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Abstract 

Mathematical abstraction is essential in constructing mathematical concepts, particularly in proof. The RBC+C 
epistemic actions—recognizing, building-with, constructing, and consolidating—are key cognitive processes in 
proof construction. However, the impact of mathematical reading and writing abilities on these processes remains 
unexplored. This study investigates how students’ mathematical reading and writing abilities affect their epistemic 
actions when proving the congruence of two triangles. This qualitative research adopts a case study design 
involving three undergraduate students who have completed a geometry course. The participants were selected 
based on their reading and writing proficiency levels: high, moderate, and low. Data were collected through 
reading and writing assessments, proof-solving tasks, and semi-structured interviews. The analysis follows the 
RBC+C framework to identify patterns in students’ cognitive process during proof construction. Findings reveal 
that students with high mathematical reading and writing abilities demonstrate a more structured proof strategy, 
effectively recognizing key properties, building logical connections, and constructing valid arguments. High-
proficiency students also exhibit flexibility in using both geometric and algebraic approaches in proving. In 
contrast, students with lower reading and writing abilities struggle with symbolic representation, logical coherence, 
and notation consistency, leading to incomplete or incorrect proofs. Moreover, consolidation of mathematical 
ideas, such as reusing known theorems and revisiting proof steps, occurs more frequently in high-achieving 
students, enabling deeper conceptual understanding. This study highlights the critical role of mathematical literacy 
in the proof process. It suggests that strengthening reading and writing instruction in mathematics education can 
enhance students’ ability to construct rigorous proofs. The findings contribute to the development of instructional 
strategies that integrate mathematical literacy into proof-based learning, ultimately fostering students’ reasoning 
and problem-solving skills in mathematics. 
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For most mathematicians, abstraction refers to mathematical objects or formal structures such as vector 

spaces. However, within the field of mathematics education, abstraction is understood as a cognitive 

process through which students construct, reorganize, and internalize mathematical knowledge 

(Hershkowitz et al., 2001, 2020). It is seen not only as a pathway toward understanding mathematical 

structures but also as one of the highest human intellectual achievements (Dreyfus & Kidron, 2014). As 

such, mathematical abstraction plays a central role in the learning process, particularly in facilitating 

problem-solving and concept formation (Hong & Kim, 2016; Sahrudin et al., 2022). 
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Researchers have extensively examined abstraction mechanisms in mathematics learning. These 

include generalization, decontextualization, and vertical mathematization. Abstraction is the processes 

that transform concrete experiences into abstract structures (Dreyfus et al., 2015; Ferrari, 2003). Skemp 

(Yang, 2016) and Tall (1991) highlight abstraction as a mental reorganization of prior knowledge, while 

the Nested RBC Model developed by Hershkowitz et al. (2001) describe abstraction through a sequence 

of epistemic actions: Recognizing (R), Building-with (B), Constructing (C), and later, Consolidating (C) 

(Dreyfus & Tsamir, 2004). These cognitive processes represent how learners dynamically interact with 

and build upon their prior mathematical understandings. 

The Abstraction in Context (AiC) framework provides a theoretical-methodological lens to 

investigate how abstraction occurs in specific social and instructional contexts (Dreyfus & Kidron, 2014). 

It allows researchers to analyze micro-level cognitive dynamics by observing students’ epistemic actions. 

These actions are often visible in verbal and physical behaviors as learners engage with mathematical 

tasks (Hershkowitz et al., 2001; Sahrudin et al., 2022). AiC has been used to explore abstraction in topics 

ranging from cube nets (Sahrudin et al., 2022) and computational thinking (Çakiroğlu & Çevik, 2022) to 

definite integrals (Park & Lee, 2022) and 3D visualization (Fitriani et al., 2018). However, studies 

employing AiC in the context of geometry, particularly in proof construction, remain limited. Thus, it is 

leaving room for further investigation. 

Geometry plays a crucial role in mathematics education due to its capacity to support spatial 

reasoning, critical thinking, and visualization of abstract concepts (Battista, 1990; Jones, 2002; Sunzuma 

& Maharaj, 2019). Nonetheless, it is also among the most challenging domains for both learners and 

teachers (Levenberg & Shaham, 2014). When it comes to constructing formal proofs in geometry, 

abstraction becomes particularly complex, as it requires both structural understanding and logical 

coherence. This underscores the importance of tools such as AiC in examining students' thinking during 

geometric proof processes. 

In the Indonesian higher education system, students enrolled in mathematics education programs 

are typically introduced to formal proof tasks during their geometry coursework, usually in the first or 

second year of study. While proof construction is a standard part of the curriculum, the integration of 

mathematical literacy, specifically reading and writing mathematical texts, as explicit learning objectives 

remains limited (Retnawati et al., 2018). As a result, students are often expected to develop proof 

competencies without systematic support in reading comprehension or written mathematical 

communication. Understanding this curricular structure is crucial for interpreting how students engage in 

abstraction and proof-related tasks, particularly when viewed through the lens of epistemic actions such 

as recognizing, building-with, constructing, and consolidating. 

Despite the centrality of abstraction in proof construction, one underexplored aspect is the role of 

mathematical literacy, specifically students’ reading and writing abilities. Mathematical reading refers to 

the skill of interpreting symbols, extracting meaning from definitions, and understanding mathematical 

relationships within texts (Österholm, 2006; Wallace & Clark, 2005). It involves engaging with vocabulary, 

symbolic representations, and mathematical syntax that are often denser than other academic texts 

(Gullatt, 1986; Harris & VanDevender, 1990). Effective mathematical reading requires metacognitive 

regulation and problem-solving awareness (Smith et al., 1992; Woolley & Woolley, 2011). 

Complementing reading, mathematical writing is an essential process through which learners 

articulate ideas, clarify reasoning, and represent abstract concepts in coherent form (Freitag, 1997; 

Kesorn et al., 2020). Writing allows students to consolidate understanding, formulate conjectures, and 

present formal arguments (Grossman et al., 1993; Shibli, 1992). As such, it serves not only as a 
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communicative medium but also as a pedagogical tool for conceptual development (Kesorn et al., 2020; 

Sipka, 1990). 

