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Abstract 

The importance of students being acquainted with algebraic ideas before secondary education has been 

revealed in the research. It is therefore essential that prospective elementary teachers (PTs) be prepared to 

instill an early algebra perspective in their teaching. However, PTs often show difficulties in algebra content 

knowledge, which need to be diagnosed aiming to assist them in developing the required knowledge to teach 

according to that perspective. This study aims to understand what aspects of functional thinking Spanish and 

Portuguese elementary PTs exhibit at the beginning of their teacher education program. The findings show that 

although PTs from both countries use different strategies to generalize functional relationships, the occurrence 

of successful strategies is low. Also, most participants provide local approaches in their interpretation of 

relationships between variables and reveal difficulties in understanding and connecting different 

representations of functions. These difficulties show that PTs lack important knowledge about functional 

thinking. By providing a framework concerning the functional thinking required for PTs to teach within an 

early algebra perspective, we shed light on a necessary step for teacher education programs to diagnose PTs’ 

functional thinking and to assist them in developing the needed mathematical knowledge to teach accordingly. 

Keywords: Early Algebra, Functional Thinking, Generalization, Prospective Teachers’ Knowledge  

Abstrak 

Pentingnya pengenalan ide-ide aljabar siswa sebelum pendidikan menengah telah terungkap dalam penelitian 

ini. Oleh karena itu, calon guru sekolah dasar (CG) harus siap untuk menanamkan perspektif aljabar awal 

dalam pengajaran mereka. Namun, CG sering kali menunjukkan kesulitan dalam pengetahuan konten aljabar, 

yang perlu didiagnosis dengan tujuan membantu mereka dalam mengembangkan pengetahuan yang diperlukan 

untuk mengajar sesuai dengan perspektif itu. Penelitian ini bertujuan untuk memahami aspek-aspek berpikir 

fungsional apa yang diperlihatkan oleh, CG Spanyol dan Portugis di awal program pendidikan guru mereka. 

Temuan menunjukkan bahwa meskipun CG dari kedua negara menggunakan strategi yang berbeda untuk 

menggeneralisasi hubungan fungsional, kejadian strategi yang berhasil rendah. Selain itu, sebagian besar 

peserta memberikan pendekatan lokal dalam interpretasi mereka tentang hubungan antar variabel dan 

mengungkapkan kesulitan dalam memahami dan menghubungkan representasi fungsi yang berbeda. Kesulitan 

ini menunjukkan bahwa CG kurang memiliki pengetahuan penting tentang berpikir fungsional. Dengan 

memberikan kerangka kerja mengenai pemikiran fungsional yang diperlukan untuk CG untuk mengajar dalam 

perspektif aljabar awal, kami menjelaskan langkah yang diperlukan untuk program pendidikan guru untuk 

mendiagnosis pemikiran fungsional PT dan untuk membantu mereka dalam mengembangkan pengetahuan 

matematika yang dibutuhkan untuk mengajar sesuai. 

Kata kunci: Aljabar Awal, Pemikiran Fungsional, Generalisasi, Pengetahuan Calon Guru 
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In face of well-known problems with the introduction of algebra, usually at ages of 12-13 years-old, 

there is a growing awareness of the need for engaging students with algebraic ideas earlier, by 

offering them opportunities to explore intuitive and informal ways of analyzing relationships between 

quantities, noticing structure in patterns, and studying change, in line with an early algebra 

perspective (Carraher & Schliemann, 2019; Stephens et al., 2017). In fact, early algebra is becoming 
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part of the mathematics curriculum of elementary grades in different countries (Kieran et al., 2016), 

establishing the important learning goal of developing students’ algebraic thinking as a capacity of 

making and expressing generalizations (Kaput, 2008). In that perspective we may include the notion 

of functional thinking, as it represents a form of generalization that involves exploring relationships 

between quantities that vary together (Blanton & Kaput, 2011).  

Teaching in elementary school according to that perspective may represent a great challenge for 

prospective teachers (PTs) as most of them did not have that kind of experience as students and, 

therefore, they are not familiar with the algebraic ideas they are required to convey in their future 

practice (Magiera et al., 2013; McAuliffe & Vermeulen, 2018). However, there is still scarce research 

illuminating the Specialized Content Knowledge (SCK) (Hill et al., 2008) that elementary PTs 

effectively need to develop in their preparation to foster students’ algebraic thinking, particularly 

concerning aspects of functional thinking, as well as how teacher education programs may address 

these issues (Hohensee, 2017; Rodrigues et al., 2019). Moreover, to better document the PTs’ 

functional thinking and difficulties, Lannin et al. (2006) emphasize the need to be attentive to the 

commonly used frameworks to classify students’ approaches to pattern generalization and to adapt 

them for characterizing PTs’ knowledge regarding functional thinking. 

This recommendation is particularly important in countries like Portugal and Spain where the 

elementary mathematics curriculum emphasizes ideas with some resonance with an early algebra 

perspective, particularly regarding functional thinking, but where there is not a consolidated practice 

around that perspective in schools (Morales et al., 2018; Oliveira & Mestre, 2014). Carrying out 

research in two national contexts, with their specificities, may contribute to better evaluate the 

suitability of a common framework on functional thinking for elementary PTs. Hence, this study aims 

to understand what aspects of functional thinking Spanish and Portuguese elementary PTs exhibit at 

the beginning of their undergraduate preparation, when solving algebraic tasks involving functional 

thinking. Specifically, this study addresses the two following questions: 1) How do PTs generalize 

functional relationships in patterns? and 2) How do PTs interpret variables and the relationships 

between them in different representations?  

By providing a framework concerning the functional thinking required for PTs to teach within 

an early algebra perspective this paper intends to shed light on a necessary step for teacher education 

programs to diagnose PTs’ functional thinking and to assist them in developing the needed 

mathematical knowledge to teach according to that perspective. 

 

Functional Thinking as A Strand of Early Algebra 

The important role of functional thinking as a gateway into early algebra, has been emphasized 

in the context of teaching interventions with elementary students (Carraher & Schliemann, 2019; 

Stephens et al., 2017). It does not imply a “formal” approach to functions in the sense of introducing 

and defining function as an object, rather it is a process that involves generalizing relationships 
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between co-varying quantities and expressing those relationships in different representations as well 

as to use these to interpret and predict function behavior (Blanton & Kaput, 2011; Stephens et al., 

2017). Thus, students will be able to build, describe, and reason with and about functions (Blanton & 

Kaput, 2011). 

Generalisation is at the core of functional thinking and has been widely studied in the context of 

students’ exploration of patterns, namely sequences tasks (Kieran et al., 2016; Radford, 2008). This 

process has received increasing attention in elementary mathematics syllabuses, through the 

introduction of numerical sequences, presented in different representations such as pictorial or 

geometric patterns or in numerical tables, as content to be taught, as these describe functional 

relationships that may support later the study of functions (Apsari et al., 2019; Blanton et al., 2011). 

