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Abstract

The Iceberg Design framework has been utilized to represent the progression of students’ mathematical
understanding, moving from informal, contextually grounded reasoning toward formal mathematical abstraction.
This study investigates how prospective mathematics teachers develop Iceberg Designs within the Realistic
Mathematics Education (RME) framework, a model that enhances contextual learning and supports mathematical
literacy. Thirty prospective mathematics teachers from Universitas Negeri Surabaya participated in this qualitative
study, collaboratively designing Iceberg models as part of their coursework. Data from document analysis,
interviews, and observations were evaluated using content analysis, the research evaluated the depth and
coherence of their designs across four key components: situational contexts which evaluates the relevance and
variety of real-world situations, model-of representations which examines the assistance of mathematical
representation to connect the context into mathematical concept, model-for abstractions which assess the use of
mathematical models toward formalization, and formal mathematical concepts which assess the mathematical
ideas being explicitly involved. The findings reveal significant variation in the quality and completeness of the
Iceberg Designs. Models for equivalent ratios and quadratic equations exhibited strong integration, using multiple,
varied contexts to bridge situational and formal mathematical understanding effectively. Conversely, designs for
fraction multiplication and quadrilateral area conservation were often surface level, relying on a single,
underdeveloped context that hindered abstraction. Importantly, the study underscores the potential of Iceberg
Designs to support the Sustainable Development Goals (SDGs), particularly in fostering critical thinking, practical
problem-solving, and meaningful contextual learning for high quality of education (SDG 4) and decent work for
sustainable economic growth (SDG 8). These insights indicate the need for deeper integration of RME principles
in teacher education and curriculum development through sustained investment in this area.
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Mathematics education is a foundational component of general education, playing a crucial role in
developing students’ logical reasoning and problem-solving capacities. Beyond its intrinsic value,
mathematics serves as a language and tool for other disciplines, fostering creativity, innovation, critical
thinking, and logical analysis—competencies essential for cultivating a highly competitive and adaptable
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workforce. However, researchers have consistently observed that the pursuit of high-quality mathematics
education is challenged by persistent systemic issues across many countries (Homavazir & Homavazi,
2024; Llinares, 2021; Priatna et al., 2020; Tanujaya et al., 2017).

For example, results from the Programme for International Student Assessment (PISA) 2022
indicate that students’ average performance in mathematics (366 points), reading literacy (359 points),
and science (383 points) in some countries remains well below the OECD averages of 472, 476, and 485
points, respectively (OECD, 2022). Alarmingly, these results represent a decline compared to scores
from earlier cycles, including those recorded in 2003 (for mathematics and literacy) and 2006 (for
science). The decline has been attributed in part to the COVID-19 pandemic, which exacerbated existing
educational inequities by limiting access to technology and learning resources during periods of remote
instruction (Engelbrecht & Kaiser, 2023; Jana & Rout, 2021; OECD, 2022). In addition to these pandemic-
related effects, curricula that underemphasize 21st-century skills and traditional teacher-centered
pedagogical practices—where opportunities for critical thinking, inquiry, and problem-solving are
limited—have further contributed to low student outcomes (Dilekgi & Karatay, 2023; Martinez et al., 2022;
OECD, 2022; Thornhill-Miller et al., 2023). These factors underscore the urgent need for mathematics
instructional approaches that systematically cultivate students’ critical thinking, creativity, and problem-
solving skills.

One promising approach is Pendidikan Matematika Realistik Indonesia (PMRI), the Indonesian
adaptation of the Realistic Mathematics Education (RME) framework, which has demonstrated potential
in improving mathematics learning outcomes (Pramudiani et al., 2022; Sembiring, 2010; Zulkardi et al.,
2020). PMRI emphasizes active, student-centered learning within meaningful contexts, enabling learners
to construct a deep conceptual understanding of mathematics through guided reinvention (Ariati &
Suparman, 2023; Fauziah & Zulkardi, 2022; Prahmana et al., 2020; Rahmawati & Ranti, 2021). By
leveraging students’ prior knowledge and embedding mathematical ideas in problem-solving activities,
PMRI encourages the gradual development of mathematical literacy.

A central component of PMRI is the Iceberg Design framework, which conceptualizes the trajectory
of students’ mathematical understanding across four interconnected stages (Webb, 2017): situational
context where mathematical ideas are introduced through real-life phenomena, model-of where learners
construct informal models that represent these contextual situations, model-for where these
representations are progressively generalized, supporting abstraction and symbolic reasoning, and
formal knowledge where students consolidate and articulate the underlying formal mathematical
concepts. This progression—from intuitive, contextually grounded insights to abstract, formal
reasoning—has been shown to enhance the quality of mathematics education by supporting deeper
conceptual understanding and bridging the gap between everyday experiences and formal mathematics.

Prospective mathematics teachers play a pivotal role in the effective implementation of PMRI
across all levels of education. PMRI, as the Indonesian adaptation of RME, promotes contextual learning,
enabling students to connect mathematical ideas to meaningful experiences encountered in primary and
junior secondary school settings. Preparing these prospective teachers, therefore, requires equipping
them not only with content knowledge but also with the pedagogical capacity to design interactive,
student-centered learning environments.

