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Abstract  

The number line and the neutralization model have been used very extensively in teaching integer additions and 

subtractions for decades. Despite their advantages, issues concerning subtractions on these models are still 

debatable. Therefore, the neutralization on an empty number line (NNL) model is proposed in this research to 

help students better understand the meaning of integer subtractions as well as additions. This report is a part of 

a design research study conducted in a classroom of 28 elementary school students at the fifth grade. Data were 

gathered by collecting students’ written work, conducting interviews and observations during the teaching 

experiment. This paper focuses on students’ perceptions of the NNL model and what factors that might contribute 

to students’ achievements in understanding integer additions and subtractions. The analysis revealed that most 

students overemphasized on the use of the NNL model as a procedural method instead of as a model for thinking. 

Moreover, students’ mathematical beliefs and conceptions on the use of the column strategy and the absence of 

a discussion on the need of using the model are found to be some factors that could cause students’ 

misunderstandings. However, with a thorough planning, the NNL model has a potential to help students 

developing a meaning of integer additions and subtractions. 

Keywords: Addition, Subtraction, Negative, Neutralization on an Empty Number Line (NNL) Model 

Abstrak  

Model garis bilangan dan model netralisasi telah digunakan secara luas dalam pembelajaran konsep penjumlahan 

dan pengurangan bilangan bulat. Terlepas dari kelebihan pada masing-masing model, permasalahan pada operasi 

pengurangan yang melibatkan bilangan bulat negatif masih menjadi perdebatan yang hangat. Oleh karena itu, 

model netralisasi pada garis bilangan kosong (NNL) digunakan dalam penelitian ini untuk membantu siswa lebih 

memahami makna operasi pengurangan bilangan bulat serta penjumlahan. Makalah ini merupakan bagian dari 

penelitian design research yang dilakukan di kelas V suatu Sekolah Dasar dengan 28 siswa. Data diperoleh dari 

hasil jawaban siswa, observasi dan interview selama pembelajaran di kelas berlangsung. Makalah ini fokus pada 

persepsi siswa tentang model NNL dan faktor-faktor apa yang mungkin berkontribusi terhadap kesuksesan siswa 

dalam memahami penjumlahan dan pengurangan bilangan bulat. Analisis mengungkapkan bahwa sebagian besar 

siswa terlalu menekankan pada penggunaan model NNL sebagai metode prosedural daripada sebagai model 

untuk berpikir. Selain itu, keyakinan dan konsepsi matematika siswa tentang penggunaan strategi susun ke bawah 

dan tidak adanya diskusi tentang kebutuhan menggunakan model tersebut ditemukan menjadi beberapa faktor 

yang dapat menyebabkan kesalahpahaman siswa. Namun, dengan perencanaan yang matang, model NNL 

memiliki potensi untuk membantu siswa mengembangkan makna penjumlahan dan pengurangan bilangan bulat.. 

Kata kunci: Penjumlahan, Pengurangan, Negatif, Model Netralisasi Pada Garis Bilangan (NNL) 

How to Cite: Sari, P., Hajizah, M.N., & Purwanto, S. (2020). The neutralization on an empty number line model 

for integer additions and subtractions: Is it helpful?. Journal on Mathematics Education, 11(1), 1-16. 

http://doi.org/10.22342/jme.11.1.9781.1-16. 

 

Studies indicated that the use of models and contexts could promote students’ thinking in performing 

addition and subtraction of integers (Liebeck, 1990; Stephan & Akyuz, 2012; Bofferding, 2014; Teppo 

& van den Heuvel-Panhuizen, 2014; Sahat, Tengah, & Prahmana, 2018). Basically, there are two 

models for teaching addition and subtraction of integers, i.e. the neutralization model and the number 

line model (Van de Walle, 2004). In dealing with integer addition and subtraction involving negative 

numbers, the neutralization model or the cancellation model applies the principle of cancellation, where 
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the sum of every number and its opposite is always zero. Whereas the number line model uses the idea 

of direction to represent the operation of addition and subtraction. 

