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Abstract 

Assessing conceptual understanding in mathematics remains a persistent challenge for educators, as traditional 
assessment methods often prioritize procedural fluency over the complexity of connections between mathematical 
ideas. Consequently, these methods frequently fail to capture the depth of students’ conceptual understanding. 
This paper addresses this gap by developing and applying a novel rubric based on the Structure of Observed 
Learning Outcomes (SOLO) Taxonomy, designed to classify student responses according to demonstrated 
knowledge capacity and cognitive complexity. The rubric introduces transitional levels between the main SOLO 
categories and includes provisions for evaluating unconventional solutions, enabling a more nuanced assessment 
of student work based on knowledge depth and integration. The rubric was constructed through an analysis of the 
conceptual knowledge components required to solve each problem, validated by expert review, and guided by 
criteria aligned with SOLO level classifications. It also incorporates qualitative feedback to justify each SOLO level 
assignment. Using this rubric, the study analyzed responses from 57 first-year undergraduate students—primarily 
chemistry and computer science majors at a private university in the Philippines—to test items on linear 
approximations and the Extreme Value Theorem. Interrater reliability was established through weighted Cohen’s 
kappa coefficients (0.659 and 0.667 for the two items). The results demonstrate the rubric’s capacity to differentiate 
levels of conceptual understanding and reveal key patterns in student thinking, including reasoning gaps, reliance 
on symbolic manipulation, and misconceptions in mathematical logic. These findings underscore the value of the 
SOLO Taxonomy in evaluating complex and relational thinking and offer insights for enhancing calculus instruction. 
By emphasizing the interconnectedness of mathematical ideas, the study highlights the potential of conceptually 
oriented assessments to foster deeper learning and improve educational outcomes. Furthermore, the rubric’s 
adaptability suggests its applicability beyond calculus, supporting a broader shift toward concept-focused 
assessment practices in higher education. 
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The effective evaluation of conceptual understanding in foundational university-level mathematics 

courses such as applied calculus is a challenge for educators. While mathematical proficiency comprises 

multiple dimensions, conceptual understanding remains particularly difficult to evaluate systematically.  

Kilpatrick et al. (2001) identified five strands of mathematical proficiency: conceptual understanding, 

procedural fluency, strategic competence, adaptive reasoning, and productive disposition toward 

mathematics—these are all interwoven and interdependent. In higher education mathematics, the 

necessity to develop all these strands are more prominent: a student in higher mathematics should be 
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able to relate mathematical concepts, to execute mathematical procedures fluently, to represent and 

solve mathematical problems, to reason logically, and to maintain a positive disposition toward 

mathematics and learning mathematics. This demand for mathematical proficiency is particularly crucial 

in foundational but conceptually challenging courses such as differential calculus (Santos-Trigo et al., 

2024). 

Traditionally, mathematics teaching has predominantly focused on developing procedural skill, 

perhaps due to mathematics teachers’ “conception of mathematics as a static body of knowledge, 

involving a set of rules and procedures that are applied to yield one right answer” (Stipek et al., 2001). 

This procedural focus is reinforced when teachers generally point out procedural errors when giving 

feedback on students’ solutions (Stovner et al., 2021). However, procedural skill is not enough to be 

successful in learning mathematics in a higher education context, as higher education mathematics 

demand more competencies: mathematical thinking, problem handling, modelling, reasoning, 

representation, and communication (Büchele & Feudel, 2023).  

An emphasis on procedural skill creates students who are fluent in executing procedures (e.g., 

how to calculate derivatives) but possibly lack depth in understanding concepts (e.g., why the derivative 

gives the slope of a line tangent to a curve). This also leads to students’ inability to see the connection 

between related concepts (e.g., why a curve is not differentiable at a sharp corner, or why differentiability 

at a point implies continuity at that point) (Arslan, 2010). Therefore, the need for mathematics teaching 

to also place an emphasis on conceptual understanding is imperative. This call for an increased focus on 

conceptual understanding in mathematics teaching is not new—it has been recognized as early as 25 

years ago (Rittle-Johnson & Alibali, 1999). However, the persistence of research on the interplay between 

conceptual understanding and procedural fluency, as well as on concepts-first versus procedures-first 

approaches, indicates that it remains a pressing need in mathematics education. 

Kilpatrick et al. (2001) define conceptual understanding as “an integrated and functional grasp of 

mathematical ideas,” which entails more than knowing facts in isolation. It extends to a connected network 

of concepts, where “the degree of students’ conceptual understanding is related to the richness and 

extent of the connections they have made” (Kilpatrick et al., 2001). 

While frameworks like Bloom’s Taxonomy (Bloom et al., 1964) have been widely used for 

categorizing learning goals and designing assessments, they are not always suitable for evaluating open-

ended responses in a systematic way. According to Biggs and Collis (2014), Bloom’s Taxonomy “is really 

intended to guide the selection of items for a test rather than to evaluate the quality of a student's 

response to a particular item” and is “based on judgments about quality, which may be arbitrary” (p. 13). 

In other words, the levels in Bloom’s Taxonomy are a priori, set by the teacher as standards against 

which student outcomes are measured. For example, an evaluator using Bloom’s Taxonomy might 

classify a solution to an optimization problem at the “application” level, depending on the student’s use of 

derivatives to find extrema. However, this does not capture whether the student understands the 

connection of the procedure to underlying concepts. 