Several scholars argue that integrating writing into mathematics instruction enhances students’ 

ability to reflect on problem-solving, develop logical arguments, and strengthen overall comprehension 

(Bicer et al., 2013; Teuscher et al., 2015). Yet, while the individual impacts of reading or writing on 

mathematics learning are well documented, the intersection of these skills with abstraction, particularly 

in the process of constructing geometric proofs, has not been extensively addressed. 

Although existing research has applied the AiC and RBC+C frameworks to investigate abstraction 

in various mathematical contexts, few studies have explored how students’ mathematical reading and 

writing abilities shape their epistemic actions during proof construction in geometry. Furthermore, prior 

literature has largely examined literacy and abstraction in isolation rather than as interdependent 

processes. This study seeks to bridge this gap by analyzing how students’ literacy levels influence their 

engagement in the epistemic actions of recognizing, building-with, constructing, and consolidating 

mathematical ideas. Specifically, it focuses on proof tasks involving triangle congruence, a foundational 

yet cognitively demanding area of geometry. Therefore, this study aims to explore how undergraduate 

students with varying levels of mathematical reading and writing abilities engage in epistemic actions 

(RBC+C) during the process of constructing geometric proofs involving triangle congruence. 

This study offers several significant contributions to the existing body of research. Theoretically, it 

extends the Abstraction in Context (AiC) framework by embedding mathematical literacy, specifically 

students’ reading and writing abilities, into the structure of epistemic actions. By doing so, the study 

proposes a more integrated and holistic model of abstraction that accounts not only for students' cognitive 

operations but also their representational and communicative practices during proof construction. 

Methodologically, the study employs a qualitative case study design to capture the nuanced cognitive 

processes involved in abstraction, particularly in the context of proving triangle congruence. This 

approach allows for a detailed examination of how literacy skills interact with the nested RBC+C model 

in real problem-solving situations. Practically, the findings inform mathematics educators and curriculum 

designers about the importance of incorporating reading and writing instruction into proof-based learning 

environments. By demonstrating that students’ mathematical literacy influences their ability to engage in 

abstract reasoning and construct rigorous arguments, this study provides a foundation for designing 

literacy-integrated instructional strategies that can support deeper conceptual understanding and 

improved mathematical communication. 

METHODS 

This study employed a qualitative case study approach to explore how undergraduate students with 

different levels of mathematical reading and writing abilities engage in epistemic actions (RBC+C) during 

the construction of geometric proofs. The research was situated within the framework of Abstraction in 

Context (AiC), which allows for micro-analytic observations of abstraction as it emerges through 

interaction with mathematical tasks. 

Research Participants 

Participants were selected from a cohort of 42 undergraduate students who had completed a geometry 

course. Initially, all 42 students were administered two assessment instruments: a Mathematical Reading 

Ability Test (T1) and a Mathematical Writing Ability Test (T2). Based on the results of these instruments, 

three students were purposively selected to represent three literacy profiles: high, moderate, and low. 
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This stratified sampling strategy was used to allow comparative analysis and to reflect the variability of 

students' mathematical literacy in relation to their abstraction processes. 

The criteria for selection were based on performance thresholds: scores above 20 on both T1 and 

T2 were categorized as high, scores between 11–20 as moderate, and scores 10 or below as low. The 

selected students were coded as S1 (high), S2 (moderate), and S3 (low). 

Research Instruments and Data Collection 

All instruments (T1, T2, and T3) were developed by the research team and underwent an expert validation 

process to ensure alignment with the constructs of mathematical reading, writing, and proof-related 

abstraction. The validation involved two subject matter experts: the first was a full professor with 

recognized expertise in mathematical abstraction, and the second was a senior mathematics education 

lecturer with over ten years of teaching experience at the undergraduate level. Both experts reviewed the 

instruments for content accuracy, construct clarity, and task appropriateness based on the study’s 

conceptual framework. Their feedback led to several refinements, including clarifying item wording, 

removing ambiguous terminology, and ensuring that symbolic representations conformed to established 

mathematical conventions. 

1. T1 (Mathematical Reading Ability Test) 

This test consisted of 25 items designed to measure students' ability to interpret mathematical 

symbols, extract relevant information, and transform written mathematical information into other 

forms (e.g., diagrams or verbal explanations). An example item asked students to represent a 

given geometric statement visually and label corresponding angles and sides. 

2. T2 (Mathematical Writing Ability Test) 

Also consisting of 25 items, this test assessed students' ability to articulate mathematical ideas 

using proper notation, logical sequencing, and symbolic representation. Items included prompts 

such as “Draw two congruent triangles and write down the corresponding angles.” 

3. T3 (Triangle Congruence Proof Task) 

A single, open-ended problem was used to elicit epistemic actions in geometric proof construction. 

The task required students to prove that two triangles were congruent using a geometric diagram 

and deductive reasoning. The problem given to the research subjects was: 

“Given an ∆𝐴𝐵𝐶 with right angle at B. From point B, an altitude is to the hypotenuse AC, 

intersecting it at D. Prove that |𝐵𝐷̅̅ ̅̅ |2 = |𝐴𝐷̅̅ ̅̅ | × |𝐶𝐷̅̅ ̅̅ |” 

This problem was designed to engage students in recognizing geometric relationships, 

constructing formal arguments, and applying congruence principles - thereby enabling the 

identification of their epistemic actions as outlined in the RBC+C framework. The task was followed 

by semi-structured interviews and video-recorded observations to gain further insights into the 

students' cognitive processes. 

 

Based on their feedback, revisions were made to simplify the language in several T1 and T2 items, 

particularly those involving diagram interpretation and verbal restatements of symbolic expressions. In 

T3, minor adjustments were made to ensure that the proof prompt elicited all stages of the RBC+C 

process without overly directing student responses. 