The neutralization model is usually introduced by using counters of two different colors representing 

positive and negative integers. If blue counter represents positive integer and red counter represents negative 

integer, then each pair of blue and red counter is equal to zero, and thus implies “a + (-a) = 0”. When working 

with this model, integer addition and subtraction can be interpreted as “adding” and “taking away” 

respectively. As an example, to model the addition of “6 + (-2)”, students first put six blue counters and then 

‘add’ two red counters. Since two red counters cancel out two blue counters, then four blue counters remain 

as the sum. However, the problem happens when students are dealing with subtraction problem such as “6 

– (-2)”. First, students put six blue counters and then they must ‘take away’ two red counters. In this case, 

the red counter does not exist, so they have to ‘add’ two pairs of red and blue counters or zero pairs so they 

can ‘take away’ two red counters and 8 blue counters remain as the result (see Figure 1). Hence, students 

must understand that when pairs of opposite colors of counters are added to a quantity, the value of the 

original counters remains unchanged (Van de Walle, 2004).  

 

Figure 1. The neutralization model for solving “6 – (-2)”  

 

On the other hand, the number line model is depicted as a horizontal line in which positive 

integers are located to the right of zero and negative integers are located to the left of zero. NCTM 

(2000) recommends students to use the number line model to explore negative numbers as extensions 

of positive numbers through familiar applications. The operation of addition and subtraction can be 

interpreted as “walking in the same direction” and “walking in the opposite direction”. For example, to 

solve “6 + (-2)”, students can start at zero facing right and move forward six steps (+6), then move two 

steps backwards representing negative two. Although the use of number line model is helpful for 

supporting integer addition, but students tend to have problems when dealing with subtraction with 

negative numbers because the procedure is more complicated. For example, to solve “6 – (-2)” using 

the number line model, students can start at zero facing right and then move forward six steps (+6), 

afterwards students have to face in the opposite direction (turn around) before they move two steps 

backward (-2) on the number line to represent the subtraction operation (see Figure 2). 

 

Figure 2. The number line model for solving “6 – (-2)” 

 

 

               

Fig 1.  The neutralization model for solving “6 – (-2)” 
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Freudenthal (1973) showed that the number line model could be helpful for supporting integer 

addition, and Stephan & Akyuz (2012) indicated that the number line model together with a financial 

context (assets and debts) could support students’ development of integer addition and subtraction, both 

procedurally and conceptually. However, Küchemann (1981) pointed out that the number line model 

should be avoided in teaching subtraction of integers, thus a discrete model or the neutralization model 

was offered as a better solution. Liebeck (1990) also emphasized that the existing concept of addition and 

subtraction are related to “adding” and “taking away” objects. When students use the number line model 

in subtracting a negative number, for example “6 – (-2)” as in Figure 2, there is no relevance between the 

intuitive concepts of subtraction as “taking away” and the “turn around” movement on the number line 

that represent the subtraction operation. On the other hand, the neutralization model could also be 

confusing for students, since the subtraction operation involves both addition and subtraction – that is, 

adding the zero pair first and then taking away the number indicated in the problem (Bofferding, 2014). 

Some studies on the use of the combination of the neutralization and the number line model were 

identified. Steiner (2009) in his dissertation used the novel model with a context of money to spend (as 

a positive integer) and debt (as a negative integer). By placing red bills (debts) to the left side of zero 

and white bills (money to spend) to the right side of zero on a number line, the operation of addition 

and subtraction of integers were carried out using the cancellation principle. Similarly, Shutler (2017) 

utilized the banking model as a development of hills and dales model. Positive and negative integers 

represented as stacks of black circles and wells of white circles respectively. However, the situation of 

assets and debts is not suitable for Indonesian context, since the smallest amount of money in Indonesia 

is a hundred rupiah.  

Despite the fact that some studies have been conducted in Indonesia on developing students’ 

understanding of integer additions and subtractions (Aris, et al. 2019; Prahmana, 2017; Shanty, 2016; 

Muslimin, et al. 2012), research on developing a combination model of the neutralization and the number 

line model has not been done. Therefore, this study offers the neutralization on the number line (NNL) 

model to promote students’ understanding in performing addition and subtraction of integers. The NNL 

model applies the procedure of neutralization model where the representations of positive and negative 

integers are located on an empty number line. Sari, et al. (2019) suggested that the NNL model could give 

meaning to students that subtracting a negative means adding a positive and subtracting a positive from a 

negative means adding two negatives, and it also allows us to work with big numbers.  