A recent systematic review by Risdiyanti et al. (2024) demonstrates that PMRI enhances students’
higher-order thinking skills by enabling them to apply mathematical knowledge models to authentic, real-
world problems. Consequently, empowering prospective teachers with both conceptual understanding
and pedagogical confidence is essential for enabling them to address diverse classroom contexts and
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student needs. Within this perspective, investigating prospective teachers’ construction of lceberg
Designs is crucial to assessing the extent to which PMRI effectively prepares them to foster mathematical
literacy, a need emphasized by Webb (2017) and further elaborated by Abrahamson and Zolkower (2020)
as well as Zolkower and Gallego (2020).

The importance of strengthening mathematical knowledge and reasoning has grown significantly
in the context of today’s globalized and knowledge-driven economy (Maass et al., 2019; Novita & Herman,
2021). In line with the newly implemented Indonesian curriculum, PMRI emphasizes conceptual
understanding, problem-solving skills, and the application of mathematics to real-life situations.
Examining how prospective mathematics teachers integrate PMRI principles—particularly through the
Iceberg Design—offers insight into how teacher education can contribute to the achievement of the
United Nations Sustainable Development Goals (SDGs). For example, SDG 4 (Quality Education) calls
for inclusive and equitable education, which PMRI supports through its emphasis on meaningful,
contextually grounded learning experiences (United Nations, 2023). Furthermore, by fostering critical
thinking and problem-solving abilities, PMRI contributes to SDG 1 (No Poverty) and SDG 8 (Decent Work
and Economic Growth) by preparing a workforce capable of participating in sustainable economic
development.

The Iceberg Design is a central framework within PMRI that conceptualizes the progressive
development of students’ mathematical understanding. In this model, the visible tip of the iceberg
represents formal mathematical knowledge, whereas the submerged layers represent the deeper
conceptual foundations that must be established before formalization can occur (Palupi et al., 2020). The
framework highlights the role of context, models, representations, and problem-solving strategies in
scaffolding mathematical reasoning (Boswinkel & Moerlands, 2003; Gravemeijer, 2004).

Consistent with the principles of RME, the Iceberg Design supports a gradual, experiential
progression toward abstraction. This process reflects mathematization, defined as the transformation of
real-life problems into mathematical representations and the subsequent refinement of those
representations to develop deeper mathematical insight (Freudenthal, 1991). RME distinguishes between
two types of mathematization, such as horizontal mathematization, in which students translate real-world
situations into mathematical representations, and vertical mathematization, in which students work within
the mathematical system to refine, generalize, and formalize these representations (Pandra et al., 2021).

Freudenthal (1991) describes this process as one in which learners explore, conjecture, and test
mathematical ideas based on lived experience. The Iceberg Design operationalizes this philosophy,
providing a structured framework for the development of mathematical literacy and problem-solving
competence. Its three key layers include: (1) the base, consisting of real-world contexts that ground
students’ informal reasoning; (2) the intermediate layer, where students’ representations, models, and
pre-formal strategies emerge; and (3) the peak, which consolidates formal mathematical knowledge
(Boswinkel & Moerlands, 2003).

Empirical evidence supports the effectiveness of the Iceberg Design in mathematics education.
For instance, Zulkardi et al. (2020) demonstrated its capacity to bridge the gap between informal
reasoning and formal conceptual understanding in contextualized problem-solving tasks. Similarly, Webb
(2017) emphasized its role in promoting higher-order thinking through systematic abstraction, while
Pramudiani et al. (2022) found that prospective teachers who engaged with Iceberg Design frameworks
were better able to develop context-rich tasks tailored to their students’ cognitive development. This
aligns with the OECD’s (2022) definition of mathematical literacy as the capacity to formulate, apply, and
interpret mathematics in diverse real-world contexts, thereby enabling effective reasoning and problem-
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solving. As further supported by van den Heuvel-Panhuizen (2003), the Iceberg Design facilitates
progressive abstraction and fosters students’ mathematical reasoning.

Moreover, the Iceberg Design can be meaningfully connected to several SDGs. The use of diverse
situational contexts directly supports SDG 4 by ensuring that mathematics education is inclusive and
relevant. The development of model-of and model-for stages aligns with SDG 9 (Industry, Innovation,
and Infrastructure) by nurturing innovative thinking and creative problem-solving. Finally, the transition to
formal knowledge contributes to SDG 8 by equipping students with the analytical skills needed for
sustainable economic growth. Therefore, the purpose of this study is to examine how prospective
mathematics teachers construct Iceberg Designs within the RME/PMRI framework, to analyze the extent
to which these designs align with SDGs, and to explore their potential for enhancing mathematics
education. By doing so, the study aims to support teacher education programs in preparing future
educators who can leverage the Iceberg Design to address educational challenges and contribute to
sustainable development.