Data Analysis 

All data sets were systematically organized and categorized according to the structure of the data 

analysis process, including written responses, observation notes, and interview transcripts. Each 
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mathematical problem-solving task was treated as a unit of analysis, allowing the researchers to trace 

students’ reasoning and abstraction processes at a micro level. The interview transcripts were transcribed 

verbatim and analyzed using a multi-stage qualitative coding approach grounded in the RBC+C 

framework. 

The first stage involved open coding, where researchers identified segments of data that reflected 

epistemic actions, such as recognizing known properties, building on prior knowledge, constructing new 

reasoning chains, or consolidating ideas. In the second stage, axial coding was used to relate these 

codes to specific phases of the RBC+C model, thus revealing patterns in students’ abstraction processes. 

The coding scheme was adapted from Kim et al. (2020), with modifications to suit the context of geometric 

proof construction. 

In the final stage, a thematic synthesis was conducted to describe the characteristics of each 

participant’s abstraction process across the RBC+C categories. This included mapping out the sequence 

and interconnection of epistemic actions based on students’ verbal explanations, written work, and 

behaviors observed during the tasks. The overall structure of the analysis followed a process outlined by 

Magiera & Zawojewski (2011), which involves: (1) coding interview and observational data, and (2) 

interpreting those codes within the theoretical lens of RBC+C to track the emergence and development 

of abstraction. 

RESULTS AND DISCUSSION 

Students’ Mathematical Reading and Writing Ability 

Table 1 explains the number of students who could read and write in the high, moderate, and low 

categories. 

Table 1. The number of students who could read and write in the high, medium, and low categories 

Category 
Reading Ability 

Total 
High Moderate Low 

Writing Ability 

High 8 6 3 17 

Moderate 6 5 4 15 

Low 2 2 6 10 

Total 16 13 13 42 

 

In accordance with Table 1, there were eight students as the prospective subjects with high reading and 

writing abilities, five students with moderate reading and writing abilities, and six students with low reading 

and writing abilities. Furthermore, the subjects were randomly selected to obtain research subjects, which 

were then coded S1, S2, and S3. 

Epistemic Actions in Proof Construction of S1 

The results of the interview were based on the proof process of the following questions. “Given an ∆𝐴𝐵𝐶 

with right angle at B. From point B, an altitude is to the hypotenuse AC, intersecting it at D. Prove that 

|𝐵𝐷̅̅ ̅̅ |2 = |𝐴𝐷̅̅ ̅̅ | × |𝐶𝐷̅̅ ̅̅ |”. The data obtained were described as follows: subject S1 demonstrated their 

reading and writing abilities by constructing the given triangle, writing down the known information and 

the statement to be proven, and reusing angle notation, angle measurements, line segments, segment 

lengths, congruent angles, similar angles, and similar triangles as shown in Figure 1.  
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The proving process carried out by S1 was as follows. 

1. 𝑚∠𝐴𝐵𝐶 =  90° with premise arguments, 

2. 𝐵𝐷̅̅ ̅̅ ⊥ 𝐴𝐶̅̅ ̅̅  with premise arguments. 

3. 𝑚∠𝐴𝐷𝐵 = 𝑚∠𝐵𝐷𝐶 = 90° with premise arguments, and construct ∠𝐴𝐷𝐵 ≅ ∠𝐵𝐷𝐶 with new 

premise arguments. 

4. For example, ∠𝐵𝐴𝐶 = 𝜃 with new premise arguments. 

5. 𝑚∠𝐵𝐴𝐶 + 𝑚∠𝐴𝐵𝐶 + 𝑚∠𝐴𝐶𝐵 = 180° with the arguments that the sum of the angles in a 

triangle was 180°. 

6. 𝑚∠𝐴𝐶𝐵 = 90° − 𝜃 with the arguments in steps 1, 3, and 4. 

7. 𝑚∠𝐴𝐷𝐵 + 𝑚∠𝐴𝐵𝐷 + 𝑚∠𝐵𝐴𝐷 = 180° with the arguments that the sum of the angles in a 

triangle was 180°. 

8. 𝑚∠𝐴𝐷𝐵 = 𝑚∠𝐶𝐷𝐵 = 90° 

9. 𝑚∠𝐵𝐴𝐷 = 𝜃 with step 4 argumentation 

10. 𝑚∠𝐴𝐵𝐷 = 90° − 𝜃 with the arguments in steps 4 and 6. 

11. 𝑚∠𝐵𝐶𝐷 = 90° − 𝜃 with the same angle argument, step 10 

12. ∠𝐴𝐵𝐷 ≅ ∠𝐵𝐶𝐷 with the arguments in steps 10 and 11 

13. ∆𝐴𝐵𝐷~∆𝐵𝐶𝐷 with arguments step 3, 12 

14. 
𝐵𝐷

𝐶𝐷
=

𝐴𝐷

𝐵𝐷
 with the argumentation in step 13 

15. |𝐵𝐷̅̅ ̅̅ |2 =  |𝐴𝐷̅̅ ̅̅ |  × |𝐶𝐷̅̅ ̅̅ | with arguments in step 14. 

A

B C

D

 

Figure 1. A figure made by S1 subject to answer questions  

The consolidation performed by S1 involved the frequent sharing and reuse of mathematical ideas, 

particularly the concepts of angle congruence, line segment congruence, and repetition as shown in 

Diagram 1. The subject recognized that the sum of the interior angles of a triangle is 180°. Repetition 

was observed in △ 𝐴𝐵𝐶, where the subject constructed ∠𝐵𝐴𝐶 = 𝜃 and formulated the equation 

𝑚∠𝐵𝐴𝐶 + 𝑚∠𝐴𝐵𝐶 + 𝑚∠𝐴𝐶𝐵 = 180° leading to 𝑚∠𝐴𝐶𝐵 = 90° − 𝜃. 

