 

to data, types of 

data, scale, and 

R are 

decomposed 

into simpler 

problems. 

Formulate 

strategies for 

decomposing 

complex problems 

related to data, 

types of data, 

scale, and R into 

simpler problems. 

Test the correctness 

of the strategies for 

decomposing 

complex problems 

related to data, types 

of data, scale, and R 

into simpler 

problems. 

Decompose 

complex problems 

related to the 

data, data types, 

scale, and R into 

simpler problems 

with other relevant 

problems. 

Pattern 

Recognition 

Recognize 

problem-solving 

patterns related 

to data, data 

types, scales, 

and R. 

Develop problem-

solving patterns 

related to data, 

data types, 

scales, and R. 

Test the correctness 

of problem-solving 

patterns related to 

data, data types, 

scales, and R. 

Recognize 

problem-solving 

patterns related to 

data, data types, 

scale, and R for 

other relevant 

problems. 

Abstraction Simplify the data 

by selecting 

relevant 

information and 

ignoring 

irrelevant 

information 

related to data, 

data types, 

scales, and R. 

Formulate data 

simplification 

strategies by 

selecting relevant 

information and 

ignoring irrelevant 

information 

related to the 

data, data types, 

scales, and R. 

The correctness of 

the data simplification 

strategies is tested 

by selecting relevant 

information and 

ignoring irrelevant 

information related to 

data, data types, 

scales, and R. 

Simplify the data 

by selecting 

relevant 

information and 

ignoring irrelevant 

information 

related to data, 

data type, scale, 

and R on other 

relevant issues. 

Algorithm Identify various 

stages of 

problem solving 

related to data, 

data types, 

scales, and R. 

Develop steps to 

solve problems 

related to data, 

data types, 

scales, and R. 

Test the correctness 

and effectiveness of 

using the steps to 

solve problems 

related to data, data 

types, scales, and R. 

Use correct and 

effective steps to 

solve problems 

related to data, 

data types, 

scales, and R for 

other relevant 

problems. 
 

The implementation began with the action situation, where students were tasked with entering data 

into R using Google Colab. In the formulation situation, they designed a pseudocode outlining the steps 

to import data into R, as shown in Figure 4. 
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Translation 
1. Open Google Colab and change runtime to R 
2. Upload an Excel file containing data 
3. Enter code, packages, and library to read Excel files 

in R 
Install.packages("readxl) 
library(readxl) 
Data name <- read_xlsx ("namadata.xlsx") 

4. Run the code cell above 
5. End 

Figure 4. Example of student pseudocode on task 1 (Entering data in R) 

Following this code presented in Figure 4, in the validation situation, students executed the 

pseudocode in Google Colab to test its correctness. Finally, in the institutionalization situation, they were 

presented with a new and more complex dataset and asked to apply their knowledge to import it using 

R. An example of student-generated artifacts from this process is displayed in Figure 5. 

 

 

 
Commands 

 
 

Output 

Figure 5. Example of student artifact in task 1 (Entering data in R using Google Colab) 

Figure 5 illustrates the process of entering data in R in Google Colab in five steps. First, the "readxl" 

package was installed. Second, the “readxl” library was activated. Third, Excel data were entered into 

Google Colab. Fourth, read the Excel data. Finally, the data were displayed using the data using the 

"print" function. As a result, the data from Excel were successfully entered into R in Google Colab. 

Didactical Design in Task 2 (Data Display) 

The didactical design in Task 2 integrates Computational Thinking (CT) into the learning of data 

presentation. Like Task 1, this design consists of 16 didactical situations (4 × 4), structured around the 

four core CT components—Decomposition, Pattern Recognition, Abstraction, and Algorithm—distributed 

across the four didactical phases: Action, Formulation, Validation, and Institutionalization. The framework 

of the didactical situations for Task 2 is depicted in Figure 6. 
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Figure 6. Framework of the didactical situation for task 2 (Data display) 

Figure 6 illustrates the conceptual design of the CT-integrated didactical situations for data 

presentation. The detailed learning activities associated with each didactical situation are outlined in 

Table 4. 

Table 4. Didactical situation in task 2 (Data display) 

CT 

Component 

Action 

Situation 

Formulation 

Situation 

Validation Situation Institutionaliza-

tion Situation 

Decomposition Decompose 

complex 

problems related 

to data 

presentation 

using R into 

simpler 

problems. 