In response to this limitation of Bloom’s Taxonomy as a rubric for evaluating student responses to 

assessments, Biggs and Collis (2014) developed the Structure of the Observed Learning Outcome 

(SOLO) Taxonomy, whose levels “arise naturally in the understanding of the material” (p. 13). Unlike 

Bloom’s Taxonomy, which classifies types of cognitive processing, the SOLO Taxonomy evaluates the 

structural quality of a response—both breadth and depth of conceptual integration. Thus, the SOLO 

Taxonomy is aligned for assessing conceptual understanding in mathematics, where the “richness and 

extent of connections” is its defining characteristic. 
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Unlike Piaget’s levels of cognitive development which aims to categorize a student’s general 

cognitive structure, the SOLO Taxonomy aims to evaluate a particular response of a student to a learning 

task. This is important because a student may demonstrate differing levels of learning in different 

subjects, and they may also even demonstrate differing levels of learning within the same subject in 

different time periods. In other words, the labels are shifted “from the student to his response to a 

particular task” (Biggs & Collis, 2014). In the SOLO Taxonomy, the complexity of a response to a learning 

task may be classified to one of several levels, based on the number of relevant concepts demonstrated 

(capacity) and the connections made between these concepts and the cue to form a logical, consistent 

response (relating operation): 

1. Prestructural: Response represents the use of no relevant concept; 

2. Unistructural: Response represents the use of one relevant concept; 

3. Multistructural: Response represents the use of several disjoint concepts; 

4. Relational: Response represents the use of all related concepts in an integrated whole; and 

5. Extended abstract: Comprehensive use of all relevant concepts together with related 

hypothetical constructs and abstract principles (Radmehr & Drake, 2019). 

Movement from the prestructural to the unistructural and to the multistructural levels indicate a 

development in knowledge quantity—that is, a student knows more things, but they may not be well-

integrated. On the other hand, movement from the multistructural to the relational level and to the 

extended abstract level indicate a development in knowledge quality—that is, a student is able to 

integrate the isolated pieces of information they know. 

Because student responses to a specific task may vary greatly, it is possible that a particular 

response may not fit exactly in one of these five levels. The SOLO Taxonomy allows for the possibility of 

a response to be classified into a transitional level. In general, transitional responses 

 

… tend to be marked by confusion or inconsistency. It is as if the student is handling more 

information than he can cope with in his working memory, and he loses track of his argument. 

Typically, transitional responses carry more information than is usual in the level the student 

is emerging from, but he is forced to give up before reaching the complexity of structure that 

is expected at the next SOLO level (Biggs & Collis, 2014, p. 29). 

 

While studies such as Bisson et al. (2016) and Crooks and Alibali (2014) developed frameworks 

to assess conceptual understanding, these studies have mainly focused on K-12 education or theoretical 

aspects of assessing conceptual understanding. Additionally, the few which use the SOLO Taxonomy in 

mathematics education mainly focused on the K-12 levels (Claudia et al., 2020; Mukuka et al., 2020; Putri 

et al., 2017; Sudihartinih, 2019), and even fewer have higher education participants (Mulbar et al., 2017; 

Ramos et al., 2024). None of these have specifically looked into applied calculus courses in higher 

education, where conceptual understanding is particularly important. Thus, even with the recognition of 

the importance of conceptual understanding, there is a gap in assessment frameworks for applied 

calculus contexts: there is an absence of structured rubrics based on the SOLO Taxonomy specifically 

designed to evaluate the structural complexity of conceptual connections. 

This paper addresses the question: How can the SOLO Taxonomy be adapted and applied to 

evaluate conceptual understanding in university-level applied calculus? The study has a twofold focus: 

first, to develop a SOLO Taxonomy-based rubric specifically for evaluating conceptual understanding in 
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applied calculus; and second, to explore its effectiveness through its application to solutions from 57 first-

year undergraduate students to test items. The rubric’s effectiveness was measured with respect to 

interrater reliability, its ability to distinguish between levels of conceptual understanding, and its ability to 

identify patterns in conceptual understanding. While the primary context of the study is undergraduate 

mathematics, the findings may have broader implications for mathematics education in various levels. 

METHODS 

Development of the Rubric 

The development of the SOLO-Taxonomy based rubric began with a literature review to search for 

frameworks to evaluate conceptual understanding that aligned with Kilpatrick et al.’s (2001) definition of 

conceptual understanding. Finding no such existing framework, the SOLO Taxonomy (Biggs & Collis, 

2014) was identified as a promising foundation. The SOLO Taxonomy was then deconstructed into its 

core components of capacity and relating operation. In this adaptation, capacity was operationalized as 

the number of relevant conceptual knowledge components demonstrated in a solution, and relating 

operation was interpreted as the degree of integration among these conceptual knowledge components. 

This bridges the aspects central to classifying a response in the SOLO Taxonomy to Kilpatrick et al.’s 

(2001) definition of conceptual understanding. 

Instead of creating a rubric tailored to each item, a general rubric which could be applied to various 

problems was developed. The initial rubric comprised SOLO level descriptors specific to mathematics 

and expounded on transitional levels to capture nuanced differences. This is particularly important in 

mathematics where conceptual development happens in small steps rather than large jumps (Wilson, 

2009). For example, a prestructural response is marked by fragmented or incorrect concepts that lack 

any meaningful connection to a problem or by a lack of engagement with a problem. In contrast, a 

relational response demonstrates a well-integrated understanding of calculus concepts and the ability to 

correctly reason through the connections among calculus concepts. After developing the initial rubric, it 

was tested informally with some of the collected solutions, leading to iterative refinements until the rubric 

could effectively distinguish between different levels of conceptual understanding. This process ensured 

that the rubric remained theoretically grounded while being practically applicable to evaluating conceptual 

understanding. While this approach is not as rigorous as formal validation procedures, the substantial 

interrater reliability provides post-hoc evidence supporting the rubric’s validity for its intended purpose. 

To meaningfully use this rubric to evaluate student solutions, the following evaluation procedure 

was utilized. 

1. Identifying conceptual knowledge components 

For each item, the researchers identified the conceptual knowledge components necessary to 

answer the problem. A conceptual knowledge component is a concept present in an expected 

solution based on the course content. This list of knowledge components is then validated by a 

teacher who has been teaching university-level calculus and real analysis for over ten years. 

2. Identifying demonstrated knowledge components 

A solution is thoroughly read to classify whether each conceptual knowledge component identified 

in the list from the previous step is explicitly expressed, implied, is demonstrated incorrectly, or not 

demonstrated at all by the solution. A conceptual knowledge component is explicitly expressed if 

the student clearly states or articulates it by stating it directly. This shows that the student correctly 

understands and can communicate the concept. Otherwise, if the solution shows that the 
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conceptual knowledge component is present without being explicitly stated, it is classified as 

implied. If a solution attempts to demonstrate a conceptual knowledge component but does not do 

so correctly, then the conceptual knowledge component is classified as incorrectly demonstrated. 