In the context of algebraic patterns, the focus of generalization involves ideas such as: (i) grasping a 

commonality in some cases, (2) expanding this commonality to all terms; and (3) discerning a rule or 

schema to directly obtain any term of the sequence (Radford, 2008).  

The literature has evidenced different generalizations strategies when students work with 

growing sequences, some of them expressing some difficulties, namely applying recursive reasoning 

that does not allow one to find a general rule or applying incorrectly a whole-object strategy (Moss & 

McNab, 2011). However, students may regard the difference between consecutive terms not simply in 

a recursive way, allowing them to determine a direct expression for sequence. That happens when one 

uses the common difference as a multiplying factor and makes an adjustment of the result, in the case 

of non-linear sequences (Barbosa & Vale, 2015). However, sometimes this is introduced to students 

as a rule without fostering its understanding (Wilkie, 2016). 

An important support to students’ generalization in sequences is their presentation as a spatial 

configuration (commonly labeled as ‘geometric pattern’). In these situations, students may link the 

spatial and numerical structures of the sequence, relying upon a visual approach, to realize the 

commonality in the cases and generalize it to all terms (Radford, 2011).  

 

Conceptualizing and Representing Functional Relationships 

In the context of early algebra, two main ways of conceptualizing functional relationships have 

been considered: covariational thinking and correspondence relationship (Blanton & Kaput, 2011; 

Confrey & Smith, 1994). According to Thompson and Carlson (2017, p. 423), covariational reasoning 

means “reasoning about values of two or more quantities varying simultaneously” and has been 

present in the mathematicians’ way of thinking conducting to the modern function definition, 

although it has not been considered an explicit mathematical concept. Covariational approach may be 

associated with the notion of coordination of movement between values in the range which means: 

“being able to move operationally from ym to ym+1 coordinating with movement from xm to xm+1 

(Confrey & Smith, 1994, p. 137). Therefore, in covariational thinking one analyses how two 

quantities vary simultaneously and thus change becomes a central part of the description of the 
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function (Blanton & Kaput, 2011; Ellis, 2011; Kieran et al., 2016). In the case of numerical 

sequences, it may lead to the multiple of difference generalization strategy, especially when it is 

represented in a table.  

The correspondence approach to function, the most common in school mathematics, derives 

from the modern definition of function (Thompson & Carlson, 2017). In opposition with the 

covariational approach, the correspondence is a statistic one. Some of the difficulties recognized in 

meaningful interpretation of functions in opposition to the memorized rules and procedures, that often 

characterize students’ work, may be a consequence of the dominance of this approach. Nevertheless, 

with the appropriate supportive instruction, even elementary students can describe correspondence in 

terms of functional rules (Oliveira & Mestre, 2014; Stephens et al., 2017) and thus there are 

recognized affordances in both covariation and correspondence approaches. 

Central to a functional thinking perspective, is how students express the relationships between 

quantities, represent the associated generalization, and reason with multiples representations such as 

words, tables, diagrams, graphs, or symbols (Blanton et al., 2011; Kieran et al., 2016; Kusumaningsih 

et al., 2018), using conventional alphanumeric expressions or idiosyncratic symbols. Several studies 

show that children can make use of symbolic notation, with understanding, for expressing 

generalization of functional relationships that are presented in different forms (Blanton et al., 2011; 

Oliveira & Mestre, 2014). However, an overemphasis on a static view of functions may limit 

students’ ability to generalize those relationships, such as being able to build an equation from a graph 

depicting a contextual situation by considering how the two involved quantities change 

simultaneously (Ellis, 2011). Thus, students need to interpret the graphs by local processes, that is 

focusing point-by-point, but also in a global way, by identifying a trend (Leinhardt et al., 1990). 

Another difficulty, when students explore reality situations, is that they often perceive the graphical 

representation as a picture of the physical situation, therefore, they should be given opportunities to 

explore these different representations so that “graphs become not just visual configurations, but 

structures embedded with meaning about relationship” (Blanton & Kaput, 2011, p. 16).  

 

Pre-Service Teachers’ Knowledge of Functional Thinking 

Students’ mathematical learning is commonly impacted by teachers’ knowledge. Therefore, 

issues of teachers’ content (subject matter) knowledge need to be uncovered and considered both for 

in-service and pre-service mathematics teacher education (Hill et al., 2008; McAuliffe & Vermeulen, 

2018), illuminating how to support PTs to achieve the knowledge they ought to have for developing 

their future students’ functional thinking. In the teachers’ knowledge model of Hill et al. (2008), the 

SCK is seen as a type of content knowledge that enables teachers to “accurately represent 

mathematical ideas, provide mathematical explanations for common rules and procedures and 

examine and understand unusual solution methods to problems” (p. 378). Although there are several 

studies focusing on students’ algebraic thinking, the research is still scarce on PTs’ algebraic thinking 
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abilities, especially their strategies, misconceptions and difficulties related to the diversity of aspects 

of functional thinking (Yemen-Karpuzcu et al., 2017). 

A few studies targeted PTs’ knowledge regarding some algebraic topics related to 

generalization (including its formulation, representation, and justification), interpretation and use of 

algebraic symbology, and understanding of functions. Some findings, summarized by Strand and 

Mills (2014), show that although PTs are often able to generalize numerical and geometric patterns, 

they tend to have difficulties in interpreting and using efficiently the algebraic symbols. In their 

strategies to develop algebraic general rules in tasks involving linear, exponential, and quadratic 

situations, elementary PTs started by drawing and counting to support their thinking and used mainly 

chunking and recursive strategies (Alajmi, 2016). The challenges that PTs face in generalising explicit 

rules using symbolic algebraic notation is also frequently documented (Zazkis & Liljedahl, 2002). 

Even though PTs may express generality using algebraic symbolism, they often struggle in providing 

justifications for their reasoning what may express a memorization of procedures (Kieboom et al., 

2014; Richardson et al., 2009).  

Concerning functions understanding, the studies summarized by Strand and Mills (2014) also 

show that elementary PTs perform well on procedures related to linear functions. However, they have 

difficulties in interpreting the graphical representations, particularly when one variable is speed, since 

they confuse it with distance, and in translating between representations (symbolic and visual) and 

between a representation and its framing context. Still, difficulties in defining a variable and 

interpreting what does it represent, are also documented in the research carried out with PTs (Brown 

& Bergman, 2013). Moreover, identifying the relationships contained in algebraic expressions and 

distinguishing between unknowns and variables constitute two aspects of functional thinking that are 

conceptually challenging to PTs (Hohensee, 2017). 

The above studies adopted different frameworks to analyse PTs’ knowledge and difficulties 

concerning specific aspects of functional thinking, such as generalization strategies, the use of 

algebraic notation to express this generality, and the interpretation of variables and graphical 

representations. However, as also emphasized by Lannin et al. (2006), to better document or evaluate 

PTs’ proficiency concerning functional thinking it is necessary to develop frameworks covering 

broader core aspects involved in this process. In this study, to investigate PTs’ functional thinking 

regarding the strategies to generalize functional relationships, the interpretation of variables and 

relations between them, and the connections between representations, we developed a framework, 

described in the next section, that encompasses and articulates different aspects that have been 

discussed above. 