Similarly, in △ 𝐴𝐵𝐷, S1 applied the same reasoning, stating that 𝑚∠𝐴𝐷𝐵 + 𝑚∠𝐴𝐵𝐷 +

𝑚∠𝐵𝐴𝐷 = 180° and recognizing that 𝑚∠𝐵𝐴𝐷 = 𝜃. Consequently, the subject established that 

𝑚∠𝐴𝐵𝐷 = 90° − 𝜃, ensuring congruence between the two triangles. Through this proof, the subject 

demonstrated the reuse of reasoning, concluding that △ 𝐴𝐵𝐷 and △ 𝐵𝐶𝐷 are similar due to the 

correspondence of their angles. Thus, the subject exhibited an awareness of the fundamental property 

that the sum of a triangle's interior angles is always 180°, reinforcing their understanding through 

repeated verification. 
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Considering the Recognition (R), Building-with (B), and Constructing (C) abilities of subject S1 in 

proving that |𝐵𝐷̅̅ ̅̅ |2 =  |𝐴𝐷̅̅ ̅̅ |  ×  |𝐶𝐷̅̅ ̅̅ | presented in Diagram 2, as well as evidence from interviews, this 

study obtained the following findings: 

The subject recognized (R1) that △ 𝐴𝐵𝐶 is right-angled at B and constructed (B1) 𝑚∠𝐴𝐵𝐶 =

90°. The subject also recognized (R2) that △ 𝐵𝐷𝐶 is right-angled at D and constructed (B2) 𝑚∠𝐵𝐷𝐶 =

90°. Similarly, the subject recognized (R3) that △ 𝐴𝐷𝐵 is right-angled at D and constructed 

(B3) 𝑚∠𝐴𝐷𝐵 = 90°. 

Furthermore, the subject recognized (R4 = B2) that 𝑚∠𝐵𝐷𝐶 = 90°∘ and (R5 = B3) that 

𝑚∠𝐴𝐷𝐵 = 90°, leading to the construction (B4) of 𝑚∠𝐴𝐷𝐵 = 𝑚∠𝐵𝐷𝐶 = 90°. The subject further 

recognized (R6 = B4) that 𝑚∠𝐴𝐷𝐵 = 𝑚∠𝐵𝐷𝐶 = 90° and constructed (C1) ∠𝐴𝐷𝐵 ≅ ∠𝐵𝐷𝐶. 

Next, the subject formulated a new premise (C2) that ∠𝐵𝐴𝐶 = 𝜃. The subject recognized (R7) 

that the sum of the angles in a triangle is 180°, expressed as 𝑚∠𝐵𝐴𝐶 + 𝑚∠𝐴𝐵𝐶 + 𝑚∠𝐴𝐶𝐵 =

180°. Additionally, the subject recognized (R8 = C2) that ∠𝐵𝐴𝐶 = 𝜃 and (R9=B1) that 𝑚∠𝐴𝐵𝐶 =

90°, constructing (B5) 𝑚∠𝐴𝐶𝐵 = 90° − 𝜃. 

The subject then recognized (R10) that 𝑚∠𝐴𝐷𝐵 + 𝑚∠𝐴𝐵𝐷 + 𝑚∠𝐵𝐴𝐷 = 180°, accepted 

(R8 = C2) that 𝑚∠𝐴𝐷𝐵 = 90°, and constructed (B6) ∠𝐵𝐴𝐷 = 𝜃, (B7) 𝑚∠𝐴𝐵𝐷 = 90° − 𝜃, and 

(B8) 𝑚∠𝐵𝐶𝐷 = 90° − 𝜃. Furthermore, the subject constructed (C3) ∠𝐴𝐵𝐷 ≅ ∠𝐵𝐶𝐷. 

Finally, the subject recognized (B5 = R10) that 𝑚∠𝐴𝐷𝐵 = 𝑚∠𝐵𝐷𝐶 = 90° and (C3 = R13) that 

∠𝐴𝐵𝐷 ≅ ∠𝐵𝐶𝐷, and concluded (B6) that if two corresponding angles in two triangles are congruent, 

then the triangles are similar. The subject ultimately proved (C4) that △ 𝐴𝐵𝐷 ∼△ 𝐵𝐶𝐷, and derived the 

proportional relationship (C5) 
𝐵𝐷

𝐶𝐷
=

𝐴𝐷

𝐵𝐷
, leading to the final proof that |𝐵𝐷̅̅ ̅̅ |2 =  |𝐴𝐷̅̅ ̅̅ |  ×  |𝐶𝐷̅̅ ̅̅ |. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

S1 was able to use the Pythagorean theorem to verify a problem that had already been proven 

using the congruence of two triangles. The subject identified the three right triangles that were formed, 

namely △ 𝐴𝐵𝐶, △ 𝐵𝐷𝐶, and △ 𝐴𝐷𝐵, and thus recognized that the Pythagorean theorem applied to 

them. The subject demonstrated recognition, assembly, and construction of the Pythagorean theorem in 

Diagram 1. The S1 subject’s process of proving 
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△ 𝐴𝐵𝐶, leading to the equation: 𝐴𝐵2 + 𝐵𝐶2 = 𝐴𝐶2 (R1, B1, C1). Similarly, the subject applied the 

theorem to △ 𝐵𝐷𝐶 and derived: 𝐵𝐷2 + 𝐷𝐶2 = 𝐵𝐶2 (R2, B2, C2). For △ 𝐴𝐷𝐵, the subject obtained: 

𝐵𝐷2 + 𝐴𝐷2 = 𝐴𝐵2 (R3, B3, C3). Through algebraic manipulation, the following transformations were 

obtained: 

𝐴𝐵2 + 𝐵𝐶2 = 𝐴𝐶2 

(𝐵𝐷2 + 𝐴𝐷2) + (𝐵𝐷2 + 𝐷𝐶2) = 𝐴𝐶2 

𝐵𝐷2 + 𝐴𝐷2 + 𝐵𝐷2 + 𝐷𝐶2 = 𝐴𝐶2 

2𝐵𝐷2 + 𝐴𝐷2 + 𝐷𝐶2 = 𝐴𝐶2 

2𝐵𝐷2 + 𝐴𝐷2 + 𝐷𝐶2 = (𝐴𝐷 + 𝐷𝐶)2 

2𝐵𝐷2 + 𝐴𝐷2 + 𝐷𝐶2 = 𝐴𝐷2 + 2𝐴𝐷𝐷𝐶 +  𝐷𝐶2 

2𝐵𝐷2 = 2𝐴𝐷𝐷𝐶 

𝐵𝐷2 = 𝐴𝐷𝐷𝐶 

Thus, it was proven that: 𝐵𝐷2 = 𝐴𝐷 × 𝐷𝐶. 