Formulate a 

strategy to 

decompose 

complex 

problems related 

to data 

presentation 

using R into 

simpler 

problems. 

Test the correctness 

of the strategy of 

decomposing 

complex problems 

related to the 

presentation of data 

using R into simpler 

problems. 

Decompose 

complex problems 

related to data 

presentation using 

R into simpler 

problems on other 

relevant 

problems. 

Pattern 

Recognition 

Recognize 

problem-solving 

patterns related 

to data 

presentation 

using R. 

Develop 

problem solving 

patterns related 

to data 

presentation 

using R. 

Test the correctness 

of problem-solving 

patterns related to 

data presentation 

using R. 

Recognize 

problem solving 

patterns related to 

the presentation 

of data using R in 

other relevant 

problems. 

Abstraction Simplify data by 

selecting 

relevant 

information and 

Formulate data 

simplification 

strategies by 

selecting 

Testing the 

correctness of data 

simplification 

strategies by 

Simplify data by 

selecting relevant 

information and 

ignoring irrelevant 
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CT 

Component 

Action 

Situation 

Formulation 

Situation 

Validation Situation Institutionaliza-

tion Situation 

ignoring 

irrelevant 

information 

related to data 

presentation 

using R. 

relevant 

information and 

ignoring 

irrelevant 

information 

related to data 

presentation 

using R. 

selecting relevant 

information and 

ignoring irrelevant 

information related to 

data presentation 

using R. 

information 

related to the 

presentation of 

data using R on 

other relevant 

problems. 

Algorithm Identify various 

stages of 

problem solving 

related to data 

presentation 

using R. 

Develop 

problem solving 

steps related to 

data 

presentation 

using R. 

Testing the 

correctness and 

effectiveness of using 

steps to solve 

problems related to 

data presentation 

using R. 

Use correct and 

effective steps to 

solve problems 

related to data 

presentation using 

R for other 

relevant 

problems. 
 

The implementation of the didactical design in Task 2 commenced with the action situation, 

wherein students were tasked with presenting a dataset using R in the Google Colab environment. In the 

formulation situation, students were guided to construct a structured pseudocode for data visualization, 

exemplified in Figure 7. 

 

 

Translation 
1. Start 
2. Enter the data to be processed 
3. To present data use the appropriate function with the 

desired type of data presentation 

• Bar chart “barplot()” 

• Pie chart “pie()” 

• Histogram “hist()” 
4. Run Cell 
5. End 

Figure 7. Example of data presentation pseudocode using R 

After successfully developing the data display stages in R, as presented in Figure 7, in the 

validation situation, students tried to test the pseudocode directly in R. Finally, in the institutionalization 

situation, students were challenged to solve a new problem, namely, a new, more complex data display 

in R on Google Colab. An example of the results of the data display artifacts in R on Google Colab 

produced by the students is presented in Figure 8. 

 

 

 



How computational thinking can be integrated in statistical learning: A cuboid framework                                                    433 
 

 

 

Commands 

Output 

Figure 8. Examples of data visualization artifacts using R 

Figure 8 showcases an example of a student-generated artifact, demonstrating the process of data 

presentation using a pie chart in R within Google Colab in four steps. First, the data were read from a 

data frame. Second, the frequency of each category was calculated using the "table" function. Third, 

calculate the percentage using the "prop.table" function and round the results using the "round" function. 

Finally, the data were displayed in the form of a pie chart using the "pie" function. As a result, R 

successfully rendered a pie chart representing the categorical distribution of the dataset. This activity 

illustrates students' ability to apply CT principles in organizing and executing data visualization tasks 

within a statistical programming context. 

Didactical Design in Task 3 (Measures of Central Tendency) 

The didactical design at Task 3 is a CT integration didactical design for determining the measure of data 

concentration, which includes the mean, median, and mode. Figure 9 shows the 4 × 4 framework of the 

didactical situation, with an emphasis on the CT component adapted to the concept of central tendency. 

 

 

Figure 9. Framework of didactical situations on task 3 (Measures of central tendency) 

Figure 9 is a framework of didactical situations on Task 3, namely on the material of measures of 

central tendency, which includes mean, median, and mode. The detailed activity design for each 
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didactical situation is presented in Table 5. 