Lesh & Doerr (2000) defined model as a system consisting of elements; relationships among 

elements; operations that describe how the elements interact; and patterns or rules, such as symmetry, 

commutativity, and transitivity that apply to the preceding relationships and operations. In the NNL 

model, there are three main elements, (i) a mound (a curve above the empty number line) to represent 

a positive integer, (ii) a hollow (a curve below the empty number line) to represent negative integers, 

and (iii) an empty number line to record and track students’ strategies in performing the operation. The 

relationship between the mound and hollow is that every pair of mound and hollow counts as zero, 
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meaning that “1 + (-1) = 0”. The operations on this model constitute addition as ‘adding’ a number of 

mounds or hollows and subtraction as ‘taking away’ a number of mounds or hollows as indicated in the 

problem. Furthermore, the rule that applies to this model is that when pairs of a mound and a hollow 

are added to the existed mounds or hollows, the value of the initial mounds or hollows remains 

unchanged. Figure 3 illustrates how the NNL model is used in a subtraction problem.  

 

 

Figure 3. The NNL model for solving “6 – (-2)” 

 

In the present research, we used a theory of RME (Realistic Mathematics Education) which was 

developed in the 1970s by Hans Freudenthal who perceived mathematics as a human activity. Opposite 

to traditional mathematics education, RME emphasizes mathematics education as a process of doing 

mathematics in reality that leads to a result, mathematics as a product (Gravemeijer & Terwel, 2000). 

The main features of RME are the use of contexts and models, students’ own constructions and 

productions, interactivity, and intertwinement (Treffers, 1987). The use of contexts and models are the 

two fundamental elements in RME to support students’ progressive mathematizing. Whitacre et al. 

(2012) suggested that reasoning about opposite magnitudes could serve as a basis for integer reasoning. 

Therefore, the scoring context which reveals two opposite magnitudes that are positive and negative 

scores has a potential to develop students’ reasoning with integers. Thus, the context of scoring was 

chosen in the present research as a situation that students can discuss within it and as a basis for the 

development of the NNL model. 

Hence, aiming at developing the local instructional theory on integer addition and subtraction as 

well as improving practice, this paper seeks to address the following questions, first, how do students 

perceive the NNL model in solving integer additions and subtractions? Second, what factors that might 

contribute to students‘ achievement in solving integer additions and subtractions? 

 

METHOD 

This report is a part of the retrospective analysis conducted in a design research study. Design 

research is also known as developmental research (Freudenthal, 1991), design-based research (Cobb, et 

al. 2016), educational design research (McKenney & Reeves, 2014), or classroom-based design 

research (Stephan & Cobb, 2013). There are three phases in a design research study, first, the design 

and preparation, second, the implementation of the design, and third, the retrospective analysis 

(Gravemeijer & Cobb, 2006; Cobb, et al. 2003). 

In the first phase, a design of an instructional sequence was developed based on the local 

instructional theory about integer addition and subtraction. The use of models and contexts in 
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developing the concept of integer addition and subtraction was explored. A hypothetical learning 

trajectory (Simon, 1995) was elaborated to describe both a sequence of learning activities and 

conjectures of how students engage in the activities. In the second phase, the hypothetical learning 

trajectory (HLT) was tried out in a classroom of 28 students in SD Nurul Islam, Jakarta. Data such as 

video recordings of classroom activities, photos of students’ activities, students’ written works, 

classroom observations and interviews were collected. Observations took place on the classroom level, 

group level, and individual level, while interviews were made occasionally during the lesson or 

purposively after the lesson. 

After the lessons took place, the data from different sources were gathered, selected, and analyzed 

by comparing the actual learning process and the hypothetical learning trajectory. Students’ written 

works were chosen, examined and analyzed in accordance with other sources of data to improve the 

triangulation. The retrospective analysis reported in this paper will focus on how students’ perceptions 

of the NNL model in solving integer additions and subtractions, do they find it helpful or not. Moreover, 

we will also find out what factors that might contribute to students’ achievement in solving integer 

additions and subtractions, related to the classroom practices in the classroom. 

 

RESULT AND DISCUSSION  

This section summarizes the findings of the teaching experiment in conjunction with the 

hypothetical learning trajectory (HLT), followed by the retrospective analysis focusing on 

students‘ perception of the NNL model. 