 

METHOD 

Participants 

The participants in this study are 94 (35 male and 59 female) Spanish and 70 (2 male and 68 
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female) Portuguese PTs who attended the 1st year of a degree in elementary education teaching, 

respectively at a public university in North of Spain and at two public high schools of education 

(labeled by A and B) in the center of Portugal. These institutions were chosen as a purposeful sample 

among those where we knew PTs had not received any specific teaching on algebraic thinking and 

teacher educators agreed to collaborate. All the PTs volunteered to participate in the study and had 

little or no exposure to early algebra previously in their elementary education.  

 

Instrument and Data Collection 

A questionnaire to assess PTs’ algebraic thinking was developed by the researchers (authors). 

The six tasks that integrate the questionnaire were selected from the literature and adapted by 

modifying their statements and including new items. Then, the questionnaire was evaluated by eight 

specialists and trialed with pilot samples of elementary PTs from both countries (not participants in 

the study). These outcomes were discussed by the authors and further adaptations to the questionnaire 

were made to refine the structure and wording of the items in the tasks. The questionnaire was then 

applied in both countries at the beginning of the school year. In this paper, we focus on data collected 

from participant PTs’ answers to three tasks from the questionnaire that involve functional thinking. 

The “Geometric pattern” task (Figure 1), used to answer the research question 1, asks for a 

generalization of a geometric growing pattern (linear), allowing PTs to use diverse strategies to 

establish relationships between quantities and to describe and represent those relationships using 

multiple representations.  

 

Figure 1. Geometric Pattern Task (adapted from Blanton et al., 2011) 
 

The “Representations” task (Figure 2) intended to assess aspects of PTs’ functional thinking 

such as: interpretation of variables and of relations between variables using co-variation and 

correspondence approaches to generalization; and connections between representations to interpret 

relationships.  
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Figure 2. Representations Task (adapted from Hart, 1981) 

 

Similarly, “Deposits” task (Figure 3) concerns the PTs’ interpretation of variables and 

connections of different representations to interpret functional relationships, using covariation or 

correspondence approaches that could be local or global. So, both tasks were used to answer the 

research question 2.  

 

Figure 3. Deposits Task (adapted from Branco, 2013) 

 

Data Analysis 

This qualitative study followed a descriptive and interpretative analysis (Erickson, 1986) of 

PTs’ solutions of the tasks, including a description of quantitative data organized in frequency tables. 

The pre-established categories we considered to interpret the PTs’ functional thinking and the 

difficulties emerging from their work (Table 1 and Table 2) come from prior research on students’ 
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functional thinking, as described in the previous sections, particularly those from Barbosa and Vale 

(2015) and Leinhardt et al. (1990), with adaptations in the language used according to Ayalon et al. 

(2016). We include for each category a description of possible approaches which are task-specific, to 

generate a full picture of PTs’ answers. Altogether the categories concerning generalizing functional 

relations and interpretation of variables and relationships provide a framework to characterize PTs’ 

knowledge regarding functional thinking within an early algebra perspective. 

To identify possible strategies to generalize a functional relation (both for distant generalization 

and a general term) in “Geometric pattern” task, we considered four categories (Table 1). 

 

Table 1. Categories for Coding Strategies to Generalize Functional Relations 

Category Description: The PTs… 

Counting draw the next figures and count their elements 

Difference 

Recursive 

 

continue the sequence using the numerical difference between 

consecutive terms or explicit the recursive relation between 

consecutive terms. 

Multiple of difference use the difference between consecutives terms as a multiplicative 

factor (adjusting or not the result) to obtain distant terms or the 

general term. 

Multiplicative reasoning 

Missing value use the rule of 3 to find a distant term. 

Proportional use multiplicative strategies, starting from one known term of the 

sequence to find distant terms or the general term. 

Correspondence 

Visual express a relation between the two varying quantities for a distant 

term or in the general term, based on the characteristics of the 

pictorial representation. 

Numerical 
express a relation between the two varying quantities for a distant 

term or in the general term, based on the numerical sequence. 

 

The categories used in “Representations” and in “Deposits” tasks (Table 2), attempt to capture 

the ways in which PTs interpret variables and relationships between them, including the connections 

between representations they establish. Interpretation in these categories means the action by which a 

PT gains meaning from a graph, equation, or context (Leinhardt et al., 1990). 

The PTs’ answers were independently coded by the authors, focusing on the identification of 

the categories proposed. To assure the validity of the analysis and to increase the reliability of the 

results, a check-scoring of PTs’ answers of a random selection of 10 Spanish and 10 Portuguese 

initially coded questionnaires was undertaken by the authors to reach consensus. An inter-rater 

reliability was calculated for this sample of data covering all questions of the tasks and in all the codes 

an agreement of at least 82% was found among authors, which is considered satisfactory. Divergent 
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interpretations or doubts concerning a codification were discussed until full agreement was reached. 

 

Table 2. Categories for Coding Interpretation of Variables and Relationships 

Category Description: The PTs… 

Interpretation of variables interpret the variable as a varying quantity or as unknown in 

an equation. 

Interpretation of relationships between variables 

             Covariation 

 

 
      

      Global Correspondence 

 
 

 

      Local Correspondence 

coordinate the two variables mentioning how dependent and 

independent variables change simultaneously rather than 

mentioning them separately, connecting different 

representations to identify this relation. 

identify and/or explain the direct relation between two 

variables, connecting different representations to identify 

this relation, focusing on patterns, and gaining meaning 

about the relationship between variables. 

identify and/or explain the direct relation between two 

variables, connecting different representations to identify 

this relation, determining when specific events or conditions 

are met. 

Connection between representations connect two representations to interpret a third one. 

 

In the next section, we present in tables a quantitative descriptive analysis of the PTs’ answers 

to each of the tasks and illustrate our interpretation of the ideas associated to each category with 

detailed examples of their answers (mentioned as S# in case of Spanish PTs and PA# or PB# for 

Portuguese PTs to assure their anonymity). The examples may provide evidence of PTs’ functional 

thinking or the difficulties they reveal in their work. 

 

RESULTS AND DISCUSSION  

Geometric Pattern Task 

The incidence of the different strategies that were used by the PTs from both countries are 

presented in Table 3. In some cases, PTs provided two different approaches in each of the questions 

(the distant term and the general term of the sequence), which were all considered in the analysis. For 

the distant term question, a total of 88 different answers (A) for Portuguese PTs and 125 for the 

Spanish were registered, as they were asked to present two different strategies. Regarding the general 

term, we found 36 answers for the Portuguese PTs and 69 for the Spanish ones. Next, we discuss 

these results separately for the distant term and the general term. 
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Table 3. Strategies used by PTs for Finding the Distant Term and A General Term 

Category Distant term General Term 

Portuguese 

(A= 88) 

Spanish 

(A=125) 

Portuguese 

(A= 36) 

Spanish 

(A=69) 

Counting 15 (6) 14 (3) – – 

Difference Recursive 33 (25) 11 (2) 47 (0) 35 (0) 

Multiple of difference 19 (15) 6 (6) 25 (22) 7 (7) 

Multiplicative 

reasoning 

Missing value     8 (0) 20 (0) 0 (0) 7 (0) 

Proportional     1 (0) 1 (0) 8 (0) 0 (0) 

Correspondence 
Visual 18 (16) 40 (30) 11 (8) 35 (26) 

Numerical 1 (1) 2 (2) 3 (0) 1 (1) 

Uncategorized 5 (0) 6 (0) 6 (0) 15 (0) 

No answer (% of the PTs) 17 9 50 29 

Note. The first number on each cell gives the percentage for each strategy, and between brackets the 

percentage of correct answers. 