Table 5. Didactical situation on task 3 (Measures of central tendency) 

CT 

Component 

Action 

Situation 

Formulation 

Situation 

Validation 

Situation 

Institutionaliza-

tion Situation 

Decomposition Decompose 

complex 

problems related 

to finding 

measures of 

central tendency 

(mean, median, 

and mode) using 

R into simpler 

problems. 

Formulate a 

strategy to 

decompose a 

complex problem 

related to finding 

the measures of 

central tendency 

(mean, median, and 

mode) using R into 

simpler problems. 

Test the 

correctness of the 

strategy for 

decomposing a 

complex problem 

related to finding 

the size measures 

of central tendency 

(mean, median, and 

mode) using R into 

a simpler problem. 

Decompose a 

complex 

problem related 

to finding the 

measures of 

central tendency 

(mean, median, 

and mode) using 

R into simpler 

problems on 

other relevant 

problems. 

Pattern 

Recognition 

Recognize 

problem-solving 

patterns related 

to measures of 

central tendency 

(mean, median, 

and mode) using 

R. 

Develop problem 

solving patterns 

related to finding 

the size of 

measures of central 

tendency (mean, 

median, and mode) 

using R. 

Test the 

correctness of the 

problem-solving 

pattern related to 

finding the size of 

measures of central 

tendency (mean, 

median, and mode) 

using R. 

Recognize the 

problem-solving 

pattern related 

to finding the 

size of 

measures of 

central tendency 

(mean, median, 

and mode) using 

R in other 

relevant 

problems. 

Abstraction Simplify data by 

selecting 

relevant 

information and 

ignoring 

irrelevant 

information 

related to finding 

measures of 

central tendency 

(mean, median, 

and mode) using 

R. 

Formulate data 

simplification 

strategies by 

selecting relevant 

information and 

ignoring irrelevant 

information related 

to finding measures 

of central tendency 

(mean, median, and 

mode) using R. 

Test the 

correctness of data 

simplification 

strategies by 

selecting relevant 

information and 

ignoring irrelevant 

information related 

to finding measures 

of central tendency 

(mean, median, and 

mode) using R. 

Simplify data by 

selecting 

relevant 

information and 

ignoring 

irrelevant 

information 

related to finding 

measures of 

central tendency 

(mean, median, 

and mode) using 

R on other 
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CT 

Component 

Action 

Situation 

Formulation 

Situation 

Validation 

Situation 

Institutionaliza-

tion Situation 

relevant 

problems. 

Algorithm Identify various 

stages of 

problem solving 

related to finding 

measures of 

central tendency 

(mean, median, 

and mode) using 

R. 

Develop problem 

solving steps 

related to finding 

measures of central 

tendency (mean, 

median, and mode) 

using R. 

Testing the 

correctness and 

effectiveness of the 

use of problem-

solving steps 

related to finding 

measures of central 

tendency (mean, 

median, and mode) 

using R. 

Use correct and 

effective steps 

to solve 

problems related 

to finding the 

measures of 

central tendency 

(mean, median, 

and mode) using 

R on other 

relevant 

problems. 
 

The implementation of didactical design in Task 3 starts from the action situation where students 

are faced with the task of finding data-centering measures that include the mean, median, and mode in 

R on Google Colab. Then, in the formulation situation, students try to arrange the flow to find the measure 

of data concentration in R, as reflected in the pseudocode presented in Figure 10. 

 

 

Translation 
Steps to calculate the mean 
1. Data input in R 
2. Enter the command mean (data name) 
Steps to calculate the median 
1. Data input in R 
2. Enter the median command (data name) 
Steps to calculate the mode 
1. Data input in R 
2. Calculate frequencies with <-table frek command 

(data name) 
3. Searching for a mode with the mode command <- 

as.numeric(dataname)(frek)(frek = = max(frek)]) 
4. Displaying data with the print command (mode) 

Figure 10. Pseudocode example of calculating mean, median, and mode using R 

After successfully compiling the steps to calculate the size of data concentration in R, as presented 

in Figure 10, in the validation situation, students attempted to test the pseudocode directly in R. Finally, 

in the institutionalization situation, students were challenged to solve a new problem, namely, finding 

more complex data concentration measures in R on Google Colab. An example of the artifact of finding 

the size of the data concentration in R on Google Colab produced by the students is presented in Figure 

11. 
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Commands 

Output 

Figure 11. Artifact example of calculating mean and median using R  

Figure 11 illustrates the process of calculating the mean and median using R on Google Colab in 

two steps. First, the data were entered directly. Second, the mean was calculated using the "mean" 

command and finding the median using the "median" command. As a result, R will present the mean and 

median of the previously entered data. 