METHODS

Research Design

This study employed a qualitative research design to explore prospective mathematics teachers’
understanding and development of the Iceberg Design within the PMRI framework. Qualitative methods
were selected because they enable an in-depth examination of participants’ experiences and meaning-
making processes in authentic contexts (Denscombe, 2010). This approach is particularly appropriate for
investigating the complex, contextual, and subjective nature of teachers’ conceptualizations of the
Iceberg Design and its pedagogical application. Following Milles and Huberman (2014), the qualitative
methodology was used to generate rich, nuanced data capable of capturing participants’ reasoning
processes, representations, and strategies, thereby providing insights into how prospective teachers
conceptualize mathematical literacy through the PMRI approach.

Participants

The study involved 30 prospective mathematics teachers (4 male, 26 female), aged 18-20 years, who
were enrolled in PMRI courses at a public university. Participants were selected using purposive
sampling, with the goal of including individuals with varying levels of prior experience in designing Iceberg
models. The sample size was determined based on the principle of data saturation, ensuring both
sufficient depth and diversity of responses while maintaining feasibility for intensive analysis.

To promote collaborative learning and peer interaction, participants were organized into small
groups of three to four members. Within these groups, participants discussed ideas, articulated their
thinking, and collaboratively refined their Iceberg Designs through iterative dialogue and problem-solving.
This group-based approach not only fostered critical reflection on how mathematical concepts could be
developed through realistic contexts but also allowed the researcher to identify recurring themes and
patterns in participants’ approaches. The collaborative setting was essential for eliciting diverse
perspectives and deepening participants’ understanding of how to design effective, context-rich
mathematical learning experiences. In the PMRI framework, an Iceberg Design serves as a visual and
conceptual model describing the process of realistic mathematics learning: the visible tip of the iceberg
represents the formal mathematical concept, whereas the submerged base illustrates the informal,
exploratory activities and contextual situations that support students’ progression toward abstraction.
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Data Collection

Data were collected through a combination of semi-structured interviews and document analysis of
participants’ Iceberg Designs.

1. Interviews lasted approximately 45-60 minutes and followed a pre-designed protocol that probed
participants’ understanding of the Iceberg Design, the mathematical concepts embedded within
their models, and the factors influencing their design choices.

2. Document analysis involved collecting written and graphical artifacts created during the design
process, including notes, sketches, schematizations, and final models. These documents provided
tangible evidence of participants’ reasoning processes, use of mathematical notation, and
progression from situational contexts toward formal concepts.

This multimethod approach facilitated data triangulation, strengthening the validity of the findings by
enabling cross-verification of interview data with participants’ actual design work.

Data Analysis

Allinterviews were audio-recorded, transcribed verbatim, and analyzed alongside the participants’ design
documents using qualitative content analysis. Coding was conducted inductively to identify emergent
patterns, categories, and themes reflecting participants’ conceptualization of the Iceberg Design. The
analysis was guided by the Hypothetical Learning Trajectory (HLT) framework, which models the
developmental pathways through which learners acquire mathematical concepts. As Fiangga et al. (2021)
note, the Iceberg Design can be interpreted as a graphical instantiation of HLT, mapping students’
progression from situational, context-based reasoning (lower levels) toward formal mathematical
knowledge (upper levels). By aligning participants’ Iceberg Designs with the HLT framework, the analysis
provided insights into both the depth of their pedagogical understanding and the coherence of their
designs.

Table 1 presents the analytical framework adapted from Fiangga et al. (2021), detailing the four
main components of the Iceberg Design—Situational Contexts, Model-of, Model-for, and Formal
Mathematical Concepts—together with their associated indicators and evaluation criteria.

Table 1. Analytical framework for evaluating Iceberg Designs (Adapted from Fiangga et al., 2021)

lceberg’s Indicator Criteria
Component
Formal Mathematical ~ Involvement of the mathematics concepts in the iceberg.
Concept 0: no mathematical concepts found,

1: embedded mathematical concepts found but only as an additional.
2: mathematical concepts are irrelevant to the activity objective.
3: mathematical concepts are relevant to completing the designed
activity’s objective.
4: unique mathematical concepts are created.

Model For Vertical 0: No mathematical representations or symbols are employed, and there

Mathematization is no attempt to lead students to a more formal or abstract level of

understanding.
1: Basic mathematical symbols were employed, but there was no
demonstration of mathematical relationships or processes and a lack of
variety in the representations or models utilized.
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2: Utilize a limited range of mathematical symbols and language in
manipulation, but not yet to the formulation and application of formulas.

3: Employs a fair amount of relevant mathematical symbols and language
in manipulations during problem-solving, but limited variety, and able to
formulate and apply formulas.

4: Employ various mathematical symbols and language effectively in
problem-solving manipulations, proficient in formulating and applying
formulas in diverse representations

0: No mathematical representations or symbols were used that were
appropriate to the context.

1: Basic mathematical symbols were employed but did not indicate
mathematical relationships or processes, and there was a lack of variety
in the representations or models used.

2: Use contextually relevant mathematical representations or symbols but
employ formal mathematical symbols with contextually irrelevant
manipulations.