The Comparison between the HLT and the Implementation of HLT  

Based on Simon (1995), a hypothetical learning trajectory (HLT) is made up of three 

components: learning goals that defines the direction, learning activities, and hypothetical learning 

processes–a prediction of how students’ thinking and understanding will evolve in the context of the 

learning activities. Similar to the present design research, Simon (2018) conducted a Learning Through 

Activity research program aiming at the construction of a HLT for a specific topic and the elaboration 

of theory and instructional design to promote students’ conceptual understanding. In this design 

research, HLT serves as a guideline in the teaching experiment and also as a framework in the 

retrospective analysis where the actual learning process is compared to the HLT (Bakker, 2004). In the 

present research, a sequence of activities was designed aiming at developing students understanding of 

negative numbers and constructing a meaning of integer addition and subtraction by means of the NNL 

model and the scoring context.  

Table 1 shows how the actual learning process took place in a classroom compared to the 

designed HLT. The designed sequence of activities in this research is basically divided into three parts. 

First, understanding negative numbers by exploring various contexts. Second, developing the context 

of scoring to introduce integer addition and the NNL model. Third, exploring integer subtraction on the 

NNL model. It was expected that by experiencing the scoring context, students will develop a meaning 
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of addition and subtraction as ‘adding‘ and ‘taking away‘ positive or negative scores. However, it was 

also hypothesized that a problem might occur when students are dealing with subtraction, that is, when 

students have to take away scores or numbers that does not exist before. Thus, a term ‘neutral pairs‘ or 

‘zero pairs‘ might be introduced to help students solve the problem.  

 

Table 1. The comparison between the HLT and the implementation of HLT 

The HLT The Implementation of HLT 

Understanding Negative Numbers 

 

Goals: Students develop a meaning of negative integer. 

Activities: 

A classroom discussion about the existence of negative numbers as 

the extension of positive numbers on the number line by using the 

context of temperature below zero. 

A further discussion about negative numbers as the opposite of 

positive numbers by using the context of height and depth, assets 

and debts, positive and negative scores. 

Hypotheses: 

Various contexts could help students build the meaning of negative 

integers. The number line model emerges naturally from the 

temperature context. Hence, students can compare positive and 

negative integers by using the number line. The number line can 

also be used to show that any two integers having the same distance 

from zero in opposite directions are called opposites.  

Other contexts might be introduced to students to enrich their 

understanding of negative numbers. 

 

 

The temperature context can 

introduce the concept of 

negative numbers very well. 

The number line emerges from 

the picture of a thermometer 

with negative and positive 

temperatures on it. 

However, the students did not 

have any experience related to 

negative numbers. Thus, other 

contexts were introduced to 

students, including the scoring 

context. There was less 

attention in developing the idea 

of opposite numbers. 

The Scoring Context and Integer Addition 

 

Goals: Students can perform integer additions involving negative 

numbers.  

Activities: 

The scoring context is introduced to students by playing a game. 

One positive score is signified as a mound, and one negative score 

is signified as a hollow. Students are asked to record their scores 

and find the total score after playing each game. A discussion 

 

Students were very excited 

when playing the game. They 

can record their scores 

correctly and find the total 

score by the neutralization 

principle. For those who 

already have knowledge in 

performing integer addition 

involving negative numbers, 
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about the idea of one positive cancels out one negative, i.e. “ 1+(-

1)=0“ precedes the game. 

Hypotheses: 

It was conjectured that the game will promote students‘ 

participation in the classroom. The idea of canceling out every pair 

of positive and negative scores will help them to find the total 

score. There might be also students who will use subtraction 

instead of the neutralization principle. Figure 4 shows how the 

NNL model emerges from the activity. 

 

Figure 4. The emergence of the NNL model for integer addition 

they can perform the addition 

as a subtraction: 𝒂 + (−𝒃) =

𝒂 − 𝒃. If the number of 

negative scores is bigger than 

the positive scores, then they 

find the positive difference 

between the two numbers and 

put a negative sign in front of 

the result.  

However, some students failed 

in determining the sum of two 

negative numbers, because 

they did not go back to the 

scoring context in adding the 

two negative numbers.  

The Scoring Context and Integer Subtraction 

 

Goals: Students can perform integer subtractions involving 

negative numbers. 

Activities: 

The rule of the game in scoring context is modified: 

If they win they could take away three negative scores, and if they 

loose they have to take away two positive scores. 