Didactical Design in Task 4 (Measures of Dispersion) 

The didactical design at Task 4 was a CT integration didactical design used to determine the measures 

of dispersion, which included range, variance, and standard deviation. There are 16 (4 × 4) CT integration 

didactical situations on the measures of the dispersion material as the didactical situation framework 

listed in Figure 12. 

 

 

Figure 12. Framework of didactical situations on task 4 (Measures of dispersion) 

Figure 12 is a framework of didactical situations on Task 4, namely on the material of measures of 

dispersion, which includes range, variance, and standard deviation. The activity design for each didactical 

situation is presented in Table 6.  

Table 6. Didactical situation in task 4 (Measures of dispersion) 

CT 

Component 

Action 

Situation 

Formulation 

Situation 

Validation 

Situation 

Institutionalization 

Situation 

Decomposition Decompose 

complex 

problems related 

Formulate a 

strategy to 

decompose a 

Test the 

correctness of the 

strategy of 

Decompose a 

complex problem 

related to finding 



How computational thinking can be integrated in statistical learning: A cuboid framework                                                    437 
 

 

CT 

Component 

Action 

Situation 

Formulation 

Situation 

Validation 

Situation 

Institutionalization 

Situation 

to finding the 

size of the 

spread using R 

into simpler 

problems. 

complex problem 

related to finding 

the size of the 

spread using R into 

simpler problems. 

decomposing a 

complex problem 

related to finding 

the size of the 

spread using R into 

simpler problems. 

the size of the 

spread using R into 

simpler problems 

on other relevant 

problems. 

Pattern 

Recognition 

Recognize 

problem solving 

patterns related 

to finding the 

size of the 

spread using R. 

Develop problem 

solving patterns 

related to finding 

the size of the 

spread using R. 

Test the 

correctness of 

problem-solving 

patterns related to 

finding the size of 

the spread using R. 

Recognize problem 

solving patterns 

related to finding 

the size of the 

spread using R on 

other relevant 

problems. 

Abstraction Simplifying data 

by selecting 

relevant 

information and 

ignoring 

irrelevant 

information 

related to finding 

the size of the 

spread using R. 

Formulate a data 

simplification 

strategy by 

selecting relevant 

information and 

ignoring irrelevant 

information related 

to finding the size of 

the spread using R. 

Testing the 

correctness of the 

data simplification 

strategy by 

selecting relevant 

information and 

ignoring irrelevant 

information related 

to finding the size of 

the spread using R. 

Simplify data by 

selecting relevant 

information and 

ignoring irrelevant 

information related 

to finding the size of 

the spread using R 

on other relevant 

problems. 

Algorithm Identify various 

stages of 

problem solving 

related to finding 

the size of the 

spread using R. 

Develop problem 

solving steps 

related to finding 

the size of the 

spread using R. 

Testing the 

correctness and 

effectiveness of the 

use of problem-

solving steps 

related to finding 

the size of the 

spread using R. 

Use correct and 

effective steps to 

solve problems 

related to finding 

the size of the 

spread using R for 

other relevant 

problems. 
 

The implementation of didactical design in Task 4 starts from the action situation where students 

are faced with the task of calculating the size of data distribution, which includes range, variance, and 

standard deviation in R on Google Colab. Then, in the formulation situation, students try to arrange the 

flow to calculate the size of the data distribution in R, as reflected in the pseudocode presented in Figure 

13. 
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Translation 
Find a range 
1. Input data to be used in R 
2. Find a range with coding range <- max(name) – 

min(name) 
3. Displaying data with print(range) 
Search for variance 
1. Input data to R 
2. Find a variance with variance <- var(name)  
3. Displaying data with print(variance) 
Finding standard deviation 
1. Input data to R 
2. Find standard deviation with default <-sd(name)  
3. Displaying data with print(default) 

Figure 13. Example of pseudocode calculating range, variance, and standard deviation 

After successfully compiling the steps to calculate the data distribution measure in R, as presented 

in Figure 13, in the validation situation, students tried to test the pseudocode directly in R. Finally, in the 

institutionalization situation, students were challenged to solve a new problem, namely, calculating a 

more complex data distribution measure in R on Google Colab. An example of the artifact of finding the 

size of the data concentration in R on Google Colab produced by the students is presented in Figure 14. 