S1 needed to be more consistent in using line segment length notation, such as distinguishing 

between 𝐴𝐷 and ∣ 𝐴𝐷̅̅ ̅̅ ∣ (see the proving process of S1 at step 14 and 15) also ∠𝐵𝐴𝐶 = 𝜃 and 

𝑚∠𝐵𝐴𝐷 = 𝜃 (see step 4 and 9). The subject explained that different reference books used varying 

notations for line segment lengths. The consolidation carried out by S1 in this proof demonstrated that 

mathematical ideas were often shared and reused, particularly through the repeated application of the 

Pythagorean theorem. The theorem was applied in △ 𝐴𝐵𝐶 to derive 𝐴𝐵2 + 𝐵𝐶2 = 𝐴𝐶2, in △ 𝐵𝐷𝐶 

to obtain 𝐵𝐷2 + 𝐷𝐶2 = 𝐵𝐶2, and in △ 𝐴𝐷𝐵 to establish 𝐵𝐷2 + 𝐴𝐷2 = 𝐴𝐵2. However, S1 did not 

reassess the proof’s purpose (repurposing) using a geometric approach, such as congruence, but instead 

relied on algebraic manipulation. 

Epistemic Actions in Proof Construction of S2 

Interviews based on the evidentiary process revealed that subject S2 demonstrated the ability to read 

and write mathematical proofs by constructing the relevant triangles, noting given information and what 

needed to be proven, using perpendicular line segment notation, accurately measuring angles, and 

applying algebraic operations to segment lengths. However, S2 inconsistently applied notations, as seen 

in expressions like: 𝐵𝐷̅̅ ̅̅ × 𝐵𝐷̅̅ ̅̅ = 𝐴𝐷̅̅ ̅̅ × 𝐷𝐶̅̅ ̅̅ . Additionally, the subject struggled with the correct use of 

symbolic notation for equal and congruent angles illustrated in Figure 2. 

The proving process carried out by S2 was as follows. 

1. ∆ABC is a right triangle and 𝐵𝐷̅̅ ̅̅ ⊥ 𝐴𝐶̅̅ ̅̅  with premise arguments. 

2. 𝑚∠𝐶𝐷𝐵 = 𝑚∠𝐵𝐷𝐴 with arguments 𝐵𝐷̅̅ ̅̅ ⊥ 𝐴𝐶̅̅ ̅̅  

3. 𝑚∠𝐵𝐶𝐷 = 180° − (𝑚∠𝐷𝐴𝐵 + 90°)with the argument the sum of the angles in a triangle =

180° 

4. 𝑚∠𝐴𝐵𝐷 = 180° − (𝑚∠𝐷𝐴𝐵 + 90°) with the sum of the angles in a triangle argument 180°. 

5. 𝑚∠𝐵𝐶𝐷 = 𝑚∠𝐴𝐵𝐷 with the argument result of 𝑚∠𝐴𝐵𝐷 = 180° − (𝑚∠𝐷𝐴𝐵 + 90°) and 

𝑚∠𝐵𝐶𝐷 = 180° − (𝑚∠𝐷𝐴𝐵 + 90°) 

6. ∆𝐶𝐷𝐵~∆𝐵𝐷𝐴 with the argument that the measure of the angles adjacent to the two triangles 

were equal. 

7. 
𝐴𝐷̅̅ ̅̅

 𝐵𝐷̅̅ ̅̅
=

𝐵𝐷̅̅ ̅̅

 𝐷𝐶̅̅ ̅̅
  (R, B, C) with consequential arguments of ∆𝐶𝐷𝐵~∆𝐵𝐷𝐴 and with algebraic 

operations arguments 𝐵𝐷̅̅ ̅̅ × 𝐵𝐷̅̅ ̅̅ =  𝐴𝐷̅̅ ̅̅ × 𝐷𝐶̅̅ ̅̅  then 𝐵𝐷̅̅ ̅̅ 2 = 𝐴𝐷̅̅ ̅̅ × 𝐷𝐶̅̅ ̅̅  
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8. Draw the conclusion, “If the right angle is at B. From the point drawn an altitude intersects the 

hypotenuse at D then 𝐵𝐷̅̅ ̅̅ 2 = 𝐴𝐷̅̅ ̅̅ × 𝐷𝐶̅̅ ̅̅ . " 

A

B

C
D  

Figure 2. A Figure Made by S2 Subject to Answer Questions  

The process of proving undertaken by subject S2 is presented in Diagram 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The consolidation process carried out by the subject involved recognizing and applying 

mathematical concepts, particularly the identification of two similar angles. Additionally, the subject 

demonstrated repetition in using the fundamental property that the sum of the angles in a triangle is 180°. 

In ∆𝐴𝐵𝐶, the subject established that ∠𝐵𝐴𝐶 = 𝜃, then recognized and formulated the equation 

𝑚∠𝐵𝐴𝐶 + 𝑚∠𝐴𝐵𝐶 + 𝑚∠𝐴𝐶𝐵 = 180°, further deducing that 𝑚∠𝐴𝐶𝐵 = 90° − 𝜃. The same 

reasoning was applied to ∆𝐴𝐵𝐷, where the subject formulated 𝑚∠𝐴𝐷𝐵 + 𝑚∠𝐴𝐵𝐷 + 𝑚∠𝐵𝐴𝐷 =

180°, identified that 𝑚∠𝐵𝐴𝐷 = 𝜃, and recognized that 𝑚∠𝐴𝐵𝐷 = 90° − 𝜃. Through this proving 

process, S2 engaged in repurposing, which led to the recognition that ∆𝐴𝐵𝐷 and ∆𝐵𝐶𝐷 are similar due 

to their corresponding angle relationships. The subject also revisited the fundamental understanding that 

the sum of the angles in a triangle is always 180°. 