3: Use mathematical representations or symbols related to the context and
build relationships with formal mathematical symbols through the process
of identifying regularities, relations, and patterns in the context.

4: Use mathematical representations or symbols related to the context and
build connections with formal mathematical symbols through the process
of identifying regularities, relationships, and patterns in the context. In
addition, being able to illustrate them in different contexts

0: There is no assistive model for thinking.

1. There is a thinking assistance model, but it is relevant to the
mathematical concept but does not involve the situational context.

2: The assistance model for understanding the given context is not directly
related to the intended mathematical concept.

3: The assistance model for understanding the given context leads to the
intended mathematical concept but is only related to one situational
context.

4: The assistance model for understanding the given context leads to the
intended mathematical concept and is related to more than one of its
situational contexts.

0: No context illustration used.

1: There are visual illustrations, but they do not portray the relationship of
the given context.

2: Use visualizations and schematizations from context but incompletely.
3: Use visualizations and schematizations from relevant contexts.

4: Use visualization and schematization of relevant contexts and exhibit
regularities, relations, and patterns within the context.

0: No context relevant to the mathematical concept being learned was
found.

1: The provided context is not relevant to the mathematical concepts being
learned. This can occur if the chosen context does not help students
understand or apply the concept being taught.
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2: The context provided is relevant but unvaried. At this level, although the
chosen context helps students understand the concept, the lack of variety
can reduce the level of student engagement or understanding.

3: The context provided is relevant but only slightly varied. The context
helps in understanding the concept, but the variety is limited, so it does not
fully facilitate deep understanding or application of the concept.

4: The contexts provided are not only relevant but also varied. At this level,
the chosen context effectively helps students understand mathematical
concepts and the variety enables students to see how the concepts can
be applied in various situations

This analytical framework enabled systematic classification and comparison of participants’ designs,
providing a robust basis for identifying patterns, commonalities, and differences. The results of this
content analysis informed the formulation of research findings and recommendations, offering a deeper
understanding of the extent to which prospective teachers’ Iceberg Designs reflect PMRI principles and
contribute to the development of mathematical literacy.

RESULTS AND DISCUSSION

The findings from participants’ Iceberg Designs were analyzed using the RME-based Iceberg Analysis
Framework presented in Table 1. Results are presented both as an overall summary and as detailed
analyses of each iceberg component, with a particular focus on the situational component, which forms
the foundation for students’ engagement and subsequent mathematization processes.

Situational Component of Iceberg’s Design

Participants collaboratively produced seven Iceberg Designs addressing various junior high school
mathematics topics. Two designs focused on geometry (circle area and quadrilateral area conservation),
one on algebra (quadratic equations), two on number concepts (fraction multiplication and equivalent
ratios), and one on probability (deriving the probability formula). Each situational component was
analyzed and rated according to the framework criteria as shown in Figure 1.

Situational Component Analysis

Quadrilateral Area
, Conservation

y
"/~ _®Quadratic Equation

Equivalgnt Ratio

Figure 1. Situational component analysis of Iceberg Design

Overall, participants’ situational contexts ranged from Level 2 (relevant but unvaried contexts) to
Level 4 (relevant and varied contexts supporting transfer across situations). For example, the design for
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quadrilateral area conservation was rated at Level 2, as it relied on a single context: determining the
lighting needs of rooms in a house presented in Figure 2.

Pak Hanan mempunyai rumah dengan vkuran
° 14m x 12m.
Sitvation Berikut merupakan denah ruangan pak Hanan.

Pak Hanan ingin memasang lampu di setiap

ruangan dengan watt yang sama.

Bantulah pak Hanan untuk menentukan urutan
ruangan dengan cahaya paling terang ke paling
redup.

R\-"?\q\ ﬁ\\(\\;/‘;.l )
Translated Context:

Mr. Hanan has a house with dimensions 14 m x 12 m. The house is divided into several rooms. Mr. Hanan wants to install
lights with identical wattage in each room. Determine the order of rooms from the brightest to the dimmest.

Figure 2. Level 2 Situational Context Example

This context effectively situates the concept of area measurement within a practical household
problem, allowing students to explore the relationship between room size and lighting needs. However,
its limitation lies in the lack of contextual diversity. According to RME principles, providing multiple
situational contexts allows learners to recognize mathematical regularities across settings and
strengthens vertical mathematization (Gravemeijer, 2004). Additional contexts—such as calculating the
area of a school garden for planting or optimizing space use in urban planning—could broaden students’
conceptual exposure and foster transfer of learning to environmental and sustainability-related
applications. In contrast, participants’ design for equivalent ratios achieved Level 4, demonstrating high
relevance and contextual variety illustrated in Figure 3.