 

 

Commands 

Output 

Figure 14. Artifact example of calculating range, variance, and standard using R 

Figure 14 illustrates the process of finding the range, variance, and standard deviation using R in 

Google Colab in five steps. First, the data were entered into R. Second, the range was determined by 

determining the difference between the highest data using the "max" function and the lowest data using 

the "min" function. Third, the range was displayed using the "print" function. Fourth, the standard deviation 

was determined using the "sd" function. Finally, the variance was found using the "var" function. As a 

result, R presents the range, variance, and standard deviation of the previously entered data. 

Didactical Design in Task 5 (Measures of Location) 

The didactical design in Task 5 was a CT integration didactical design for determining the size of the data 

location, which included quartiles, deciles, and percentiles. There are a total of 16 (4 × 4) CT integration 

didactical situations for the data location size material, as presented in Figure 15. 
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Figure 15. Framework of didactical situation on task 5 (Measures of location) 

Figure 15 shows the framework of the didactical situation on Task 5, which is on the measures of 

data location, which includes quartiles, deciles, and percentiles. The detailed activity design for each 

didactical situation is presented in Table 7. 

Table 7. Didactical situation in task 5 (Measures of location) 

CT 

Component 

Action 

Situation 

Formulation 

Situation 

Validation 

Situation 

Institutionaliza-

tion Situation 

Decomposition Decompose 

complex 

problems related 

to locating using 

R into simpler 

problems. 

Formulate a 

strategy to 

decompose a 

complex problem 

related to finding 

the size of the 

location using R 

into simpler 

problems. 

Test the 

correctness of the 

strategy to 

decompose a 

complex problem 

related to finding 

the size of the 

location using R 

into simpler 

problems. 

Decompose a 

complex problem 

related to locating 

using R into 

simpler problems 

on other relevant 

problems. 

Pattern 

Recognition 

Recognize 

problem-solving 

patterns related 

to locality search 

using R. 

Develop problem 

solving patterns 

related to finding 

the size of the 

location using R. 

Test the 

correctness of 

problem-solving 

patterns related to 

finding the size of 

the location using 

R. 

Recognize 

problem solving 

patterns related to 

finding the size of 

the location using 

R in other relevant 

problems. 

Abstraction Simplify data by 

selecting 

relevant 

information and 

Formulate data 

simplification 

strategies by 

selecting relevant 

Testing the 

correctness of the 

data simplification 

strategy by 

Simplify data by 

selecting relevant 

information and 

ignoring irrelevant 
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CT 

Component 

Action 

Situation 

Formulation 

Situation 

Validation 

Situation 

Institutionaliza-

tion Situation 

ignoring 

irrelevant 

information 

related to 

locality size 

search using R. 

information and 

ignoring irrelevant 

information related 

to finding the size of 

the location using 

R. 

selecting relevant 

information and 

ignoring irrelevant 

information 

related to finding 

the size of the 

location using R. 

information 

related to finding 

the size of the 

location using R 

on other relevant 

problems. 

Algorithm Identify various 

stages of 

problem solving 

related to finding 

the size of the 

location using R. 

Develop problem 

solving steps 

related to finding 

the size of the 

location using R. 

Testing the 

correctness and 

effectiveness of 

the use of 

problem-solving 

steps related to 

finding the size of 

the location using 

R. 

Use correct and 

effective steps to 

solve problems 

related to finding 

the size of the 

location using R 

for other relevant 

problems. 

 

The implementation of didactical design in Task 5 starts from the action situation where students 

were faced with the task of calculating the size of data location, which includes quartiles, deciles, and 

percentiles in R on Google Colab. Then, in the formulation situation, the students tried to arrange the flow 

to calculate the size of the data location in R, as reflected in the pseudocode presented in Figure 16. 