S2’s Recognition (R), Building-with (B), and Constructing (C) abilities in proving (𝐵𝐷)2 =

(𝐴𝐷) × (𝐷𝐶) were supported by evidence-based interviews presented in Diagram 4. The subject 

identified that ∆𝐴𝐵𝐶 is a right triangle with ∠𝐵 =  90° (R1) and recognized that (𝐵𝐷) ⊥ (𝐴𝐶) (R2), 

leading to the conclusion (R1, R2, B1) that 𝑚∠𝐵𝐷𝐶 = 𝑚∠𝐵𝐷𝐴 = 90°. Furthermore, S2 formulated 

(R1, R2, B2) the equation 𝑚∠𝐵𝐶𝐷 = 180° − (𝑚∠𝐷𝐴𝐵 + 90°) and similarly formulated (R1, R2, 

B3) 𝑚∠𝐴𝐵𝐷 = 180° − (𝑚∠𝐷𝐴𝐵 + 90°). The subject then constructed (R3 = B2, R4 = B3, C1) the 

relationship 𝑚∠𝐵𝐶𝐷 = 𝑚∠𝐴𝐵𝐷, followed by a logical progression through additional constructions 

5 

4 

3 

2 

1 

11 

10 

9 

8 

7 
6 

Diagram 3. The process of proving of S2 subject 

R2 R1 

B1 

B3 = R4 

R3 = B2 

R5 = C1 

C2 = R6 

C3 = 

B4 = 

C4 = R6 

C5 

Diagram 4. RBC of S2 subject 



488                  Setianingsih, Budiarto, & Jamil 
 

 

(R5 = C1, C2), (R6 = C2, B3), (R7 = B3, C3), and (R8 = C3, C4). Finally, S2 arrived at the conclusion 

(R1, R2, R6 = C4, C5) that “If ∆𝐴𝐵𝐶 is a right triangle with a right angle at B, and an altitude is drawn 

from B to intersect the hypotenuse at D, then 𝐵𝐷̅̅ ̅̅ 2 = 𝐴𝐷̅̅ ̅̅ × 𝐷𝐶̅̅ ̅̅ ”. Diagram 4 illustrates S2’s recognition 

abilities in this proof process. 

Epistemic Actions in Proof Construction of S3 

Based on the interview data obtained from the evidentiary process, S3 demonstrated the ability to read 

and write mathematical notation effectively. S3 was able to construct the given triangle, write down the 

known and required elements, and accurately use notations for congruent angles, perpendicular lines, 

congruent triangles, and segment lengths presented in Figure 3. However, an inconsistency was found 

in the representation of right angles in the diagram, as the right-angled triangle was not depicted in a 

standard orientation, which affected the clarity of the proof structure.  

The proving process carried out by S3 was as follows. 

1. ∆ 𝐴𝐵𝐶 had a right angle at B, premise argument 

2. 𝐵𝐷̅̅ ̅̅ ⊥ 𝐴𝐶̅̅ ̅̅ , premise. 

3. 𝑚∠𝐶𝐷𝐵 = 𝑚∠𝐵𝐷𝐴 = 90°, argumentation due to step 2 

4. 𝑚∠𝐴𝐵𝐶 = 𝑚∠𝐵𝐷𝐴 = 90°, argumentation due to steps 1 and 2 

5. ∠𝐴𝐵𝐶 ≅ ∠𝐶𝐷𝐵 ≅ ∠𝐴𝐷𝐵, argumentation due to steps 3 and 4 

6. ∠𝐵𝐴𝐶 ≅ ∠𝐷𝐴𝐵, the arguments of the two angles coincide 

7. ∠𝐵𝐶𝐴 ≅ ∠𝐷𝐶𝐵, arguments the two angles coincide 

8. △ 𝐵𝐴𝐶 ∼△ 𝐷𝐴𝐵 argumentation step 5, step 7 and similarity of two triangles 

9. △ 𝐷𝐴𝐵 ∼△ 𝐷𝐵𝐶, argumentation of step 6, step 7 and the similarity of the two triangles. 

10. 
𝐴𝐷

𝐵𝐷
=

𝐵𝐷

𝐷𝐶
  as a result of step 9. 

11. 𝐴𝐷. 𝐷𝐶 = 𝐵𝐷. 𝐵𝐷, due to step 10. 

12. 𝐴𝐷. 𝐷𝐶 = 𝐵𝐷2 algebraic manipulation of step 11. 

13. Drawing the following conclusion, “If ∆ 𝐴𝐵𝐶has a right angle at B, and from point B is drawn an 

altitude intersecting the hypotenuse at D, then 𝐵𝐷̅̅ ̅̅ 2 = 𝐴𝐷̅̅ ̅̅ × 𝐷𝐶̅̅ ̅̅ ”, as a result of steps 1, 2, and 

12. 

A

B C

D

 
Figure 3. A Figure Made by S3 Subject to Answer Questions 

 

Diagram 5 illustrates the sequence of proving steps undertaken by S3. 

The consolidation process revealed that S3 frequently used mathematical concepts related to 

equal angles and triangle similarity while also demonstrating repetition in reasoning about the congruence 

of angles and triangle similarity. Regarding the Recognition (R), Building-with (B), and Constructing (C) 

abilities, S3 recognized (R1) that ∆𝐴𝐵𝐶 was a right triangle with ∠𝐵 = 90° and that 𝐵𝐷 was 
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perpendicular to 𝐴𝐶 (R2) presented in Diagram 6. She also identified and structured key angle 

relationships (R2, B1), such as 𝑚∠𝐶𝐷𝐵 = 𝑚∠𝐵𝐷𝐴 = 90°.  