. %g * E .- 3 ;‘;i- = -._ S
N - £

/ i - -
ol T [
)) T E= R

; Seorang siswa melakukan study
Bu Rani menerima’ pesansn Sepeda motor Pak Andi dapat tour dari kota Solo ke Semarang.
dress dengan model yang

Oniik buat 4 d menempuh jarak 77 km Saat di perjalanan ia ingin
s;m;..n:l ‘:ne::’r'l‘ ::n w;eksts, dengan bahan bakar 2 liter. mengetahui  jarak Solo ke
u u u Berapa jarak yang ditempuh Semarang dengan melihat peta
selama 12 hari . Jika Bu Rani| = jika banyak bahan yang menmiliki skala 1 : 2.000.000.
bekerja selama 24 hari, berapa bakar vang diisi dalam sepeda Jika jarak Solo-Semarang 5 cm
banyak dress yang dapat y 7h e P pada peta, berapa jarak Solo-
dibuat? motor adalah 6 liter? Semarang sebenarnya?

Translated Context:

Mrs. Rani produces dresses at a rate of 4 dresses in 4 days. How many dresses can she make if she works for 12 days,
assuming a constant work rate?

Mr. Andi’s motorcycle travels 77 km using 2 liters of fuel. How far can it travel with 6 liters of fuel?

A student is conducting a study tour from Solo to Semarang. During the trip, the student measures the distance from Solo to
Semarang with a map. The actual distance is 1,200,000 cm. If the distance from Solo to Semarang on the map is 6 cm, what
is the actual distance from Solo to Semarang?

Figure 3. Level 4 situational context example
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Figure 3 presents a Level 4 situational context focusing on the topic of equivalent ratios,
characterized by both high relevance and contextual variety. The participants generated three distinct yet
complementary scenarios that effectively illustrate the concept of equivalent ratios. The first scenario
connects equivalent ratios to a production context, specifically sewing, where students determine how
many garments can be produced within a given time frame. This application demonstrates the practical
use of ratios in predicting production output based on time constraints. The second scenario links
equivalent ratios to fuel consumption and travel distance, thereby highlighting the role of proportional
reasoning in determining travel costs or fuel requirements for different distances. The third scenario
employs the concept of map scale, enabling students to explore the proportional relationship between
distances represented on a map and their corresponding real-world measurements. Collectively, these
contexts exemplify the richness and diversity of real-world applications, reinforcing the students’ ability to
transfer mathematical reasoning across multiple domains. Such variety not only deepens conceptual
understanding but also fosters students’ capacity for flexible problem-solving and mathematical literacy.

Model-of Component of Iceberg’s Design

In the context of Realistic Mathematics Education (RME), the model-of component represents a crucial
stage where students construct mathematical representations of realistic situations as a means to deepen
their conceptual understanding. Rather than presenting mathematical symbols in isolation, the model-of
serves as a mediating tool that enables students to organize their experiences, reason about contextual
problems, and progressively move toward formal abstraction (Gravemeijer, 2004; van den Heuvel-
Panhuizen, 2003). Within this study, participants were tasked with designing model-of representations
that could bridge realistic problem situations with the targeted mathematical concepts. The results of this
analysis are summarized in Figure 4.

Model-of Component Analysis

Circle Area
<

Quadrilateral Area
3 Conservation

Fraction Multiplicatio > ,,,,,V.Quadratic Equation

3
Equivalent Ratio

Figure 4. Model-of component analysis in Iceberg Design

Our findings reveal substantial variation in the sophistication of the model-of designs produced by
the participants. The levels of horizontal mathematization ranged from Level 1 (minimal contextualization)
to Level 4 (richly contextualized and varied representations). For example, in the case of fraction
multiplication, several participants achieved only Level 1, as illustrated in Figure 5.

In this example, fraction multiplication was represented using a simple array model, but the
situational context—distributing brownie cakes—was omitted. This reveals a pedagogical gap:
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participants tended to treat the model as a static mathematical representation rather than as a thinking
tool tied to a meaningful situation. Removing the context reduces the model's power to foster realistic
reasoning and deprives students of opportunities to conceptualize how fraction multiplication applies in
everyday life. Integrating the brownie-sharing scenario would not only ground the model in a concrete
experience but also align with RME’s guiding principle that mathematical learning should emerge from
meaningful situations (Freudenthal, 1991).

§
x E )

Figure 5. Level 1 Model-of design example

By contrast, Figure 6 illustrates a Level 4 model-of design focusing on equivalent ratios. In this
example, participants successfully incorporated multiple pictorial representations—pictograms, tables,
and diagrams—directly tied to the situational contexts they had previously developed, including garment
production rates, fuel consumption relative to distance, and map scale interpretation. This design
exemplifies how model-of representations can function as powerful mediators, linking contextual
problems with mathematical generalizations. Notably, participants reported that arriving at this level of
sophistication required considerable collaborative discussion and iterative refinement, suggesting that
designing effective model-of tasks is itself a complex professional competency.