 

PTs’ Strategies for Finding the Distant Term 

Portuguese and Spanish PTs were able to provide a correct answer to find the distant term in 

63% and 43% of the cases, respectively. The correspondence strategy was the preferred strategy to 

find the distant term for the Spanish PTs, which is present in 42% of their responses (32% correct), 

mostly through a visual approach. An example of a correct use of such strategy is the following PT’s 

answer that expresses a relation between the two varying quantities for a distant term as referring to 

the characteristics of the pictorial representation: “2 squares lose one vertex, 3 squares lose two 

vertices, 4 squares lose three vertices, 25 squares lose 24 vertices. 25x4=100, 100-24=76” (S6). We 

also find incorrect implementations of this strategy, where the PT misses the extra vertex from the 

first square: “It will have 75 vertices since when you put 2 squares together, they share a vertex, so 25 

squares x 3 vertices equals 75 vertices in total” (S10).  

The difference-recursive strategy was most frequent among the Portuguese PTs (33% of their 

answers), leading them to a correct answer in most cases (25% of the total), as the example in Figure 

4. We can observe that the PT begins by considering the number of vertices of the figure formed by 5 

squares (16 vertices) and keeps adding 3 until reaching the figure with 25 squares, concluding: “The 

figure formed by 25 squares will have 76 vertices”.  

  

Figure 4. Example of Difference-Recursive Strategy - PB24 
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The difference strategy of type multiple of difference was the second most used (19% of 

responses) by Portuguese PTs to find the distant term. After realizing that there is a constant 

difference between the terms, these PTs used it as a multiplicative factor to determine the required 

distant term, making an adjustment at the end by adding the extra vertex of the first square. The 

example in Figure 5 shows that the PT realizes that the 25th term is obtained by multiplying 24 by 3 

and then adjusting the result by adding up four from the first term.  It is also worth noting that most 

Portuguese PTs who used this strategy obtained the general term already in their answer to this 

question, and applied it to correctly find the distant term, as the example in Figure 5.  

 
 

Figure 5. Example of Multiple of Difference Strategy - PA19 

 

Multiplicative reasoning strategy of type missing value was used in 20% of Spanish PTs’ 

answers to find the distant term. This strategy occurs when the participant uses the rule of three to find 

a distant term, which does not result in a correct solution since this is not a proportional numerical 

relation. For instance, one PT states: “By a rule of three: 1 square – 4 vertices; 25 squares – x. [So] 

x=100 vertices” (Figure 6). This strategy was not frequent among Portuguese PTs.  

 

Figure 6. Example of Incorrect Missing Value Strategy - S8 

 

The counting strategy based directly on the figural pattern, it is still present in about 15% of the 

answers, by both Portuguese and Spanish PTs. In most cases, this strategy led them to incorrect 

answers as PTs were not able to understand how the pattern grows. Two examples of Spanish PTs’ 

answers, one correct (Figure 7(a)) and one incorrect (Figure 7(b)), are given below. For example, S77 

(Figure 7(b)) explains: “By counting the vertices of a drawing of the 25-squares chain”. Finally, we 

should remark that 17% of Portuguese PTs and 9% of the Spanish PTs did not provide an answer to 

the distant term question. 
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(a) 

 
(b) 

Figure 7. Examples of Counting Strategies - S7(a) and S77(b) 

 

PTs’ Strategies for Finding the General Term 

Many PTs from both countries were not able to provide the general term: 50% of Portuguese 

and 29% of Spanish PTs did not answer this question. Only 30% of the Portuguese PTs and 34% of 

the Spanish who answered this question provided a correct general term for the sequence. For those 

cases, a description on how they represent the relationship (using words, syncopated language, or 

mathematical symbols) is presented. 

We find that most Portuguese PTs’ strategies (47%) were difference-recursive type, not leading 

to the general term, as also frequent among Spanish PTs’ answers (35% of the strategies), like the one 

of S33 (Figure 8), who explains: “Every time we add a square, one of its vertices is shared with the 

previous, adding 3 vertices per square instead of 4, 1 less than in the case of the first”.  

 

Figure 8. Example of a Difference-Recursive Strategy - S33 

 

Portuguese PTs most successful strategy for the general term was the multiple of difference 

strategy (25% of the strategies), which led them to the correct answer in most cases (22% in total). As 

mentioned before, most of the PTs found a general term already when answering the question for the 

sequence’s distant term. Thus, it seems that the PTs were using a procedure they have learnt to 

determine the general term of a sequence representing an affine relation between variables. In Figure 

9, we can notice that the PT stresses the difference between consecutive terms (“+3”), and, using this 

difference as a multiplicative factor, writes down the general term in symbolic mathematical 

language. Then, the PT applies the relation to find the distant term.  

 

Figure 9. Example of Multiple of Difference Strategy - PB14 
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The Spanish PTs’ most common strategy to find the general term was the correspondence 

strategy (35% of the strategies). These PTs used a visual approach in most cases, such as the 

following one: “Number of vertices [in each square] times the number of squares and then you 

subtract the number of squares minus 1” (S53). Here the PT expresses the direct relation between the 

two varying quantities in a general rule using words and referring to the contextual features of the 

sequence (squares and vertices). Therefore, the way the relationship between the variables is 

expressed, which could be written as 4×n-(n-1), is dependent on how the PT has apprehended the 

structure of the spacial sequence. 

It is also worth noting that very few PTs, among those who found the functional relationship, 

provided a full symbolic equation to express it, such as the one presented by S62 who wrote: 

“3n+1=v, n= nr squares, v=vertices”. 

Overall, these results showed that PTs from both countries encountered serious difficulties 

when trying to find the general term for the two varying quantities and adopted diverse approaches in 

the generalization of patterns: Portuguese PTs privileged the multiple of difference strategy, whereas 

the Spanish preferred a correspondence visual strategy. 
 

Representations Task 

The results concerning the approaches used by the PTs to interpret variables and relationships 

between them, including the connections between representations they established, were identified on 

the obtained PTs’ answers, and are presented in Table 4. In the following sections, we discuss the 

three categories separately. 
 