In the building-with phase, she established (R3=B1, C1) that ∠𝐶𝐷𝐵 ≅ ∠𝐴𝐷𝐵 and (R2, B3, C2) 

∠𝐴𝐵𝐶 ≅ ∠𝐶𝐷𝐵. The subject concatenated (R3 = C1, R4 = C2, C3) to establish that ∠𝐴𝐵𝐶 ≅

∠𝐶𝐷𝐵 ≅ ∠𝐴𝐷𝐵. She also recognized (R5) that ∆𝐵𝐷𝐴 had a right angle at D. Additionally, she 

concatenated (R1, R5, B4) to conclude that ∠𝐵𝐴𝐶 ≅ ∠𝐷𝐴𝐵. The subject further recognized (R6) that 

∆BDC had a right angle at D. Then, she structured (R1, R6, B5) the relationship ∠𝐵𝐶𝐴 ≅ ∠𝐷𝐶𝐵. Next, 

the subject constructed (B4 = R7, C3) to establish the similarity relation ∆𝐵𝐴𝐶 ∼ ∆𝐷𝐴𝐵 and (B5 = R8, 

C4) to establish ∆𝐷𝐴𝐵 ∼ ∆𝐷𝐵𝐶. Furthermore, she constructed (R9 = C4, C5) the proportion 
𝐴𝐷

𝐵𝐷
=

𝐵𝐷

𝐷𝐶
 

and (R10 = C5, C6) the equation 𝐴𝐷. 𝐷𝐶 = 𝐵𝐷. 𝐵𝐷, leading to (R11 = C6, C7) the final algebraic 

expression 𝐴𝐷. 𝐷𝐶 = 𝐵𝐷2. Finally, the subject formulated the conclusion (R1, R2, R12): "If ∆𝐴𝐵𝐶 has 

a right angle at B, and an altitude is drawn from point B to intersect the hypotenuse at point D, then 

𝐵𝐷̅̅ ̅̅ 2 = 𝐴𝐷̅̅ ̅̅ × 𝐷𝐶̅̅ ̅̅ ". 

The conclusion drawn by S3 was a direct result of recognizing, structuring, and constructing 

mathematical relationships through systematic reasoning. This process highlighted S3’s ability to 

integrate prior knowledge with logical proof techniques. Diagram 6 further illustrates S3’s recognition 

abilities throughout the proof process, providing a visual representation of the conceptual steps involved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

The process of writing mathematical proofs provides undergraduate students with an opportunity to think 

critically and reflect on their experiences when proving a problem based on the congruence of two 

triangles and the application of the Pythagorean theorem. Writing proofs not only enhances students' 

ability to follow procedures but also helps bridge the gap between procedural fluency and conceptual 

understanding. This aligns with the findings of King et al. (2016), who stated that writing in mathematics 

fosters critical thinking. 

However, subjects S2 and S3 were unable to explore alternative methods to solve the problem 

beyond using the congruence of two triangles, even though they selected different pairs of triangles. 
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Diagram 5. The Process of Proving of S3 
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Writing proficiency enables students to articulate mathematical reasoning, demonstrate conceptual 

understanding, and develop problem-representation skills. This is consistent with previous research 

(Baxter et al., 2005), which suggests that writing significantly aids in understanding mathematical 

reasoning, conceptual comprehension, and problem representation. 

In the proof process, students recognized that if a right angle exists at a given point, drawing an 

altitude from that point to the hypotenuse establishes the congruence of two triangles. This finding is in 

line with research by Jones et al. (2013), which states that students can determine pairs of congruent 

triangles to prove a geometric theorem. The ability to read and construct proofs enhances problem-

solving skills (Bicer et al., 2013) and has a positive impact on academic achievement (Cooper, 2012). 

Moreover, proof-writing skills help students develop conceptual, procedural, and mathematical 

communication abilities (Teuscher et al., 2015). These findings reaffirm that proof construction is not 

merely a technical task but one that integrates cognitive and communicative competence.  

The process of abstraction follows a sequence of epistemic actions, including recognizing, 

building-with, constructing, and consolidating (Dreyfus et al., 2015). The three subjects required time to 

determine their proof strategy, ultimately choosing to rely on triangle congruence. Recognition occurred 

as subjects made analogies to previously encountered mathematical structures, such as the sum of 

angles in a triangle being 180°. In the building-with phase, subjects combined existing elements to 

achieve specific goals, such as problem-solving or constructing arguments (Dreyfus et al., 2002; Jirotková 

& Littler, 2005). This process led them to construct the proof that |𝐵𝐷̅̅ ̅̅ |2 =  |𝐴𝐷̅̅ ̅̅ |  ×  |𝐶𝐷̅̅ ̅̅ |, 

demonstrating their ability to reorganize and restructure knowledge (Dreyfus et al., 2015). For example, 

recognizing that two pairs of congruent angles imply triangle congruence allows for corresponding sides 

to be proportionate. 

During the consolidation phase, subjects demonstrated a clear and rapid understanding of the 

relationships among the three triangles—∆𝐴𝐵𝐶 (right-angled at B), ∆𝐴𝐵𝐷 (right-angled at D), and 

∆𝐶𝐷𝐵 (right-angled at D) (Dreyfus et al., 2015). They realized that the abstraction established in one 

triangle facilitated their comprehension of similar structures in other triangles, supporting further 

abstraction (Breive, 2022). 

Although the RBC+C abstraction model allowed us to observe abstraction micro-analytically, the 

findings also revealed that students’ epistemic actions were not uniform across literacy levels. For 

example, high-proficiency students demonstrated the ability to reorganize ideas and recognize patterns 

through multiple representations, including diagrams, symbolic notation, and verbal justification. In 

contrast, low-proficiency students often focused on isolated aspects of the problem and struggled to 

maintain logical coherence between steps. 

These differences in abstraction quality are likely influenced by students’ mathematical reading 

and writing abilities, which were the focal point of this study. In the Indonesian higher education context, 

proof is introduced relatively early, typically during geometry courses in the first or second year. However, 

mathematical literacy is rarely treated as an explicit learning objective in the curriculum, specifically the 

ability to read and write mathematical arguments (Retnawati et al., 2018). Students are often expected 

to construct proofs based on examples or procedural models without sufficient scaffolding in interpreting 

symbolic language or articulating reasoning. This may explain why low-literacy students in this study 

struggled with consolidation and symbolic consistency, despite demonstrating basic recognition of 

geometric relationships. 