Hypotheses: 

The rule was modified to provoke students‘ understanding that 

taking away a negative number means adding the opposite, that is 

𝒂 − (−𝒃) = 𝒂 + 𝒃 and taking away a positive number means 

adding the opposite, −𝒂 − 𝒃 = (−𝒂) + (−𝒃). To develop those 

idea, the problem that they might encounter is taking away a score 

that does not exist before, for example, to solve “ -3 – 2“, they have 

to take away two positive scores or two mounds from three 

negative scores or three hollows. If there is none of them come up 

with a solution, the teacher may introduce the idea of adding 

‘neutral pairs‘ or ‘zero pairs‘ that counts as zero and will not 

change the initial score. Figure 5 shows how the NNL model can 

be used in representing the idea:  

 

There were some evidences 

that most of the students had 

difficulties in performing 

integer subtractions, so the 

teacher had to introduce the 

idea of neutral pairs and 

showed the students how to do 

the subtractions.  

 

It was observed that the 

difficulty in grasping the idea 

of subtraction involving 

negative numbers made them 

frustrated. The scoring context 

was no longer predominant in 

the classroom discussion since 

they over emphasized the idea 

of neutral pairs. It happened 

that the students keep adding 

the neutral pair though in some 
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Figure 5. The emergence of the NNL model for integer 

subtraction 

cases it was not always needed 

in solving a problem. 

 

Some evidences also showed 

that their previous knowledge 

in applying the algorithm 

strategy were quite dominant.  

 

 

The Retrospective Analysis on the NNL Model  

Table 2 describes an interpretative framework that underpins our analyses of students’ 

mathematical learning both as individuals and as a community in a classroom mathematical practice. 

This framework combines two different perspectives in learning, the psychological or individual 

perspective and the social perspective. In the view of constructivism theory, the learning process 

evolves as a result of the contribution of an individual students’ reasoning to the classroom community 

and reflectively the influence of the classroom community to the development of students learning as 

an individual. 

 

Table 2. An interpretative framework for analyzing communal and individual mathematical activity 

and learning (Cobb et al, 2001) 

Social Perspective Psychological Perspective 

Classroom social norms 
Beliefs about own role, others’ roles, and the general 

nature of mathematical activity in school 

Socio-mathematical norms Mathematical beliefs and values 

Classroom mathematical practices Mathematical interpretations and reasoning 

 

Cobb et al. (2001) explained that while the psychological perspective emphasizes on students’ 

various ways of reasoning during their participations in mathematical practices, the social perspective 

brings out the development of mathematical practices as a result of the classroom discourse. More 

specifically, the classroom social norms include explaining and justifying solutions, indicating 

agreement or disagreement, and trying to understand others’ reasoning. The socio-mathematical norms 

are more specific to mathematical activity in which the classroom community come to an agreement of 

what counts as an efficient mathematical solution and an acceptable mathematical reasoning. 

Furthermore, classroom mathematical practices focus on particular mathematical ideas. 

In this research, the classroom mathematical practices that were expected to evolve in the 

classroom discussion are about the ideas of (i) zero pairs or neutral pairs, in other words, the sum of 

any integer and its opposite is zero; (ii) adding two numbers means putting together the two numbers 
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and then finding what is left over after cancelling out the zero pairs; (iii) subtracting means taking away 

a certain quantity from another quantity; and (iv) if zero pairs are added to a quantity then the value of 

the original quantity remains unchanged 

Therefore, to answer our questions about students’ perception of the NNL model in the teaching 

experiment, we will look at students’ perception of the NNL model as an individual and how this 

contribute to the classroom mathematical practices. Similarly, we will also analyze how the three 

aspects of the social perspective contribute to the development of students’ perception of the NNL 

model in performing integer addition and subtraction.  

To begin with, we will expound how the scoring activity was developed as a context for the 

emergence of the NNL model. A game was introduced to the students and they played the game in pairs. 

Every student had to record their score along the game and found the sum at the end of the game. If 

they win, they earn a positive score, and if they lose, they earn a negative score. The teacher 

demonstrated the game in front of the classroom by using blue cards and red cards representing positive 

and negative scores respectively, as it is shown in Figure 3. The students were very excited when playing 

the scoring game, they came up with different representations when finding the sum of positive and 

negative integers (see Figure 6). 

 

Figure 6. students‘ representations when solving integer addition 

 

There were three different models identified in solving addition of positive and negative integers. 

Basically, they were doing the cancellation or neutralization model but with different representations. Based 

on the observation, some students even already knew the relation of “ 𝒂 + (−𝒃) = 𝒂 − 𝒃“. The scoring 

activity can help them understand how to find the sum of a positive number and a negative number. However, 

there was an absence of a classroom discourse in explaining why the relation “𝒂 + (−𝒃) = 𝒂 − 𝒃“ applies.  