Finally, a conceptual knowledge component is not demonstrated if it is not present, whether 

explicitly demonstrated or otherwise. 

Note here that a solution may not demonstrate all the conceptual knowledge components listed in 

the previous step. This is especially true if a student uses a different solution than expected. In 

these cases, the conceptual knowledge components not in the list are taken note of, including 

whether each of these is explicitly expressed, implied, or incorrectly demonstrated. 

3. Identifying the solution’s SOLO level 

Based on the number of conceptual knowledge components demonstrated by the solution and 

how well these demonstrated conceptual knowledge components are integrated, the solution is 

then classified into a SOLO level using Table 1. Again, care must be taken when evaluating 

solutions with unconventional approaches. A solution that does not demonstrate the expected 

solution must not be penalized; instead, the evaluation focuses on the relevance, quantity, and 

quality of the demonstrated conceptual knowledge components and their connections. Moreover, 

because the presence of verbal explanations is a crucial indicator of being able to integrate multiple 

conceptual knowledge components into a coherent solution, a solution that does not have verbal 

explanations (or if the lack of verbal explanations hinders the clarity of the integration) will be 

penalized. In particular, if a solution consists of mostly mathematical expressions without explicit 

verbal explanations, it will be evaluated at the highest SOLO level demonstrated within the 

mathematical expressions but adjusted downward by one level only if the lack or absence of verbal 

explanations decreases the clarity of integration among the knowledge components implied by the 

mathematical expressions. 

4. Providing qualitative feedback 

Qualitative feedback was given in order to further justify the choice of SOLO level for the solution. 

This may include whether the solution is unconventional or lacks verbal explanations. In addition, 

solutions which are classified in the transitional MR level are given feedback on whether the 

demonstrated conceptual knowledge components are connected with low integration (i.e., some 

weak or incomplete connections are made between components, showing an emerging 

understanding of relationships between concepts) or high integration (i.e., logical and consistent 

connections are present among the demonstrated conceptual knowledge components, but there 

are some gaps in relating them or the solution lacks full cohesion). In an analogous manner, it is 

understood from the qualities of each SOLO level that solutions classified from the prestructural 

level up to the multistructural level lack any form of integration among conceptual knowledge 

components, and that solutions classified from the relational level up to the extended abstract level 

are marked by a full integration of conceptual knowledge components. 

 

In this rubric, transitional levels are included to address solutions that fall in between the five main 

SOLO levels summarized in Table 1. These levels capture the nuances present in responses that do not 

quite reach one level’s characteristics but also exhibit more than the previous level’s characteristics. The 

inclusion of these transitional levels enables a closer examination of solutions that may otherwise be 

classified ambiguously. 
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Table 1. Criteria for classifying a solution based on capacity and relating operation 

SOLO Level Description Indicators 

Prestructural The solution lacks any relevant 

knowledge of the topic or demonstrates 

clear misconceptions. There is no 

attempt to connect information. 

Solution lacks understanding, with irrelevant or 

incorrect information. May resort to denial (e.g., 

refusing to engage), tautology (repeating the 

question), or transduction (providing a 

perceptual guess). 

Transitional: 

PU 

The solution attempts to recognize a 

single relevant concept but lacks 

comprehension or meaningful 

development. 

Attempts to identify a relevant concept but does 

not demonstrate understanding. Minimal 

engagement with the problem. 

Unistructural The solution demonstrates 

understanding of only one relevant 

concept, with no integration of other 

ideas. 

Accurately identifies and addresses one 

knowledge component. Lacks other relevant 

knowledge components, so no connections are 

present. 

Transitional: 

UM 

The solution attempts to recognize more 

than one concept but lacks 

comprehension or meaningful 

development. 

Unsuccessful demonstration of more than one 

knowledge component, so in the end, only one 

knowledge component is completely used in the 

solution. 

Multistructural The solution demonstrates multiple 

distinct pieces of relevant information but 

lacks any integration between them. 

Correctly addresses several knowledge 

components in isolation. Shows awareness of 

multiple knowledge components but treats them 

independently. 

Transitional: 

MR 

The solution shows emerging 

understanding of connections between 

multiple concepts, but these connections 

are incomplete or unclear.  

Begins to relate multiple knowledge 

components but lacks full logical coherence. 

Partial, emerging relational understanding. 

Relational The response demonstrates a fully 

integrated understanding of relevant 

concepts, applying them coherently to 

solve the problem. 

Accurately integrates necessary knowledge 

components in a cohesive solution. Solution is 

logically consistent with no inconsistencies. 

Transitional: 

RE 

The solution shows awareness of the 

potential for abstraction or extension 

beyond the problem context but lacks 

complete clarity in this generalization. 

Attempts abstraction or generalization beyond 

the given problem but is unclear. 

Extended 

Abstract 

The solution demonstrates abstract 

reasoning, applying integrated concepts 

in innovative or generalized ways that 

extend beyond the problem. 

Extends solution by moving beyond problem 

constraints to form new hypotheses. 

Demonstrates clear resolution of 

inconsistencies, even beyond expected 

knowledge boundaries. 
 

Participants and Setting 

Participants of the study are students enrolled in two classes of an applied differential calculus course 

offered to first-year undergraduate students in a private university in Quezon City, Philippines in the 

second semester of Academic Year 2023-2024. Each of the two classes were almost homogeneous: one 

class consisted mostly of chemistry majors, and the other mostly of computer science majors. While the 
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participants came from two different majors, several factors minimized potential confounding effects. 

Because the participants are first-year undergraduate students, they have not taken any university-level 

mathematics courses yet. Thus, they have similar mathematics backgrounds from senior high school. 