2 . =
L = veilien wedhive gt = mm 77 km

Model 0 24 days ? w3 Anactual distance of
1 itk 2,000,000 cm
Day 1 [0uy 2 0y s Ty 4 Touy's oy o Jowy 7 Jours Touyo | ““"' ©
e frorfinend] s v 222 | e | -‘ » !
Day 10 | Dy 11 | Doy 12 |
— 12 Days->4 Dresses m m
vee] 12 | iaws Kkm
Day 13 [ Day 14 [Day 15 nqwln-yﬂln-ynln-ywln-ymln-ynl > &
s 32 | sams fraand 322 | oas piraed 521 | vaen | Zicatontha pap Actual Distance
[Day 22 JDay 23 [Day 24 |1L |1L
o 7 [ron| 24 Days—>8 Dresses

Figure 6. Level 4 Model-of design example

The strength of this Level 4 design lies in its simultaneous variety and coherence. It maintains
proximity to the situational contexts while guiding learners toward progressive mathematization, thus
serving as an authentic bridge between informal reasoning and formal mathematical understanding. Such
designs align strongly with the RME philosophy, which emphasizes that models should evolve from tools-
for-situations to tools-for-thinking, supporting students’ development of flexible, transferable, and
meaningful mathematical knowledge (Gravemeijer, 2004).
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Model-for Component of Iceberg’s Design

Within the RME framework, the model-for component refers to the use of mathematical models to
facilitate understanding of more formal or abstract mathematical concepts and processes. In essence,
model-for serves as a bridge that supports students’ progression from concrete, context-based reasoning
toward generalized mathematical abstraction. Typically, the model-for phase follows model-of, where
students first engage with representations grounded in realistic situations. Once students have
constructed and explored these initial representations, the model-for extends these models to represent
broader or more abstract mathematical concepts, enabling deeper conceptual insight. Figures 7 and 8
present the results of the participants’ model-for analyses.

Model for Component Analysis
Vertical Mathematization
e

ilateral A
Probability’"’.rr,,/“‘ — __Quadrilateral Area

Conservation

Fraction Multiplicatio __®Quadratic Equation

Equivalent Ratio
Figure 7. Model-for component analysis “Vertical Mathematization” in Iceberg Design

The radar plots in Figures 7 and 8 illustrate participants’ performance across six key mathematical
topics—circle area, probability, fraction multiplication, equivalent ratios, quadrilateral area conservation,
and quadratic equations—using a 0—4 competency scale. The vertical mathematization plot emphasizes
conceptual depth and systematic knowledge acquisition, whereas the horizontal mathematization plot
highlights the application of mathematics in varied, contextualized situations.

Model for Component Analysis
Horizontal Mathematization

Quiadrilateral Area

Probabilitygy_/Z
robabilityg”™ Conservation

Fraction Multiplicatig # _#Quadratic Equation

Equivalgnt Ratio

Figure 8. Model-for component analysis “Horizontal Mathematization” in Iceberg Design
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The blue lines connecting data points reveal the relative strengths and weaknesses across these
dimensions: vertical mathematization demonstrates procedural and formal understanding, while
horizontal mathematization captures learners’ ability to relate concepts to practical contexts. Furthermore,
Figure 9 illustrates a model-for design addressing the circle area. Participants were able to transform the
circle into familiar two-dimensional shapes such as parallelograms, rectangles, and trapezoids,
demonstrating competence in vertical mathematization at the visual level. However, they encountered
difficulty in formula generalization, failing to abstract the area of a circle from the transformed shapes.
Thus, while the participants achieved initial visual representation, they did not attain higher-level formal
abstraction.

anjarg abingrs | ™onindl pevseg! paniang

Menyusun potongan mnan potongan pizza Menyusun
i
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didopatkan alas panja

(2/8xkel lingkaran)

dan tinggl (arl-jarl lingkaran) dan lebar (jari -
lingkaran) jari tingkaran)

Translated Context:

Arranging the pizza slices into a parallelogram yields a base equal to half of the circle’s circumference and a height equal to
the circle’s radius.

Arranging the pizza slices into a rectangle yields a length equal to half of the circle’s circumference and a width equal to the
circle’s radius.

Arranging the pizza slices into a trapezoid yields a top side equal to half of the circle’s circumference, a bottom side equal to
three-eighths of the circle’s circumference, and a height equal to twice the circle’s radius.

Figure 9. Example of a model-for component on circle area topic

In terms of horizontal mathematization, participants effectively linked visual representations to real-
life contexts, using a “pizza” scenario to explore relationships between a circle’s area and corresponding
quadrilaterals. This contextual embedding supported the application of mathematical concepts in
everyday situations, reinforcing the RME principle of connecting formal mathematics to meaningful, real-
world experiences.

A contrasting result is observed in the model-for design addressing equivalent ratios as shown in
Figure 10, which achieved the highest level in both vertical and horizontal mathematization. Participants
demonstrated advanced use of mathematical language across multiple representations, including tables,
diagrams, and formulas, and successfully linked these representations to diverse real-world contexts
such as garment production, fuel consumption, and map scaling. Their reflective notes indicated
deliberate efforts to scaffold learning from concrete contextual understanding to formal reasoning,
although they reported this as the most challenging design phase.

Vertical mathematization in this design reflects participants’ ability to articulate problems in precise
mathematical language, apply relevant formulas, and solve contextually grounded problems
systematically. Horizontal mathematization, in turn, shows how participants represented and connected
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mathematical concepts to varied contexts, supporting students’ understanding of the equivalent ratio in
practical situations. Collectively, these findings illustrate that an effective model-for design integrates
formal mathematical reasoning with rich, contextually meaningful representations, embodying the core
RME principle that mathematics learning should be both abstract and applicable.