The next activity was the scoring activity with a modified rule, that is, if they win then they can 

take away three negative scores, and if they lose then they must take away two positive scores. By 

modifying the rules, they were challenged to come up with the idea of ‘neutral pair’. However, almost 

all of the students in the classroom did not come up with the idea of adding a neutral pair when they 

had to take away a quantity that did not exist before. It might happen because the students did not have 

enough support to find the idea of adding the neutral pairs to their problem, they need physical objects 

to work with instead of just drawing mounds and hollows.  

 

 

 

 

               
 

(i) (ii) (iii) 
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Dialog 1. A transcription of a classroom discussion on the idea of a neutral pair 

 The teacher is introducing the subtraction problem involving negative numbers: 

 

T : Now I only have one positive score, and then I win, so I have to take away three negative 

scores. 

S : you can’t 

T : Ok, how should I find out my score now if I only have one positive score and I have to take 

away three negative scores? Please discuss this problem with your friend. 

 

 

 

About 15 minutes later… (the whole classroom discussion began and one of the students came 

forward to explain the solution as shown in Figure 7) 

 

T : Now you have one positive score.  

S1 : I add negative three and positive three 

T : Why? You only had one positive in the beginning. Why did you add three negative scores and 

three positive scores? 

S1 : To make a neutral pair 

T : To make a neutral pair (emphasizing) 

 Ok, now let’s look at an example, if this is positive one and this is negative one, then what is 

it? 

S1 : A neutral pair 

T : A neutral pair means…? (asking) 

S1 : zero 

T : zero,,, this is a neutral pair which equals to …? (asking) 

S1 : zero 

T : and for this one, how many neutral pairs are there? (pointing to their solution) 

S1 : three 

T : Three neutral pairs equal to zero … Is that what you mean? 

Now, I want to clarify once again, because your friends might want to know, why did you add 

three neutral pairs, three positives and three negatives? 

S1 : neutral pair 

 

Dialog 1 shows the idea of neutral pair was too dominant in the discussion, but the need of adding 

the neutral pair in the subtraction problem has not been discussed. Thus, there was a missing discussion 

about the third and the fourth classroom mathematical practices that were expected to evolve during the 

discussion. It was also found later that the idea of ‘neutral pairs’ was very powerful that cause students’ 

misunderstandings in handling problems. Once the teacher emphasized the idea of neutral pairs, they 

started to build their understanding that a neutral pair is a very important idea in solving such problems. 

As a result, during a small group discussion, they always think of adding a neutral pair to any kind of 

problems although it was not needed. 

 

Figure 7. A student is explaining his solution in front of the classroom 
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Figure 8 (i) shows us one common perception of the NNL model among the students. To solve the 

problem “46 – 20”, the student drew a mound representing 46 together with a neutral pair of positive 20 

and negative 20, then she/he took away positive 20 from positive 46. But, there is no need to add a neutral 

pair of 20 and (-20) to solve this problem, as she/he already had positive 20 that could be subtracted from 

positive 46. This suggests us that they have beliefs in the classroom that they must add a neutral pair for 

every subtraction problem. Moreover, it seems that they have to do exactly what the teacher told them to 

do so, though they could have done it using different strategies. Somehow, this belief could impede their 

creative and critical thinking in observing and solving a problem situation flexibly. 

 

(i) 

 

(ii) 

Figure 8. Students‘ perception of the NNL model 

 

In another case (Figure 8(ii)), a student was doing a subtraction of minus 7 from positive 26. The 

student should have crossed only the hollow of negative 7 after adding a pair of 7 and (-7), but in fact 

she crossed both positive seven and negative seven that did not represent the actual problem. There was 

also an indication from the picture that the student did a column strategy to find the difference between 

26 and 7 which means that she ignored the negative sign of seven, thus she found positive 19 as the 

result. If the student were going back to the context of scoring, then she might have performed the 

operation more meaningfully. 

Moreover, another student kept repeating the same procedure in modeling the problem using the 

NNL model. She always adds a neutral pair to every problem, but she did not give meaning to the 

model. In Figure 9 (ii), the instruction of the problems was to find the difference between -26 and 19. 

Although she was successful in modeling the problem into the NNL model, but she did not use the 

representation of two hollows meaning that she had to add the two negative numbers. What she did was 

subtracted 19 from 26 with an algorithm strategy or column procedure that was not successful. 