 

 

Translation 
1. Data input in R 
2. Search for quartiles with quantile(name, prob = c(.25, 

.5, .75) 
3. Finding deciles with quantile(name, prob = c(.1, .2, 

.3, ...) 
4. Finding percentiles by quantile(name, prob = c(.01, 

.03, ...) 
5. Run code 

Figure 16. Pseudocode example of calculating quartiles, deciles, and percentiles 

After successfully compiling the steps to calculate the size of the data location in R as presented 

in Figure 16, in the validation situation, the students tried to test the pseudocode directly in R. Finally, in 

the institutionalization situation, the students were challenged to solve a new problem, namely, calculating 

the size of more complex data locations in R on Google Colab. An example of the artifact of finding the 

size of the data location in R on Google Colab, produced by the students, is presented in Figure 17. 

Figure 17 illustrates the process of finding quartiles, deciles, and percentiles using R in Google 

Colab in two steps. First, the students input data into R. Second, students search for quartiles, deciles, 

and percentiles using the "quantil" function. The difference between searching quartiles, deciles, and 

percentiles lies only in the probability. As a result, R presents the quartiles, deciles, and percentiles of 

the previously entered data. 

The results of this study show that the didactical design developed has undergone a validation 
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process by experts and has received various improvements based on their input. The implementation of 

the design in five learning tasks shows that this approach can integrate Computational Thinking (CT) into 

R-assisted descriptive statistics learning in Google Colab. Through a series of didactical situations-Action, 

Formulation, Validation, and Institutionalization-the students gradually built a conceptual understanding 

of statistics while developing computational thinking skills. In addition, the implementation process 

revealed how the students could adapt problem-solving strategies using R from the initial understanding 

stage to application in more complex data contexts. Each task was designed to hone the four main 

components of CT-Decomposition, Pattern Recognition, Abstraction, and Algorithm-so as to not only 

strengthen mastery of statistical material but also improve analytical skills and technology-based problem 

solving. These findings provide a strong foundation to further examine the effectiveness of this didactical 

design through retrospective analysis, which will be the focus of future research. 

 

  

Commands 

Output 

Figure 17. Artifact example of calculating quartile, decile, and percentile using R 

Discussion 

The primary aim of this research was to design a hypothetical didactical framework that integrates R 

software into a basic statistics course to enhance CT skills among undergraduate mathematics education 

students. This design targets third-semester students and is aligned with their foundational knowledge of 

statistics and introductory programming experience. The framework is grounded in the TDS (Brousseau, 

2002) and incorporates essential didactical components to foster a productive learning environment. 

The proposed framework adopts a three-dimensional structure (5 × 4 × 4), in which the five learning 

tasks—Task 1 (data, scales, variables, and R), Task 2 (data presentation), Task 3 (measures of central 

tendency), Task 4 (measures of dispersion), and Task 5 (measures of location)—are intersected by four 

didactical situations (action, formulation, validation, and institutionalization) and four CT components 

(decomposition, pattern recognition, abstraction, and algorithms) as identified by Dong et al. (2019). This 

design expands upon the earlier work of Piatti et al. (2022), who introduced a 3 × 3 × 3 cube integrating 

activity types, computational domains, and student autonomy. The current study extends this model by 

embedding more complex dimensions tailored specifically to the instructional needs of descriptive 

statistics using R in Google Colab, ensuring a more holistic integration of statistical reasoning and CT 

skills. 

The hypothetical didactical design produced 80 distinct didactical situations distributed across five 

instructional sessions, with each session encompassing 16 didactical situations. These were derived from 

the combination of CT components and didactical stages, each accompanied by anticipated student 

responses and corresponding pedagogical interventions, referred to as Anticipation Didactique 

Pédagogique (ADP). The ADP accounts for two primary student pathways: one where students are able 

to solve the tasks independently, and another where students encounter difficulties. In the latter case, 

scaffolding strategies such as simplified prompts or guiding instructions are provided to facilitate self-

directed problem solving (Anghileri, 2006; Bakker et al., 2015; Bell & Pape, 2012). Consequently, the 
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ADP functions both as an intervention tool for students experiencing cognitive obstacles and as a means 

of guiding incremental learning progression. 

Each type of didactical situation within the Cuboid Framework serves a distinct pedagogical 

function. The Action Situation involves active student engagement in statistical exploration using R on 

Google Colab. During this phase, students are introduced to data manipulation and computation of 

various descriptive statistics, including measures of central tendency (mean, median, mode), dispersion 

(range, variance, standard deviation), and location (quartiles, deciles, percentiles). This exploratory 

phase supports the development of foundational statistical intuition, consistent with findings from 

Nurjanah et al. (2021), which emphasize the pedagogical value of hands-on experimentation. 