Fuel Volume ~ Distance
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Time (days) g::s:r o (Liters) T‘;‘;‘::I)ed Dis(a:ce Distance (cm)
(cm)
Model f OXI' . 12 4 2 77 1 2.000.000
X3 (‘ X SQ
24 8 6 231 5 | 10.000.000
12 _ 24 2 6 1 5
4 8 77 T 231 20 100

Figure 10. Example of a model component on the equivalent ratio topic

Formal Component of Iceberg’s Design

In the RME approach, the formal stage of the Iceberg Design represents the point at which learners
abstract mathematical concepts from contextual and representational models into generalized,
formalized expressions. At this stage, participants translate insights gained from previous stages—
situational, model-of, and model-for—into symbolic representations, formulas, theorems, or definitions.
This formalization ensures that students are not merely able to solve specific contextual problems but
can also generalize and transfer mathematical reasoning to novel situations, thereby achieving one of
the central objectives of mathematics learning. Figure 11 presents the formal analysis outcomes
developed by the participants.

Analysis-of Component Analysis

CircléArea
<

Quadrilateral Area

Probabilitygy .
Conservation
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Equivalent Ratio

Figure 11. Analysis of formal components in Iceberg Design

The analysis revealed considerable variation in participants’ formalization levels, ranging from
Level 1 to Level 4. For example, designs addressing circle area (Figure 12) and quadratic equations
(Figure 13) achieved Level 4 formalization. These high-level designs indicate that participants
successfully formulated concepts through structured, sometimes innovative approaches, demonstrating
the capacity to generalize and abstract beyond specific examples.
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Area of a Parallelogram

the formula for the area of a circle.

Area of Trapezoid

|

‘The Formula ‘The Formula For
For
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Circle

Thus, the formula for the area of a circle is obtained:

The Area of Circle=mt x r 2

because the area of 5 Domino's pizzas (5 x 530.66 = 2,653.3 cm?) is greater than the area of LIMO pizza (2,600
cm?), it is more advantageous to purchase Domino's pizza

Figure 12. Example of level 4 formal stages on the topic of circles

Conversely, the design for fraction multiplication (Figure 14) reached only Level 1 formalization.
Participants primarily provided additional contextual examples without progressing to general rules,
formulas, or formal symbolic representations. This suggests a gap in translating practical understanding
into abstract, generalizable mathematical knowledge.

[ )

This stage contains the formulation for determining the value of x in a quadratic equation using its formal
structure. Students can use this formula to solve problems involving quadratic equations to find the value of x
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Figure 13. Example of level 4 formal stages on the topic of quadratic equations

Within RME, the formal stage is tightly linked to the model-for process, emphasizing the transition
from contextualized representations to symbolic reasoning (Freudenthal, 1991; Gravemeijer, 2004).
Achieving high-level formalization reflects deep conceptual understanding, enabling learners to articulate
relationships and principles systematically in mathematical language. The participants’ success with
circle and quadratic equation topics demonstrates their ability to construct formal models and abstract
knowledge effectively.

However, the lower performance in fraction multiplication highlights the need for targeted
interventions in teacher preparation programs. Prospective mathematics teachers must be trained not
only to design contextualized learning activities but also to guide students toward formal generalizations.
Enhancing competence in the formal stage strengthens teachers’ ability to foster mathematical rigor,

U] - a—-—
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conceptual transfer, and problem-solving skills, aligning with the core principles of RME.

+ Qq.*e' 1.3 3
< 2%378

Figure 14. Example of level 1 formal stage on the circle topic

Discussion

In the framework of RME, the iceberg model serves as a conceptual metaphor for the progressive
formalization of students’ mathematical understanding. It illustrates the developmental trajectory from
informal, contextually grounded reasoning to increasingly abstract and formal representations of
mathematical ideas (Palupi et al., 2022; Webb, 2017; Webb et al., 2008). Within this approach, context
is not merely an illustrative device but a meaningful entry point for problem solving, while models
encompass physical manipulatives, visual representations, and mental schemata that mediate learning
(Fiangga et al., 2021).

The findings of this study demonstrate that prospective mathematics teachers are capable of
constructing comprehensive iceberg designs that span the full spectrum of the RME trajectory—from the
selection of rich situational contexts, through the construction of model-of and model-for representations,
to the formulation of formal mathematical generalizations (Khairunnisak et al., 2024). The mathematical
domains addressed ranged from geometry (e.g., circles, quadrilaterals) to number topics (e.g., equivalent
ratios, fractions), extending to algebraic and probabilistic reasoning, with notable attention given to
quadratic equations. This diversity highlights the potential of RME as a framework for supporting teachers’
pedagogical design capacity and for promoting coherent, meaningful mathematics learning (van den
Heuvel-Panhuizen, 2003; Ulfah et al., 2020; Webb, 2017).