Furthermore, the student‘s modeling in Figure 9(i) and 9(iii) do not represent the problems whatsoever. 

It shows how their previous knowledge on the use of the column strategy influenced them in performing 

integer addition and subtraction. This result is in line with Fuson, et al (1997), that 

students‘ concetenated single-digit conception of numbers while proceeding the column strategy could 

lead to various errors. From the Figure 9, we could see that the student ignored the negative sign of 
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the number and proceed as if the negative sign did not exist. 

 

Figure 9. Another student‘s perception of the NNL model 

 

On the other hand, there were also some evidences that show us the benefit of using the NNL 

model in performing integer addition involving negative integers. As an example, in Figure 10, the 

student can correct his mistake when finding the sum of 4 and (-6). By cancelling out the same number 

of mounds and hollows, the student realized that his first answer was a mistake, then he wrote down the 

correct answer below the first one. The benefit of using the NNL model together with scoring context 

is that students can always refer back to the contextual situation when they have diifficulties. They can 

record their strategy on an empty number line and see how many mounds or hollows must be added or 

taken away. The NNL model allows students to work with big numbers with mounds and hollows 

signify positive and negative quantities respectively. While in the neutralization model, both positive 

and negative numbers are signified with circle with similar shape, they differ only when the circles are 

filled with different colors or signs.  

 

Figure 10. The NNL model in an addition problem 

 

Some factors that might contribute to students‘ achievement were also the lack of classroom 

discussion where the three aspects in the social perspective of learning did not establish in the 

classroom. In most of our classrooms in Indonesia, students do not get used to reasoning and justifying 

their opinions (Prahmana, Zulkardi, & Hartono, 2012). Most of the students seems to put themselves as 
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a listener instead of as a speaker in sharing their ideas. This might happen because they are afraid of 

making mistakes. The students need a strong encouragement to change their beliefs and to develop 

positive classroom cultures such as sharing ideas, understanding each other, and proposing different 

ideas, as students’ contributions and interactivity are important aspects in the theory of RME and other 

constructivism approaches. Therefore, it needs a serious attention for teachers and researchers to build 

positive classroom cultures that can support the development of students‘ learning both as an individu 

and as a classroom community. 

The findings suggest that the designed activity, the instructions given, and the tools provided 

must be taken into consideration in developing the hypothetical learning trajectory. The problem 

happened in the subtraction has been conjectured, but the anticipations were not made clearly. If it 

seems that the students have not developed the need of adding neutral pairs on the NNL model for 

solving subtraction problems, then the teacher must give an ample space for students to really get 

involved in the problem and come up with meaningful ideas. As it was stated in Lesh & Doerr (2000) 

that the teacher plays a critical role in a classroom to create the need for students in sharing their tools 

and representations, creating and nurturing diverse approaches, also creating meaningful and powerful 

models through classroom discourse. Moreover, modeling involves the interaction among three types 

of systems: (a) internal conceptual system, (b) representational systems that function both as 

externalization of internal conceptual systems and as internalizations of external systems, and (c) 

external systems that are experienced in nature, or that are artifacts that were constructed by humans. 

(Lesh & Doerr, 2000). If the interaction among the systems is absent, then the externalization of internal 

conceptual system will not emerge.  

 

CONCLUSION  

 The purpose of the present study was to determine students’ perceptions of the neutralization on 

an empty number line ‘NNL’ model when they are dealing with additions and subtractions of integers. 

The finding has shown that students found it helpful when they were working with addition problems, 

although some difficulties were apparent on the subtraction problems. The classroom mathematical 

practice about the need of adding a neutral pair to a subtraction problem was not developed very well 

in the classroom. Therefore, some adjustments and revisions must be made related to the hypothetical 

learning trajectory, particularly on developing the idea of adding a neutral pair in a subtraction problem.  

 The findings of this study suggest some considerations should be made. First, the need of adding 

a neutral pair in solving subtraction problems must be clear to students. Although the context has 

provided a meaningful situation, the absence of classroom discussion on the need of using a neutral pair 

could be misguided. Second, there must be an ample space for students to develop their thinking, 

manipulate tools, and collaborate with others to come up with a meaningful representation for them. 

Third, a teacher should continuously build constructive classroom cultures to improve students’ 
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contribution, responsibility, and understanding of their own roles for the development of classroom 

mathematical practices.  
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