Moreover, both classes were taught by the same instructor using identical course materials and teaching 

strategies. Lastly, since the focus of the study is on conceptual understanding rather than discipline-

specific applications, the likelihood of performance differences between majors is reduced. 

The study was conducted with approval from the university’s Research Ethics Office, with 

approved protocol code SOSEREC_23_014. All 57 participants were briefed about the study prior before 

voluntarily giving informed consent. Data were anonymized prior to analysis and were kept in a secure 

storage location. 

Data Collection 

The primary data for this study consisted of written student solutions to two conceptual items from the 

researcher-developed Derivatives Concepts and Skills Test (DCST). The DCST was developed 

collaboratively with the experienced course instructor to ensure alignment with course objectives, 

establishing content validity through expert judgment. However, as the DCST served as a summative 

assessment of the course, formal pilot testing was not conducted to maintain test security, a common 

limitation in classroom-based research. 

The test items were designed to assess conceptual understanding and procedural fluency on 

topics relating to the derivative (implicit differentiation, related rates of change, linear approximations and 

differentials, local and absolute extrema of functions, how derivatives affect the shape of a graph, 

indeterminate forms and L’Hôpital’s Rule, and optimization). For this paper, full solutions to two items in 

the DCST of 57 students were collected and digitized. These two items are as follows: 

Item 5: In physics and engineering, the approximation 𝑠𝑖𝑛 𝑥 ≈ 𝑥 is sometimes used. Under 

what condition/s is this approximation reasonable? 

Item 7: The extreme value theorem states that a continuous function 𝑓 on an interval [𝑎, 𝑏] 

attains attains an absolute minimum and an absolute maximum in [𝑎, 𝑏]. Will the theorem 

still be true if we replace the interval [𝑎, 𝑏] by the interval (𝑎, 𝑏)? If so, provide proof or an 

explanation. Otherwise, explain and provide a counterexample. 

These two items were selected since they specifically target conceptual understanding with 

minimal procedural components. Unlike the other DCST items which generally combine conceptual and 

procedural elements (e.g., problems on related rates of change and optimization), these two items focus 

almost exclusively on students’ ability to relate mathematical concepts. In particular, Item 5 requires an 

understanding of the relationship between a function and its linear approximation, and Item 7 requires an 

understanding of why a closed interval is necessary for the extreme value theorem. 

The DCST was administered in person in two instances and served as two summative 

assessments of the course. For each instance, students were given 80 minutes to answer five items, 

which vary in difficulty and focus. The time constraints likely affected some aspects of student 

performance, especially for Item 5 which appeared at the end of the first testing session. This time 

pressure can affect the completeness of responses and the quality of explanations, which may result in 

some solutions being classified at lower SOLO levels than might have been achieved under ideal 

problem-solving conditions (Biggs & Collis, 2014). However, this time-constrained situation reflects actual 

assessment conditions in higher education. 
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Data Analysis 

The study employed a primary evaluator with a secondary validation approach for methodological 

consistency. One researcher classified all 57 solutions for both items, while two additional raters (one co-

researcher and one mathematics faculty member) each evaluated three solutions per item, with no 

overlap between their assigned solutions. To minimize potential bias, the primary evaluator used a 

structured protocol that requires the explicit identification of demonstrated conceptual knowledge 

components in a solution before classifying it to a SOLO level. Moreover, the interpreters were trained 

with the rubric using a detailed document containing sample solutions not included in the study, and 

interrater samples were strategically selected to represent different types of solutions. For each item, 

reliability in classifying the solutions to SOLO levels was measured by calculating weighted Cohen’s 

kappa for the six total solutions given to the interpreters. Although there were two interpreters, each of 

whom evaluated three solutions, their consolidated ratings were treated as coming from a single interrater 

in the calculation of Cohen’s kappa. Qualitative interpretation of the resulting value of Cohen’s kappa 

followed the nomenclature put forth by Landis and Koch (1977, p. 165). 

For each item, student responses were analyzed using frequency counts of the demonstrated 

SOLO levels. In addition, using the qualitative feedback from the evaluation procedure, student 

responses were analyzed qualitatively to identify patterns in demonstrated conceptual understanding, 

including common conceptual misconceptions or interesting solutions. To illustrate these findings, 

representative examples of student responses at selected SOLO levels were identified. These examples 

highlight the characteristics associated with each SOLO level. This mixed-methods approach provides a 

detailed view of student understanding by capturing both big-picture patterns and more nuanced insights 

into the solutions themselves. 

RESULTS AND DISCUSSION 

Distribution of SOLO Levels 

Figure 1 illustrates the distribution of SOLO levels for each exam item. For Item 5, 63% of the responses 

were classified at the multistructural level or lower, indicating that students were able to identify and 

demonstrate the conceptual knowledge components to answer the item without integration. Although 

one-third of the responses were classified at the transitional MR level, the degree of integration varied. 

In contrast, responses for Item 7 showed a different distribution of SOLO levels, with 86% achieving the 

transitional MR or the relational levels. Similar to Item 5, responses at the transitional level for Item 7 also 

varied in the degree of integration of the knowledge components. 

For Item 7, 74% of the responses were able to arrive at the correct answer for item 7 (i.e., that the 

extreme value theorem does not hold in an open interval) than for item 5 (i.e., that the approximation is 

valid for values of x near zero). This difference in performance may be attributed to several factors beyond 

the effects of learning materials. Item 5 required students to explore the linear approximation of sin 𝑥, an 

open-ended task which they have not encountered in the class materials. In contrast, the explanations 

needed to answer Item 7 have been briefly discussed in class. The higher number of MR-level responses 

for Item 7 suggests that familiarity with the topic allowed students to integrate multiple conceptual 

knowledge components, albeit in different degrees. Moreover, the open-ended nature of Item 5 required 

constructive reasoning, which may have contributed to lower success rates. In contrast, evaluating the 

validity of the theorem in Item 7 may have been facilitated by identifying a counterexample, which may 

have contributed to higher success rates. Research suggests that undergraduate students usually find 
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constructive proving more difficult that finding counterexamples to a statement (Bedros, 2003; Pasani, et 

al., 2021), which may further explain the difference in performance between the two Items. 