Table 4. PTs’ Interpretation of Variables and Relationships between Variables and Connection 

between Representations 

Category  
Portuguese 

(N=70) 

Spanish 

(N= 94) 

Interpretation of 

variables 

As a varying quantity 27 (11) 72 (11) 

As two specific unknowns 10 (0) 9 (0) 

No evidence of interpretation 20 10 

Interpretation of 

relationships 

between variables 

Global correspondence 13 (11) 28 (11) 

Local correspondence 21 (0) 44 (0) 

No evidence of interpretation 23 19 

Connection 

between 

representations 

Connect two representations to interpret a third 

one 
33(11) 46 (11) 

No evidence of connection 24 45 

No Answer (% of the PTs) 43 9 

Note. The first number on each cell gives the percentage of answers for each category, and between 

brackets the percentage of correct ones. “No Answer” concerns the percentage of the PTs that did not 

answer to this task, thus in each category it completes the 100% of answers.    
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Interpretation of Variables 

We can observe that 72% of Spanish PTs interpreted variables as a varying quantity (Table 4) 

but only 27% of Portuguese PTs showed such interpretation. An example evidencing this 

interpretation is the answer of a Spanish PT, who argues: “The correct solution is the third one, since 

for each value of a there is a value of b, with all possible options, including negative numbers, and the 

previous [solutions] are more limited since they only provide some solutions” (S33). This PT’s 

answer shows an understanding that the two letters may assume many diverse values, as the solution 

offered by the graph, also providing a justification. Other PTs express the same interpretation of 

variables, referring to the diversity of values they may assume, but their responses were classified as 

incorrect since they consider the solution provided in the table as the correct one, as the following 

example of a Portuguese PT shows: “The correct solution is Solution 1 since it provides a sequence of 

possible options. Solution 2 is the incorrect solution since it only has one solution and there can be 

more” (PA13). These incorrect answers may result from the PTs’ difficulties in interpreting the 

graphic representation and thus not considering it as a possible solution.  

We also find that about 10% of both Portuguese and Spanish PTs interpreted the variables as 

two specific unknowns. This was demonstrated for instance by a PT who explains: “Solution 2 is 

correct because if a is 10, added to 2 gives 12, and if b is 2, added to 10 gives 12. They are symmetric. 

Solution 1 is wrong because there is only one situation in this table that meets a+2=b+10” (PA1). We 

interpret that the PT believes the relation between quantities to be adding up to 12, and that holds only 

for a specific value of each letter. Also, worth noticing is the incorrectness of the language used by the 

PT when stating that the numbers are “symmetric”.  

Finally, we observe that 20% of Portuguese PTs and 10% of the Spanish PTs showed no 

evidence of interpretation of the variables. In these cases, the PTs did not provide an explanation for 

their choice or seemed not to have understood the question. 

 

Interpretation of Relationships between Variables 

In this category, it was analysed how PTs interpreted the relationship between variables, 

distinguishing global correspondence approaches from local ones. We observed that 21% and 44% of 

the Portuguese and Spanish PTs, respectively, showed a local correspondence approach in their 

responses. This has been classified as incorrect as it does not consider that the relation between the 

values applies to an infinite set. We find an example, classified as incorrect, in the following answer: 

“The correct solution is solution 1 [table]. This is the one that includes all the values that make the 

expression a+2=b+10 true” (PA8). Here some of the values provided in the solutions are considered 

by the PT to hold the expression a+2=b+10, but there are again no indications to suggest that more 

than a finite set has been considered. 

We find evidence of a global correspondence approach in 13% and 28% of the Portuguese and 

Spanish PTs, respectively. An example of a global approach is found in the following answer that 
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refers to the infinity of the set of solutions: “The only one representing all solutions is solution 3, 

which defines well the R-representation of a line that has neither a beginning nor an end” (PA3). 

Some PTs also evidenced a global correspondence approach, but they did not consider the solution 

provided by the graph as the only one that is correct, as the case of a PT who only labels “Solution 1” 

as correct and explains that: “Any number a that exceeds in 8 any other number b corresponds to 

a+2=b+10 since 10 exceeds 2 by 8” (S2). They consider how both variables change in relationship to 

one another, and to the existence of many more values than those on the table, but not in the graph.  

There are still 23% and 19% of the Portuguese and Spanish PTs, respectively, whose answers 

showed no evidence of interpretation. An example providing no evidence is the one by a PT who 

argues: [The first solution in the table] is not correct since zero cannot be in an equality” (S19), 

showing a lack of knowledge regarding algebraic expressions. 

 

Connections between Representations 

Only 11% of both Portuguese and Spanish PTs’ answers showed, correctly, connection between 

representations. In these answers, the PTs understand the algebraic expression provided in the task 

and connected it with the table and the graph representations, emphasizing that the solution given by 

the graph is the only complete one, as showed in the following example: “I consider all solutions to be 

correct even though I consider solution 3 totally complete, since solution 1 and 2 provide examples of 

solutions, and solution 3 gives a more comprehensive solution” (PB7). Other answers, although 

showing connection between representations, were classified as incorrect since the PTs failed in not 

considering the graph as the only one that displays all solutions of the algebraic expression, like the 

following: “Solution 1 is correct since giving values to a or b, those numbers come out. Solution 3 is 

correct since it is a representation of the table of Solution 1” (S26).  

The answers classified as no evidence of connection between representations (24% and 45% of 

Portuguese and Spanish PTs, respectively) mostly show a lack of understanding of the graphic 

representation. That is the case of a PT who explicitly states: “Solution 3 cannot be right since the 

right line r has nothing to do with a and b” (S47). Another example is given by a Spanish PT who 

argues about the graph in solution 3 as follows: “Incorrect: if you place the numbers of the line by the 

given equation, you obtain: a=8, b=-8; 8+2=-8+10, 10=2, which is not true” (S45), and another by a 

Portuguese PT who explains “This solution [solution 3] is not correct since -8+10=2 and 8+2=10. So, 

-8+10 ≠ 8+2” (PA2). It is noticeable here that the two PTs are using the same incorrect argument 

when rejecting Solution 3. They wrongly consider the point (-8,8) to be a point on the straight line and 

argue that the line cannot be a solution to the problem since that point does not hold the expression. 

In summary, the results concerning the Representations task reflect many difficulties among 

PTs of both countries in all categories of the analysis. The Portuguese PTs had a lower level of 

participation than Spanish ones, in general, but a very low percentage of correct answers among PTs 

from both countries were observed. This brings to light important PTs’ difficulties regarding the 
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understanding of algebraic expressions and their representations. 

 

Deposits Task 

The results of the approaches used by the PTs to interpret relationships between variables given 

by a graph, identified on their answers to the three questions in this task, are presented in Table 5. 

 

Table 5. PTs’ Interpretation of Relationships between Variables 

 Portuguese 

(N= 70) 

Spanish 

(N=94) 

Interpretation of relationships Q1 Q2 Q3 Q1 Q2 Q3 

       Co-variation __ __ 0 (0) __ __ 2 (1) 

       Correspondence 58 (56) 61 (49) 52 (26) 93 (81) 94 (83) 86 (40) 

       No evidence of   interpretation 6 6 17 4 3 9 

No Answer (% of the PTs) 36 33 31 3 3 3 

Note. The first number on each cell gives the percentage of answers for each category, and between 

brackets the percentage of correct ones. 