In the Formulation Situation, students are encouraged to construct structured solutions by 

translating statistical problems into pseudocode and algorithmic representations before implementing 

them in R. This phase aligns closely with CT practices, particularly in fostering decomposition, pattern 

recognition, abstraction, and algorithmic thinking (Looi et al., 2018; Tareq & Yusof, 2024). The emphasis 

on procedural development reinforces logical sequencing and procedural fluency, critical for both 

statistical problem solving and programming competence. 

The Validation Situation focuses on evaluating and verifying the functionality of students 

constructed solutions. By executing their code in R, students receive immediate feedback through output 

or error messages, prompting iterative debugging and refinement. This process mirrors authentic 

programming practices and strengthens diagnostic reasoning (Becker et al., 2016; Tareq & Yusof, 2024). 

The recursive cycle of testing and correction cultivates students’ ability to identify logical inconsistencies 

and optimize algorithmic approaches. 

In the Institutionalization Situation, students are required to generalize their learning by applying 

previously acquired knowledge to new, complex, and contextually relevant problems. These tasks 

demand not only statistical reasoning but also computational flexibility as students transition from guided 

to autonomous problem solving. Application contexts may vary from educational assessments to 

business analytics and social science research, thereby reinforcing the real-world relevance of statistical 

and computational integration. 

The deliberate sequencing and integration of didactical situations within the Cuboid Framework 

have demonstrated potential to enhance both conceptual and procedural understanding. The ADP, as a 

forward-thinking instructional tool rooted in didactical theory (Suryadi, 2010; 2013), allows instructors to 

anticipate learning difficulties and respond adaptively. Its theoretical basis builds upon the refinement of 

the didactical triangle proposed by Kansanen and Meri (1999), emphasizing the dynamic interaction 

between teacher, student, and content. 

Findings from this study indicate that the CT-integrated didactical design supports student 

engagement in statistically grounded problem solving and fosters CT development. The use of R software 

not only enhances students’ statistical competencies but also provides an authentic computational 

environment for developing algorithmic thinking. Classroom observations and expert validation suggest 

that the structured implementation of didactical situations—particularly the validation phase—plays a 

crucial role in nurturing logical reasoning through debugging practices. 

Overall, this study contributes a theoretically grounded and empirically supported framework for 

embedding CT into undergraduate statistics education. Future research should explore its long-term 

impact on students’ statistical literacy and computational proficiency through experimental or longitudinal 

designs. Additionally, adaptation of this model to other mathematical topics and instructional technologies 

may broaden its applicability and pedagogical value. 
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CONCLUSION 

This study successfully developed a didactical design framework for integrating CT into descriptive 

statistics learning, specifically for undergraduate mathematics education students. The Cuboid 

Framework systematically combines statistical tasks, didactical situations from the TDS, and CT 

components to enhance students’ problem-solving abilities using R in Google Colab. Through expert 

validation and iterative refinement, this framework provides structured learning experiences that 

progressively develop students’ conceptual understanding of statistics while fostering computational 

thinking skills. The findings indicate that the integration of CT into statistics learning through the Cuboid 

Framework effectively supports students in decomposing problems, recognizing patterns, abstracting 

information, and designing algorithms within statistical problem-solving contexts. Structured didactical 

situations—Action, Formulation, Validation, and Institutionalization—play a crucial role in guiding 

students through each phase of learning, ensuring a balance between conceptual exploration and 

computational application. 

Despite its contributions, this study has several limitations. First, it focused primarily on the 

prospective analysis and metapedadidactic stages of Didactical Design Research (DDR), without 

extending to the retrospective analysis stage, which would involve a comparative quantitative evaluation 

of the framework’s effectiveness in improving students' CT and statistical reasoning. Second, although 

expert validation confirmed the framework’s theoretical alignment, its practical implementation across 

diverse educational settings remains unexplored. Future research should focus on empirical classroom 

implementation to assess the impact of the Cuboid Framework on student learning outcomes, including 

a quantitative analysis of its effectiveness. Additionally, adapting this framework to other mathematical 

and scientific domains could provide further insights into its generalizability and applicability beyond 

statistical learning. Continued refinement of this approach has the potential to enhance computational 

thinking integration in education, ensuring that students develop the necessary analytical and problem-

solving skills for the data-driven era. 
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