 

  

Figure 1. Distribution of evaluations for Item 5 (Left) and distribution of evaluations for Item 7 (Right) 

For both items, there is a significant relationship between a solution’s SOLO level and whether or 

not it arrives at the correct answer: for item 5, χ2(6, N = 57) = 28.7, p < .001, and a value of 0.709 

for Cramer’s V; and for item 7, χ2(10, N = 57) = 15.4, p = .008, and a value of 0.459 for Cramer’s 

V. For Item 5, this indicates a strong relationship between a solution’s SOLO level and correctness of 

answer. For Item 7, while the relationship is significant, the moderate effect size measured by Cramer’s 

V suggests that there may be other factors beyond conceptual understanding—such as familiarity with 

the particular topic or with constructing counterexamples—that affected the correctness of a solution’s 

answer. 

Among the transitional MR responses to Item 5, there is a significant relationship between the 

degree of integration of demonstrated knowledge components in a solution and whether it arrives at the 

correct answer: χ2(1, N = 19) = 8.15, p = .004, and a value of 0.655 for Cramer’s V. This means 

that among the transitional MR responses to Item 5, a solution which demonstrates a high degree of 

integration of demonstrated knowledge components strongly suggests that it arrives at the correct 

answer. Interestingly, for Item 7, among the transitional MR responses, there is no significant relationship 

between the degree of integration of demonstrated knowledge components in a solution and whether or 

not it arrives at the correct answer): χ2(2, N = 42) = 4.77, p = .092, and a value of 0.337 for 

Cramer’s V. While there is still a relationship between these two variables among transitional MR 

responses to Item 7, it is not as strong as that exhibited among transitional MR responses to Item 5. 

However, among the 33 responses in the transitional MR level and which arrived at the correct 

answer for Item 7, there is a significant relationship between the degree of integration of demonstrated 

knowledge components in a solution and whether or not it is able to provide a correct counterexample: 

χ2(1, N = 33) = 16.2, p < .001, and a value of 0.702 for Cramer’s V. This suggests that for the 
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transitional MR responses to Item 7 which arrived at the correct answer, being able to integrate 

knowledge components strongly suggests the ability to provide a correct counterexample. 

The dominance of lower SOLO level responses and incorrect answers for Item 5 may also be 

attributed to the manner in which the DCST was administered. The DCST was administered as two 

summative assessments of the course: Items 1 to 5 as Quiz 3, and Items 6 to 10 as Quiz 4, each timed 

at 75 minutes. It is possible that most students ran out of time in answering Item 5 while taking Quiz 3, 

and so they were not able to explore enough or explain their answers enough to warrant a higher SOLO 

level or arrive at the correct answer. 

While these trends reveal that student solutions to Items 5 and 7 have different distributions, the 

most common SOLO level across both items was the transitional MR level, which suggests students are 

able to demonstrate, whether explicitly or implicitly, the relevant conceptual knowledge components and 

integrate these, albeit with varying depth, to form a conclusion. Very few responses reached the relational 

level, suggesting that only a few students are able to demonstrate and fully integrate the relevant 

conceptual knowledge components, as well as to come up with correct answers. 

Interrater reliability for SOLO level classification was measured at a weighted Cohen’s kappa of 

0.659 for Item 5 and 0.667 for Item 7, both considered as substantial agreement according to Landis and 

Koch (1977). This agreement shows the effectiveness of the rubric. These values for the weighted 

Cohen’s kappa indicate that despite its effectiveness, there may have been potential biases in the 

evaluation process. To mitigate this, evaluators cited particular details in the solutions to justify their 

SOLO classifications. Raters encountered some difficulties with solutions that are between adjacent 

levels, since interpreting these solutions entail more nuance. For example, determining whether a solution 

is in the prestructural or the PU level requires nuanced judgment as it requires an evaluator to determine 

whether a solution genuinely attempts to engage with a conceptual knowledge component. This level of 

interrater reliability suggests that additional refinement, perhaps more detailed and clearer delineations 

between levels, could enhance interrater reliability by minimizing subjective interpretation in boundary 

cases. Implementing a collective moderation process where solutions that are difficult to classify are 

discussed by multiple raters collectively may also address boundary cases. Nevertheless, the substantial 

overall agreement suggests that the evaluation rubric and procedure is able to objectively classify student 

solutions while being sensitive to small nuances in students’ demonstrated conceptual understanding. 

Insights into Students’ Conceptual Understanding 

Analysis of solutions to Items 5 and 7 revealed significant insights into students’ conceptual 

understanding. For Item 5, which examines students’ comprehension of the approximation sin 𝑥 ≈ 𝑥 in 

the context of linear approximations, responses reflected varied levels of understanding. A pattern 

emerged where many solutions were classified into either the unistructural level or the transitional MR 

level of understanding. 

Student solutions to Item 5 were generally marked by the ability to recognize the need to construct 

the linear approximation of sin 𝑥. However, unistructural-level solutions were either not able to go beyond 

this step, used other concepts that were not relevant to the problem, or exhibited an incorrect 

understanding of concepts relevant to the problem. Figure 2 shows two solutions with this characteristic. 

Note that knowing that the derivative of sin 𝑥 is not a conceptual knowledge component; rather, it is a 

procedural knowledge component. 
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Figure 2. Two unistructural responses to Item 5 

Another interesting insight comes from some multistructural-level and most MR-level solutions to 

Item 5. These solutions were able to construct the linear approximation of sin 𝑥 at a number 𝑎, that is, 

𝐿(𝑥) = 𝑓 ′(𝑎)(𝑥 − 𝑎) + 𝑓(𝑎) = cos 𝑥 (𝑥 − 𝑎) + sin 𝑎. However, almost all these solutions 

substituted 𝑎 = 0 without any justification. Naturally this arrives at 𝐿(𝑥) = 𝑥, prompting the students to 

conclude that the approximation is valid for values of 𝑥 near zero. This error of substituting 𝑎 = 0 is not 

limited to MR-level solutions; some multistructural-level solutions also exhibit this error. Figure 3 shows 

two solutions with this error. 