 

In the case of Q1, 56% and 81% of Portuguese and Spanish PTs, respectively, provided a 

correct answer (deposit A: empty, and deposit B: 150 liters). It was interpreted herewith that all PTs 

who were able to identify variables and their relationship used a local correspondence approach. Some 

answers were incorrect, like the following one: “Tap A is slower so at the instant 0 there are 0 liters, 

while Tap B comes out faster because at the same time there are already 150 liters” (S45). The PT can 

identify the coordinates, but he focuses on the taps’ speed, which reflects difficulties in interpreting 

the variables. Other answers to Q1 were classified as no evidence of interpretation of relationships, 

like: “Tap A had nothing in its flow" (S22) or “Without water” (PA22). We take that the absence of 

explanations in these answers reflects a lack of understanding of relationships between variables. 

Regarding Q2, we find that most PTs who provided an answer showed a correspondence 

approach (49% and 83% of the total of Portuguese and Spanish PTs respectively), like one Portuguese 

who argues “Within 10 minutes both deposits have 400 litres” (PB18), showing therewith to interpret 

the meaning of the variables and their relation from the graphic representation. About 12% of both the 

Spanish and Portuguese PTs showed correspondence approach in Q2 but their answers were 

considered incorrect since they established a relation between the time and the number of litres in the 

deposits but failed to explicitly refer to the variables, as observed in the following answer: “That at 

that time they had the same capacity” (S6). This PT uses the word “capacity” to mean ‘fill level’, a 

mistake quite frequent among Spanish PTs. It was also very common among PTs from both countries 

to allude erroneously to the taps in their justification instead to the deposits. 

Few responses to Q2 were classified as providing no evidence of interpretation of relationships 

like in the following argument: “The moment in which both taps get the same flow and, from there, 
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they have different rhythm” (S36). The PT shows not to understand the dependent variable (and 

therefore the relationship between the two variables) since he assumes that it represents the flow and 

instead of the amount of water.  

Both co-variation and correspondence approaches in the interpretation of relationships between 

variables were evaluated by Q3 where PTs were asked: (1) to name the deposit that reaches its 

capacity faster, and (2) the time when that occurred. Most PTs that provided an answer adopted a 

correspondence approach (52% and 86% of Portuguese and Spanish PTs, respectively). About half of 

these answers were correct, like the one by a Spanish PT who: “The deposit A is the one that reaches 

its maximum capacity 1000 litres more quickly, at 25 minutes, versus deposit B that reaches it 10 

minutes later” (S38). The acknowledged correspondence between the variables is evident in some 

cases by the marks in the graph to connect the values of the coordinates of each point (Figure 10).  

 

Figure 10. Example of Correspondence in the Graph - S38 

 

Many of the mistakes occurred when the PTs considered the capacity of the deposits to be the 

top of the ordinate axis in the graph (1350 litres), and not the 1000 litres stated in the task, as shown in 

the answer: “A takes 35 minutes and B 50 minutes approximately” (S45). Just two Spanish PTs 

showed a co-variation approach. One of them argues that: “Tap A since it has a greater slope” (S17).  

Few PTs provided incorrect answers when answering Q3 which were classified as no evidence 

of interpretation of relationship, such as this one: “Tap A has more power, so whatever its start, it fills 

first” (S22). It was common among Spanish PTs to make assumptions about contextual aspects that 

were not provided by the information in the graph, or by the task’s statement. 

This empirical study examined aspects of Spanish and Portuguese elementary PTs’ functional 

thinking at the beginning of their undergraduate preparation, as they solved algebraic tasks. The 

results show that PTs from both countries have difficulties in generalizing algebraic rules and in 

interpreting variables and the relationship between them, as in other studies (e.g. Alajmi, 2016; 
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Hohensee, 2017). Nevertheless, when compared to previous research, this study gives a broader 

perspective about elementary PTs’ functional thinking as it encompasses more core dimensions. 

As elementary PTs need to develop a specific SCK for teaching in an early algebra perspective, 

being able to identify the relationship between the two variables in a sequence is of paramount 

importance. Addressing the first research question in this study, we found that among the Portuguese 

PTs there is a prevalence of recursive-difference strategies, both for determining the distant term and 

the general term of the sequence that may not comprehend a functional relationship. This approach 

may result from a memorization of a procedure, which is often identified in other studies (Kieboom et 

al., 2014; Wilkie, 2016). On the contrary the Spanish PTs who were able to determine the distant or 

the general term tend to use a correspondence approach, relying on the visual characteristics of the 

pattern, but the occurrence of successful strategies is still low among them. It is also worth noting that 

very few PTs from both countries used a full symbolic equation for the general term which may be an 

indicator of their difficult with the algebraic language, as stressed by Strand and Mills (2014). 

In what concerns the second research question, specifically with a focus on the PTs’ 

understanding of variables, we found that Spanish PTs considered variables as a varying quantity in a 

higher percentage than Portuguese PTs but had equally a low rate of correct responses. PTs from both 

countries provided local approaches in their interpretations of relationships between variables more 

often than global ones (Leinhardt et al., 1990). Particularly, Spanish PTs showed this approach very 

often by checking whether the values of the table fulfilled the relationship given by the algebraic 

expression. However, the tendency to see the table as a finite set of coordinated points, attached to a 

local view of function, may be linked to a statistic view of function, preventing PTs from searching 

how the values of the two variables change simultaneously (Ellis, 2011). In general PTs also reflect 

many difficulties in understanding the algebraic expression presented in the task’s statement, and 

therefore hardly connect it with other representations, as also pointed out in other studies (Strand & 

Mills, 2014). In face of these two difficulties altogether it is not surprising that the majority of PTs 

from both countries have shown a lack of important knowledge regarding the graphical representation 

of a function, namely that it conveys all the range of coordinates for the function. When interpreting 

the relationship between variables that describe quantities from a real context represented in a graph, 

there is an increased number of PTs who can describe the functional relationship at a local level. 

Nevertheless, there is still an important number of Portuguese PTs who do not provide an answer and 

a majority from both countries who reveal difficulties in connecting the information about the 

variables provided by the graph with the real context. This finding suggests that using graphs to model 

concrete situations may not only entail great complexity for students (Patterson & McGraw, 2018), 

but also for many elementary PTs, and it may prevent them from promoting the exploration of such 

representations in their future teaching practice. 
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CONCLUSIONS 

Although PTs can use different strategies to generalize functional relationships, the occurrence 

of successful strategies is low. Also, most participants provide local approaches in their interpretation 

of relationships between variables and reveal difficulties in understanding and connecting different 

representations of functions. These findings show that regardless of PTs’ school experiences in 

mathematics and the differences among the curriculum in both countries, PTs lack important 

knowledge about functional thinking when they start their preparation to become elementary teachers. 

From this study, we can derive some implications for teacher education. 