The contrast between students with high and low literacy levels supports findings from international 

literature (Bicer et al., 2013; Österholm, 2006), which suggests that reading and writing in mathematics 
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are critical not only for understanding text but also for navigating abstract concepts and engaging in deep 

mathematical thinking. Furthermore, the fact that high-proficiency students reused and repurposed 

theorems across multiple steps indicates a stronger ability to internalize and manipulate abstract 

constructs—a hallmark of successful abstraction in the AiC framework (Dreyfus & Kidron, 2014; Gilboa 

et al., 2019). 

The RBC+C abstraction model describes the process through which the subjects abstracted 

knowledge while solving the problem. The analysis of RBC+C suggests that students with strong 

language, writing skills, and mathematical reasoning exhibited a structured approach to proof 

construction. These students successfully utilized all epistemic actions within the RBC+C model and 

achieved a formal level of proof for triangle congruence. 

From a theoretical perspective, the analysis reveals a nested abstraction process. Students 

recognized previously established structures and assembled them to meet the requirements of the proof. 

The interview design was intended to establish a network of relationships that substantiates the reasoning 

process and allows for the extension of existing knowledge into new mathematical structures. The 

subjects’ activities—recognizing, assembling, and constructing relationships between quadrilaterals—

were not strictly hierarchical but rather interconnected, forming a chain-like progression of thought. 

Their cognitive and communicative abilities, both written and verbal, played a crucial role in proof 

construction and interview discussions. In some instances, high-achieving students demonstrated 

creative thinking by proving the theorem not only through geometric methods but also via algebraic 

approaches. High-achieving subjects consolidated mathematical concepts by repeatedly applying, 

revisiting, and refining their ideas, whereas lower-achieving students exhibited a more fragmented 

approach, frequently reusing but not deeply engaging with mathematical concepts. 

Furthermore, the analysis suggests that abstraction processes differ among students with high, 

medium, and low abilities. High-achieving students demonstrated a refined abstraction process, 

systematically recognizing and assembling previously established structures to meet verification and 

interview tasks. The interview process guided students toward proving geometric theorems while also 

encouraging them to extend beyond known knowledge to construct new mathematical structures. In this 

process, students engaged in recognizing, assembling, and constructing knowledge in a structured 

manner, where the complexity of the abstraction process corresponded to their proficiency in 

mathematical reading and writing. 

CONCLUSION 

The Recognition, Building-with, Construction, and Consolidation (RBC+C) abilities of subjects with high 

mathematical reading and writing proficiency are presented in detail, aligned with the proof steps and 

further refined through interviews to develop a nested RBC network. This network consists of 16 

recognitions (4 from building-with and 4 from construction), 8 building-with, and 6 construction actions. 

However, the subject did not consistently apply line segment length notation, likely due to differences in 

notation across reference books. Nevertheless, the subject demonstrates consolidation through frequent 

reuse of mathematical concepts, particularly the repeated application of the Pythagorean Theorem across 

three right triangles within the given problem. Although the subject did not reconfirm the proof using 

geometric congruence, their use of algebraic reasoning reflected strong abstraction and flexible problem-

solving strategies. 

Similarly, the RBC+C abilities of subjects with moderate mathematical reading and writing 
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proficiency are analyzed in detail according to proof steps, refined through interviews, and mapped into 

a nested RBC network. This network comprises 8 recognitions (3 from building-with and 4 from 

construction), 4 building-with, and 6 construction actions. The subject effectively utilizes reading and 

writing skills to construct the relevant triangles, document known and to-be-proven elements, and apply 

precise notations for congruent angles, perpendicular line segments, congruent triangles, and segment 

lengths. Inaccuracies emerged in the use of right-angle indicators and symbolic representations, which 

may have affected the coherence of the proof structure. However, reinforcement of understanding was 

evident through the repeated application of the triangle angle sum property (180°), demonstrating partial 

consolidation of ideas. 

For subjects with low mathematical reading and writing proficiency, the RBC+C abilities are also 

examined in relation to proof steps, supported by interviews, and represented through a nested RBC 

network. This network consists of 12 recognitions (3 from building-with and 4 from construction), 5 

building-with, and 8 construction actions. Although they demonstrated some level of consolidation by 

frequently referencing congruent angle relationships, these students faced greater challenges in 

maintaining logical flow and using consistent mathematical notation throughout the proof. Their 

abstraction processes appeared more fragmented, with limited coherence between recognition and 

construction stages. 

This study has several limitations, including a small sample size of three undergraduate students, 

which limits the generalizability of the findings. The narrow focus on triangle congruence as a proof 

domain may also constrain applicability to other mathematical topics. Furthermore, the study did not 

employ longitudinal tracking, making it difficult to assess the development of RBC+C abilities over time. 

Variations in participants’ prior knowledge could also have influenced their performance and abstraction 

patterns. 

Despite these limitations, the study offers valuable insights into how students' mathematical 

reading and writing abilities influence their abstraction processes in proof construction, directly 

addressing the research objective. The findings highlight that students with stronger literacy skills exhibit 

more structured and interconnected epistemic actions—recognizing, building-with, constructing, and 

consolidating—while those with lower proficiency demonstrate inconsistencies in reasoning and difficulty 

in maintaining logical coherence. This affirms the central aim of the study: to explore the relationship 

between mathematical literacy and students’ engagement in epistemic actions during geometric proof. 

The results reinforce the importance of integrating mathematical reading and writing into proof-

based instruction. Developing students’ literacy skills can enhance not only their communication abilities 

but also their conceptual reasoning and abstraction. Future research is encouraged to investigate this 

relationship in broader mathematical contexts and across different educational levels. Studies involving 

instructional interventions that strengthen mathematical literacy may yield strategies for improving 

students’ proof competencies and overall mathematical understanding. 
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