 

 

Figure 3. Two MR-level solutions with low partial integration (top) and high partial integration (bottom) to Item 5 

These errors indicate a lack of sufficient depth in conceptual understanding and suggest that 

students may be applying procedural skills without fully understanding why the said procedures work. 

This tendency to rely on symbolic manipulation alone, or “proceduralizing,” may be because students are 
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used to using mathematical procedures to answer mathematics tests—that is, typical questions require 

students to “solve, sketch, find, graph, evaluate, determine, and calculate in a straightforward fashion” 

(Ferrini-Mundy & Graham, 1991)—or because of a personal belief that this is how to do mathematics 

“properly” (Engelbrecht et al., 2009). 

Interestingly, there were two solutions which compared coefficients between the expressions in 

the two sides of the equality 𝐿(𝑥) = 𝑥, leading to the correct answer. This technique of comparing 

coefficients was not introduced in the course, and thus its presence in some student solutions was a 

pleasant surprise. Assuming that these students have not encountered this technique in the past, their 

ability to come up with this line of reasoning is a demonstration of their ability to connect concepts and 

“think outside the box,” an essential skill for mathematical proficiency. Figure 4 shows these two solutions 

which used the technique of comparing coefficients. 

 

 

 

Figure 4. An MR-level solution (top) and a relational-level solution (bottom) to Item 5 

For Item 7, which evaluates understanding of the generalizability of the extreme value theorem to 

open intervals, solutions were more homogeneous, with almost three-quarters of the solutions classified 

in the transitional MR level. Among all the items in the DCST, Item 7 has the greatest number of solutions 

in the transitional MR level as well as the greatest number of solutions that arrived at the correct answer. 

Most responses at this level correctly concluded that the extreme value theorem will not hold in 

general for open intervals, but they are also characterized by an incorrect counterexample or an inability 
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to fully articulate the proper mathematical reasoning. In general, MR-level responses argue that in a 

closed interval, an absolute extremum of a function may occur at an endpoint of the interval, and so 

excluding the endpoints will no longer guarantee that the function has both absolute extrema on that open 

interval. The level of articulation and depth, of course, varies among the MR-level solutions. However, 

this line of reasoning does not fully explain why the function will no longer have an absolute maximum or 

an absolute minimum on an open interval; this is the most common gap in explanation present in MR-

level responses. It is thus apt to look at some MR-level solutions with different degrees of integration 

among demonstrated knowledge components. 

 

Figure 5. A transitional MR response to Item 7 with low partial integration 

The MR-level solution in Figure 5 demonstrates and integrates several conceptual knowledge 

components: that the theorem will not be true on an open interval because of an implied demonstration 

of the difference between open and closed intervals. However, this is classified as having a low partial 

integration because the reasoning lacks details and depth: it is not clear why “there will be no exact 

number to substitute to 𝑓(𝑥) to find if there is a minimum/maximum on the end values of the interval.” 

The solution also fails to provide a counterexample to show that the extreme value theorem is false on 

an open interval. 

 

Figure 6. A transitional MR response to Item 7 with high partial integration 

The MR-level solution in Figure 6 also demonstrates not only the conceptual knowledge 

components as the solution in Figure 5 but also an understanding of what a counterexample is, and so it 

is able to provide a correct counterexample. The construction of the explanation also aids the reader to 

deduce, albeit with some effort, what the clause “in the interval (−5,5), there exists no maximum and 

minimum, as there is [sic] no definite points of absolute maximum and minimum” means. 

 

Figure 7. A transitional MR response to Item 7 with high partial integration 
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One notable misconception in the solutions stems from an incorrect understanding of mathematical 

logic. A number of solutions interpreted the negation of the conclusion of the extreme value theorem (i.e., 

the function has both an absolute maximum and an absolute maximum on the interval) as the function 

not having both an absolute maximum and absolute minimum. This misconception leads to the following 

line of reasoning: the extreme value theorem is not true on an open interval because it is possible for a 

function to still have at least one absolute extremum on an open interval. This is usually followed by an 

erroneous counterexample of 𝑦 = 𝑥2 on an open interval containing zero. Figure 7 shows one such 

solution. 

 

 

Figure 8. Responses to Item 7 which show a logical misconception 

Another notable misconception is related to determining the truth value of the statement: “A 

continuous function on an open interval attains an absolute maximum and an absolute minimum on that 

interval.” Figure 8 shows solutions exhibiting this misconception. In particular, these solutions exhibit a 

belief that particular examples are sufficient to deduce the truth value of a universally quantified 

statement. 

This misconception concerning mathematical logic seems to arise from several factors. Students 

often have difficulties in understanding universally quantified statements, especially the idea that a single 

counterexample invalidates a universally quantified statement. A study by Knuth et al. (2019) shows that 

students typically resort to reasoning through examples instead of understanding the logical structure of 

mathematical statements. This tendency to believe that examples constitute proof may stem from 

students’ experience with inductive reasoning in other contexts. This inappropriate transfer happens even 

though 

 

… from a logical point of view, to understand that in order for a universal statement to be 

true it must hold for all elements in the statement’s domain and that a single counterexample 

is sufficient for refuting a false statement, implies that confirming examples are insufficient 

for proving and that a general justification is needed (Buchbinder & Zaslavsky, 2013, p. 135). 

This logical misconception may also be tied to confirmation bias and a thinking that the statement 

is true unless proven otherwise. In fact, Alacaci and Pastor (2005) found that such logical errors involving 

incorrectly negating quantified statements and statements involving logical connectives are not limited to 
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students but appear across various populations. 

Across both items, these patterns reveal three characteristics of student solutions. The first and 

most common is the tendency to resort to mathematical expressions alone, with no or insufficient verbal 

explanations to relate consecutive mathematical expressions. This harkens back to students’ tendency 

to proceduralize answers and solutions. This is troublesome because Habre (2002) posits the rule of 

four—that an effective calculus learner is capable of “communicating ideas through algebraic, graphical, 

numerical, and verbal means.” The second is the tendency to miss small gaps in reasoning. The third is 

the presence of misconceptions in mathematical logic. 