First, considering that elementary PTs may have quite diverse mathematical backgrounds, 

teacher educators need to understand the key mathematical ideas they have developed. A framework 

like the one proposed in this study may be a starting point to identify different aspects of PTs’ 

functional thinking to understand their misconceptions and difficulties with algebraic ideas, as 

recommended by Yemen-Karpuzcu et al. (2017), as well as if they tend to rely on the use of rules and 

procedures, without understanding, when solving tasks that involve functional relationships. Second, 

exploring core ideas on functional thinking can also be used as a rich context for PTs to rebuild the 

mathematics they have learnt, namely by stablishing connection among topics they often see in 

isolation, as it happens sometimes with sequences and functions. An attention on PTs’ functional 

thinking in an early algebra perspective is also essential for their understanding of the mathematics 

behind the tasks to propose to their future students.  

Finally, and more specifically, opportunities should be given to PTs to: (i) reflect on the 

different strategies and their level of efficiency for generalization of functional relationships and (ii) 

deepen their understanding of functional relationships in different representations and how they 

connect with each other. In what concerns the first aspect (i), we may illustrate that the use of a 

difference-recursive strategy that has been mentioned in the literature has not led students to 

understand the structure of the patterns, nor the relationship between the quantities involved. 

However, using a multiple of difference approach can be a successful strategy when students 

understand the relation between the numerical sequence of values and the general term. At the same 

time, we want to support PTs’ functional thinking, encouraging them to advance to more sophisticated 

strategies based on correspondence approaches, but still, as future teachers, they need to understand 

that simpler strategies are also important and can provide opportunities for students’ further 

development. As most PTs did not experience this kind of activities as students, teacher education 

programs should provide opportunities for them to explore generalization in different contexts. 

Concerning the second aspect (ii), teacher educators should create situations that allow PTs to 

understand how different representations may support thinking in functional terms, either in a 

covariational or correspondence approach. With the strong incidence in a static view of function, 

associated with the correspondence approach, throughout the middle and secondary schools (Ellis, 

2011), elementary PTs may need to further explore tables and graphs as means to understand the 
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relationship between the variables of a function, from a global perspective, embedded in significant 

contexts for elementary students. 

Future research may address how the framework adopted in this study may support the design 

of teacher education programs for promoting PTs’ functional thinking, regarded as an important 

dimension of SCK for elementary teachers, as well as other dimensions of PTs professional 

knowledge, namely the knowledge about their future students. 

 

ACKNOWLEDGEMENTS 

This work was supported by the Ministerio de Economía y Competitividad. Madrid. Spain 

[projects EDU2017-84276-R and PID2019-105677RB-I00]. 

 

REFERENCES 

Alajmi, A. H.  (2016). Algebraic generalization strategies used by Kuwaiti pre-service teachers. 

International Journal of Science and Mathematics Education, 14(8), 1517–1534. 

https://doi.org/10.1007/s10763-015-9657-y  

Apsari, R. A., Putri, R. I. I., Sariyasa, S., Abels, M., & Prayitno, S. (2019). Geometry representation 

to develop algebraic thinking: A recommendation for a pattern investigation in pre-algebra 

class. Journal on Mathematics Education, 11(1), 45-58. 

https://doi.org/10.22342/jme.11.1.9535.45-58  

Ayalon, M., Watson, A., & Lerman, S. (2016). Progression towards functions: Students’ 

performance on three tasks about variables from grades 7 to 12. International Journal of 

Science and Mathematics Education, 14, 1153-1173. https://doi.org/10.1007/s10763-014-9611-

4  

Barbosa, A., & Vale, I. (2015). Visualization in pattern generalization: Potential and challenges. 

Journal of the European Teacher Education Network, 10, 57-70. 

Blanton, M., & Kaput, J. (2011). Functional thinking as a route into Algebra in the elementary 

grades. In J. Cai & E. Knuth (Eds.), Early Algebraization, Advances in Mathematics Education 

(pp. 5-23). Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-17735-4_2   

Blanton, M., Levi, L., Crites, T., & Dougherty, B. (2011). Developing Essential Understanding of 

Algebraic Thinking for Teaching Mathematics in Grades 3-5. Reston, VA: NCTM.  

Branco, N. C. V. (2013). O Desenvolvimento do Pensamento Algébrico na Formação Inicial de 

Professores dos Primeiros Anos. PhD Thesis. University of Lisbon, Portugal. 

Brown, S., & Bergman, J. (2013). Preservice Teachers’ understanding of variable. Investigations in 

Mathematics Learning, 6(1), 1-17. https://doi.org/10.1080/24727466.2013.11790327  

Carraher, D. W., & Schliemann, A. D. (2019) Early algebraic thinking and the US mathematics 

standards for grades K to 5. Infancia y Aprendizaje, 42(3), 479-522. 

https://doi.org/10.1080/02103702.2019.1638570  

Confrey, J., & Smith, E. (1994). Exponential functions, rates of change, and the multiplicative unit. 

Educational Studies in Mathematics, 26, 135-164. https://doi.org/10.1007/BF01273661  

https://doi.org/10.1007/s10763-015-9657-y
https://doi.org/10.22342/jme.11.1.9535.45-58
https://doi.org/10.1007/s10763-014-9611-4
https://doi.org/10.1007/s10763-014-9611-4
https://doi.org/10.1007/978-3-642-17735-4_2
https://doi.org/10.1080/24727466.2013.11790327
https://doi.org/10.1080/02103702.2019.1638570
https://doi.org/10.1007/BF01273661


Oliveira, Blanco, & Henriques, Exploring Prospective Elementary Mathematics Teachers’ Knowledge …           277 

 

Ellis, A. (2011). Algebra in the middle school: developing functional relationships through 

quantitative reasoning. In J. Cai & E. Knuth (Eds.), Early Algebraization, Advances in 

Mathematics Education (pp. 215-238). Berlin Heidelberg: Springer-Verlag. 

https://doi.org/10.1007/978-3-642-17735-4_13  

Erickson, F. (1986). Qualitative methods in research on teaching. In M. Wittrock (Ed.), Handbook of 

Research on Teaching (pp. 119-161). New York, NY: MacMillan. 

Hart, K. M. (1981). Children’s Understanding of Mathematics: 11-16. London: John Murray. 

Hill, H., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content knowledge: 

Conceptualising and measuring teachers’ topic-specific knowledge of students. Journal for 

Research in Mathematics Education, 39(4), 372-400. http://www.jstor.org/stable/40539304  

Hohensee, C. (2017). Preparing elementary prospective teachers to teach early algebra. Journal of 

Mathematics Teacher Education, 20, 231–257. https://doi.org/10.1007/s10857-015-9324-9  

Kaput, J. (2008). What is algebra? What is algebraic reasoning? In J. Kaput, D. Carraher, & M. 