Situational contexts function as the foundational layer of the iceberg model, allowing learners to
engage with mathematical ideas through scenarios that are experientially meaningful (Webb, 2017). In
this study, four of the seven iceberg designs developed by participants employed only a single situational
context, whereas three designs successfully incorporated multiple, varied contexts (e.g., in topics such
as chance and proportional reasoning). Including multiple contexts offers learners alternative
perspectives, fosters critical thinking, and encourages transfer of understanding across problem types.
From a pedagogical standpoint, the integration of multiple situational contexts represents a promising
strategy for enriching students’ conceptual understanding and stimulating productive classroom
discourse. Notably, many of the contexts developed by participants aligned with the United Nations’
Sustainable Development Goals (SDGs) (United Nations, 2015). For example, a house-plan design for
quadrilateral area conservation connects to SDG 7 (Affordable and Clean Energy), while tasks relating
fuel consumption to travel distances engage students with issues relevant to SDG 13 (Climate Action).
Even everyday contexts—such as comparing pizza prices (circle area) or sharing brownies (fraction
multiplication)—can be connected to SDG 12 (Responsible Consumption and Production). Embedding
such global issues within mathematics instruction situates learning in socially relevant settings, potentially
nurturing students’ critical consciousness and preparing them to act as informed global citizens.

The model-of component plays a pivotal role in bridging informal situational reasoning and formal
mathematical representation. In this study, most participants successfully developed model-of
representations that attained Level 3 sophistication, creating intermediary representations (e.g., arrays,
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pictograms, tables) that scaffolded students’ understanding. However, an important shortcoming was
observed in the fraction multiplication design, where the model-of was disconnected from the original
context. According to RME principles, model-of should always maintain a reference to the situational
context, serving as a representational bridge that guides learners’ transition from context-specific
reasoning to more generalized mathematical thinking (Fiangga et al., 2021). When this link is absent,
models risk being perceived as isolated mathematical artifacts, reducing their power to mediate
conceptual understanding.

The model-for and formal stages constitute the higher levels of mathematization in RME,
supporting vertical abstraction and generalization. Findings from this study suggest that while some
participants successfully used mathematical symbols and language at the model-for stage, many
struggled to progress toward full generalization or derivation of mathematical formulas. This was
particularly evident in topics such as circles and fraction multiplication, where participants remained at a
primarily visual or procedural level rather than articulating generalized rules.

Interestingly, some participants prematurely applied existing formulas during the formal stage, a
phase ideally devoted to formulating and justifying such formulas rather than merely applying them. This
observation points to a pedagogical gap in understanding the distinct epistemic roles of model-for and
formal stages. Strengthening prospective teachers’ grasp of how these stages interrelate is crucial for
fostering designs that not only contextualize mathematics but also guide students toward conceptual
generalization and symbolic reasoning.

While this study offers valuable insights, several limitations must be acknowledged. The relatively
small sample of thirty prospective teachers from a single institution limits the generalizability of the
findings (Polit & Beck, 2010). The study focused exclusively on junior secondary mathematics topics,
which may not represent the full range of mathematical domains. Moreover, while inter-rater reliability
measures and detailed rubrics were used, the assessment of abstraction levels inevitably involved a
degree of subjective judgment (Polit & Beck, 2010).

Despite these limitations, the study highlights the promise of integrating RME principles into
mathematics teacher education. Designing iceberg models that strategically combine multiple contexts,
coherent model-of representations, and carefully scaffolded model-for and formal stages can enhance
students’ conceptual development. Future research should explore longitudinal interventions and
examine how prospective teachers refine their designs over time, as well as how these designs impact
students’ learning outcomes in authentic classroom settings.

CONCLUSION

This study demonstrates that prospective mathematics teachers are capable of developing lceberg
Designs that systematically progress from situational contexts to formal mathematical knowledge.
Nonetheless, considerable challenges were observed in the model-for and formal stages. These
difficulties primarily stem from the complexity of abstracting context-based knowledge into formal
mathematical concepts and symbolic representations, highlighting the need for increased emphasis on
vertical mathematization within teacher preparation programs.

The findings have important implications for curriculum development and teacher education. These
include the design of specialized training modules focused on abstraction techniques, structured support
for transitioning between multiple representations and formal mathematical language, and the
development of exemplar Iceberg Designs for key mathematical ideas. Limitations of the study include
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the small, single-institution sample (30 participants), which constrains generalizability. However,
methodological triangulation and researcher reflexivity helped mitigate potential analytical biases.
Additionally, the gender composition of the participants (26 women, 4 men) may have influenced
perspectives reflected in the results.

This research contributes to SDG 4 (Quality Education) by providing evidence-based frameworks
for teacher preparation that emphasize contextualized mathematics learning. It offers practical tools for
scaling mathematics education through professional development and curriculum design that connect
abstract mathematical concepts with applied problem-solving. Future research should explore the
classroom implementation of these Iceberg Designs and examine how they evolve through sustained
teaching practice, providing further insight into their impact on student learning outcomes and
mathematical literacy development.
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