Utility and Challenges of the SOLO-Based Rubric 

The SOLO-based rubric demonstrated several strengths in evaluating students’ responses based on their 

conceptual understanding of the applications of derivatives. The rubric’s structure, especially with its 

inclusion of transitional levels, facilitated differentiation between levels of understanding. This feature 

allowed evaluators to identify and categorize responses that showed either partial comprehension or 

emerging relationships between conceptual knowledge components. The rubric’s inclusion of how to 

handle special cases also proved to be beneficial in evaluating partial solutions, solutions with early 

errors, solutions with unconventional approaches, and solutions with no or insufficient verbal 

explanations. These features of the rubric enabled a more nuanced evaluation of student solutions. 

One particularly effective aspect of the rubric was its ability to capture different levels of integration 

among demonstrated conceptual knowledge components. In cases where solutions were classified in the 

transitional MR level, which indicates partial integration of knowledge components, the rubric provided a 

framework to further classify partial integration as either low partial integration or high partial integration. 

This allowed it to be extremely beneficial since for both items, the transitional MR level had the highest 

number of solutions. This ability to differentiate the degree of integration among MR-level solutions made 

the rubric especially useful for identifying varying abilities in relating conceptual knowledge components 

that might otherwise have gone unrecognized. This echoes the work of Burnett (1999), who also added 

sublevels to the SOLO Taxonomy and used it to assess learning outcomes from counselling, and Chan 

et al. (2002), who did the same in the context of an advanced practice subject in mental health. However, 

both studies did not use the transitional levels originally proposed by Biggs and Collis (2014), and it is 

unclear why these studies did not do so (Stålne et al., 2016). 

Despite these strengths, the application of the rubric also presented certain challenges. A primary 

difficulty arose in cases where student responses did not clearly align with characteristics of a single 

SOLO level. For example, some responses exhibited full integration of all necessary knowledge 

components for an item, but not explicitly. This is most apparent in Item 5. Some solutions implied a full 

understanding of how to reason and solve the problem but lacked sufficient verbal explanations. Such 

solutions made it challenging to assign a definitive level, despite the rubric having a note regarding 

solutions without verbal explanations. This highlights an area where future refinements to the rubric could 

add clarity. 

In addition, while the rubric aimed for consistency, subjectivity in interpretation affected rater 

agreement, especially when categorizing responses that exhibited ambiguous reasoning or lack of clarity. 

To address these challenges, it may be valuable in future iterations to provide additional guidance or to 

refine certain criteria, which would help clarify the handling of special cases. These adjustments would 

likely improve interrater agreement and reliability. 
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Implications for Educational Practice 

Addressing Gaps and Misconceptions 

Insights from the patterns and observations provide important implications for calculus education, 

specifically to address challenges related to students’ conceptual understanding. Although these findings 

primarily concern undergraduate calculus education, they also suggest broader considerations for higher 

education mathematics instruction. One key trend observed among the solutions was students’ tendency 

to omit verbal explanations to connect mathematical expressions in their solutions, which hinders a full 

demonstration and articulation of relationships between mathematical concepts and procedures. 

Addressing this issue requires targeted strategies that emphasize the importance of explicitly 

articulating these relationships (Kågesten & Engelbrecht, 2006; Norqvist, 2018). Encouraging students 

to verbalize reasoning during problem-solving can help solidify their understanding and better illustrate 

the connections between concepts and procedures. To achieve this, instructors can integrate techniques 

such as think aloud exercises, where students are prompted to verbalize their reasoning and connections 

between ideas as they work through problems (Hicks & Bostic, 2021; Kani & Shahrill, 2015), and guided 

questioning, which can prompt students to reflect on the underlying reasoning behind each step (Franke 

et al., 2009). These methods not only help clarify students’ thinking but also guide them to develop a 

deeper understanding of mathematical concepts.  

While these strategies provide approaches to develop conceptual understanding, their 

implementation may present challenges. In content-heavy courses such as calculus, time constraints 

may hinder the full use of these strategies and create a tension between covering course material and 

developing conceptual understanding. Effective implementation of these strategies also requires specific 

pedagogical expertise that not all instructors may possess think aloud activities need skillful facilitation to 

elicit students’ meaningful verbalization without leading their thinking, and effective questioning needs 

careful planning and adaptation to student responses. Lastly, these approaches may become impractical 

when implemented in large lecture settings in undergraduate classes. Despite these, instructors may 

adopt a gradual implementation of these activities. Integrating brief think aloud activities in class, requiring 

conceptual explanations in course requirements, and using peer discussion to practice students’ 

verbalization contribute to an emphasis on conceptual understanding alongside procedural fluency. 

To address specific conceptual misconceptions, instructors could design tasks that explicitly 

address common errors and misconceptions. One possible approach is to present an example solution 

that contains a common misconception and ask students to identify whether the solution is correct or 

incorrect, and to explain why (Adams et al., 2013). This presents a natural opportunity for students to 

actively engage in the correction process, either individually or in groups, thus promoting deeper learning 

and understanding. Through these methods, students can better articulate their reasoning, which, in turn, 

reinforces their conceptual understanding. Encouraging verbal explanations and guided reflection on 

problem-solving processes will help bridge the gap between procedural fluency and conceptual depth, 

fostering a more integrated understanding of calculus. 

Curriculum Integration 

On a broader level, curriculum design in applied calculus courses should not neglect the importance of 

conceptual understanding in students’ mathematical proficiency. Integrating deeper explanations of 

foundational concepts in calculus, such as the definitions of the derivative, the definite integral, and the 

fundamental theorem of calculus, can positively impact not only students’ procedural skills but also their 

ability to more effectively relate mathematical concepts. Such adjustments require systemic effort, but 
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these are essential to developing students’ mathematical proficiency. As evidenced by the findings of this 

paper, teaching procedural skills without fostering an understanding of the underlying concepts may lead 

to shallow learning, where students can execute procedures but fail to fully grasp why they are using 

them or how they connect to broader mathematical ideas. Therefore, the findings highlight the importance 

of balancing conceptual and procedural instruction in applied calculus education. By adopting strategies 

that address observed gaps and challenges, instructors can support students in developing a more 

integrated mathematical understanding that allows them to apply both conceptual insights and procedural 

knowledge effectively. 

Broader Applications of the Rubric 

Although the method and rubric presented in this study were developed within the context of a first-year 

undergraduate applied differential calculus course, they possess the flexibility to be adapted for use in a 

range of mathematical domains. By employing this rubric, instructors can obtain deeper insights into the 

levels of conceptual understanding exhibited by their students, thereby informing instructional strategies 

and supporting the achievement of desired learning outcomes. 

The structure of the SOLO Taxonomy-based rubric, with its emphasis on conceptual 

understanding, renders it adaptable to various applied calculus topics beyond the initial focus on linear 

approximations and the extreme value theorem. Topics such as limits, the definition of the derivative, 

definite and indefinite integrals, and the Fundamental Theorem of Calculus may also benefit from this 

rubric-based approach. Through its application, instructors can assess students’ conceptual 

understanding in ways that extend beyond procedural competence. However, effective implementation 

requires careful design of assessment tasks. Items must be constructed to probe the depth and structure 

of students’ understanding, rather than merely procedural accuracy, and the rubric should be employed 

formatively throughout the course to monitor and support the development of conceptual understanding 

over time. 

Moreover, the rubric has potential applicability beyond calculus. It can be adapted to support the 

evaluation of conceptual understanding in other areas of undergraduate mathematics, including abstract 

algebra and linear algebra. In the context of abstract algebra, the rubric could be modified to include 

conceptual knowledge components related to algebraic structures and may be useful for analyzing 

students’ understanding of properties of groups, rings, homomorphisms, and isomorphisms. In linear 

algebra, the rubric could be tailored to assess how students integrate and coordinate algebraic, 

geometric, and abstract representations of vector spaces and linear transformations—an essential 

dimension of conceptual understanding in this domain (Hillel, 2000). 

Adapting the SOLO-based rubric to these broader domains, however, may present certain 

challenges. First, the development of conceptual understanding in each mathematical field may follow a 

progression that does not align neatly with the SOLO Taxonomy levels. Second, different content areas 

emphasize distinct modes of mathematical thinking, which may necessitate substantial revisions to the 

SOLO level descriptors. Third, the identification of relevant conceptual knowledge components for 

specific problems requires domain-specific expertise to ensure alignment with disciplinary expectations. 

In addition to its role in assessment, the SOLO-based rubric holds promise as a tool for course 

and curriculum design in higher mathematics education. When integrated into course-level assessments, 

it enables instructors to identify patterns of conceptual understanding and common misconceptions, 

thereby facilitating targeted instructional interventions. This stands in contrast to conventional 

mathematics assessments, which often focus on routine exercises and procedural proficiency. The rubric 
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thus provides a structured and theoretically grounded framework for enhancing students’ conceptual 

understanding not only within calculus but also across a broad spectrum of mathematical disciplines. 

CONCLUSION 

This study aimed to develop and implement a rubric based on the SOLO Taxonomy to evaluate students’ 

conceptual understanding as demonstrated in their written responses to applied calculus test items. The 

proposed rubric provides a novel assessment tool that enables instructors to evaluate not only the 

capacity of students’ mathematical thinking but also the complexity and depth of their reasoning. 

The findings indicate that the rubric is effective in capturing varied levels of conceptual 

understanding and offers a nuanced framework for identifying patterns in students’ reasoning, including 

conceptual strengths, misconceptions, and incomplete understandings. Notably, the inclusion of 

transitional levels and explicit criteria for evaluating unconventional or incomplete solutions underscores 

the rubric’s capacity to assess demonstrated understanding in a rigorous and flexible manner. Beyond 

its role as an assessment instrument, the rubric shows potential to enhance student learning outcomes 

when integrated into instructional practices. By offering structured feedback based on SOLO levels, rather 

than relying solely on procedural accuracy or correctness of answers, the rubric can guide students in 

identifying specific conceptual gaps. This process fosters the development of metacognitive awareness 

and supports students’ self-regulation in learning mathematics. 

The contributions of this work extend beyond applied calculus education. By adapting the SOLO 

Taxonomy to assess conceptual understanding through demonstrated levels of thinking and cognitive 

complexity, this study offers an assessment framework that emphasizes the integration and depth of 

mathematical knowledge—core elements of conceptual understanding. The rubric can be readily 

embedded in mathematics assessments to support the diagnostic identification of conceptual gaps and 

to inform targeted instructional interventions. For instance, if an instructor identifies that a majority of 

students demonstrate responses at the multistructural level, instructional activities can be designed to 

promote the integration of isolated ideas and facilitate progress toward relational understanding. The 

adaptability of the rubric to other mathematical domains further supports a broader shift toward concept-

focused assessment and instruction in undergraduate mathematics education. Elements of the rubric 

may be modified to align with domain-specific knowledge structures, with expert consultation used to 

define the key conceptual components relevant to particular content areas. Indicators for each SOLO 

level (e.g., as presented in Table 1) can be refined to reflect the characteristics of conceptual 

understanding in distinct domains. Provisions for evaluating unconventional responses can also be 

expanded, particularly in proof-based or open-ended tasks, where diverse reasoning paths may yield 

valid mathematical conclusions. 

Finally, future research may focus on further testing and refining the rubric, particularly in 

addressing challenges such as borderline cases where student responses lie between two SOLO levels. 

Empirical validation across a range of mathematical contexts—such as linear algebra, abstract algebra, 

or statistics—is necessary to examine the generalizability and robustness of the rubric. Additionally, 

studies may explore the impact of using the rubric on students’ conceptual development and the extent 

to which it supports the alignment between conceptual understanding and procedural fluency in 

mathematics learning. 
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