Blanton (Eds.), Algebra in the Early Grades (pp. 5-18). Mahwah, NJ: Lawrence 

Erlbaum/Taylor & Francis Group & NCTM. https://doi.org/10.4324/9781315097435  

Kieboom, L., Magiera, M. T., & Moyer, J. C. (2014). Exploring the relationship between K-8 

prospective teachers’ algebraic thinking proficiency and the questions they pose during 

diagnostic algebraic thinking interviews. Journal of Mathematics Teacher Education, 17, 429-

461. https://doi.org/10.1007/s10857-013-9264-1  

Kieran, C., Pang, J., Schifter, D., & Ng, S. F. (2016). Early Algebra. Research into its Nature, its 

Learning, its Teaching. Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-

62597-3  

Kusumaningsih, W., Darhim, D., Herman, T., & Turmudi. T. (2018). Improvement algebraic thinking 

ability using multiple representation strategy on realistic mathematics education. Journal on 

Mathematics Education, 9(2), 281-290. https://doi.org/10.22342/jme.9.2.5404.281-290  

Lannin, J. K., Barker, D. D., & Townsend, B. E. (2006). Recursive and explicit rules: How can we 

build student algebraic understanding? The Journal of Mathematical Behavior, 25(4), 299-317. 

https://doi.org/10.1016/j.jmathb.2006.11.004  

Leinhardt, G., Zaslavsky, O., & Stein, M. K. (1990). Functions, graphs, and graphing: Tasks, learning, 

and teaching. Review of Educational Research, 60(1), 1-64. 

Magiera, M. T., van den Kieboom, L., & Moyer, J. C. (2013). An exploratory study of pre-service 

middle school teachers’ knowledge of algebraic thinking. Educational Studies in Mathematics, 

84, 93-113. https://doi.org/10.1007/s10649-013-9472-8  

McAuliffe, S., & Vermeulen, C. (2018). Preservice teachers' knowledge to teach functional thinking. 

In C. Kieran (Ed.), Teaching and Learning Algebraic Thinking with 5- to 12-Year-Olds: The 

Global Evolution of an Emerging Field of Research and Practice (pp. 403-426). Cham, 

Switzerland: Springer. https://link.springer.com/chapter/10.1007/978-3-319-68351-5_17  

Morales, R., Cañadas, M. C., Brizuela, B. M., & Gómez, P. (2018). Relaciones funcionales y 

estrategias de alumnos de primero de educación primaria en un contexto funcional [Functional 

relationships and strategies of first grade students in a functional context]. Enseñanza de las 

Ciencias, 36(3), 59-78.  https://doi.org/10.5565/rev/ensciencias.2472  

https://doi.org/10.1007/978-3-642-17735-4_13
http://www.jstor.org/stable/40539304
https://doi.org/10.1007/s10857-015-9324-9
https://doi.org/10.4324/9781315097435
https://doi.org/10.1007/s10857-013-9264-1
https://doi.org/10.1007/978-3-319-62597-3
https://doi.org/10.1007/978-3-319-62597-3
https://doi.org/10.22342/jme.9.2.5404.281-290
https://www.sciencedirect.com/science/article/pii/S0732312306000502#!
https://www.sciencedirect.com/science/article/pii/S0732312306000502#!
https://www.sciencedirect.com/science/article/pii/S0732312306000502#!
https://doi.org/10.1016/j.jmathb.2006.11.004
https://doi.org/10.1007/s10649-013-9472-8
https://link.springer.com/chapter/10.1007/978-3-319-68351-5_17
https://doi.org/10.5565/rev/ensciencias.2472


278  Journal on Mathematics Education, Volume 12, No. 2, May 2021, pp. 257-278 

 

Moss, J., & McNab, S. L. (2011). An approach to geometric and numeric patterning that fosters 

second grade students’ reasoning and generalizing about functions and co-variation. In J. Cai & 

E. Knuth (Eds.), Early Algebraization, Advances in Mathematics Education (pp. 277-301). 

Berlin Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-642-17735-4_16  

Oliveira, H., & Mestre, C. (2014). Opportunities to develop algebraic thinking in elementary grades 

throughout the school year in the context of mathematics curriculum changes. In Y. Li, E. 

Silver & S. Li (Eds.), Transforming Mathematics Instruction: Multiple Approaches and 

Practices (pp. 173-197). Dordrecht: Springer. https://doi.org/10.1007/978-3-319-04993-9_11  

Patterson, C. L., & McGraw, R. (2018). When time is an implicit variable: an investigation of 

students’ ways of understanding graphing tasks. Mathematical Thinking and Learning, 20(4), 

295-323. https://doi.org/10.1080/10986065.2018.1509421  

Radford, L. (2008). Iconicity and contraction: a semiotic investigation of forms of algebraic 

generalizations of patterns in different contexts. ZDM Mathematics Education, 40, 83–96. 

https://doi.org/10.1007/s11858-007-0061-0  

Radford, L. (2011). Grade 2 students’ non-symbolic algebraic thinking. In J. Cai & E. Knuth (eds.), 

Early Algebraization, Advances in Mathematics Education (pp. 303-322). Berlin Heidelberg: 

Springer-Verlag. https://doi.org/10.1007/978-3-642-17735-4_17  

Richardson, K., Berenson, S., & Staley, K. (2009). Prospective elementary teachers use of 

representation to reason algebraically. Journal of Mathematical Behavior, 28(2-3), 188-199. 

https://doi.org/10.1016/j.jmathb.2009.09.002  

Rodrigues, R. V., Cyrino, M. C., & Oliveira, H. (2019). Percepção profissional de futuros professores 

sobre o pensamento algébrico dos alunos na exploração de um caso multimídia. Quadrante, 

28(1), 100-123. https://doi.org/10.48489/quadrante.22975    

Stephens, A. C., Ellis, A. B., Blanton, M., & Brizuela, B. M. (2017). Algebraic thinking in the 

elementary and middle grades. In J. Cai (Ed.), Compendium for Research in Mathematics 

Education (pp. 386-410). Reston, VA: NCTM. 

Strand, K., & Mills, B. (2014). Mathematical content knowledge for teaching elementary 

mathematics: A focus on Algebra. The Mathematics Enthusiast, 11(2), 384-432. 

https://scholarworks.umt.edu/tme/vol11/iss2/8  

Thompson, P. W., & Carlson, M. P. (2017). Variation, covariation, and functions: Foundational ways 

of thinking mathematically. In J. Cai (Ed.), Compendium for Research in Mathematics 

Education (pp. 421-456). Reston, VA: NCTM. 

Wilkie, K. J.  (2016). Learning to teach upper primary school algebra: changes to teachers’ 

mathematical knowledge for teaching functional thinking. Mathematics Education Research 

Journal, 28, 245-275. https://doi.org/10.1007/s13394-015-0151-1  

Yemen-Karpuzcu, S., Ulusoy, F., & Işıksal-Bostan, M. (2017). Prospective middle school 

mathematics teachers’ covariational reasoning for interpreting dynamic events during peer 

interactions. International Journal of Science and Mathematics Education, 15, 89-108. 

https://doi.org/10.1007/s10763-015-9668-8  

Zazkis, R., & Liljedahl, P. (2002). Generalization of patterns: The tension between algebraic thinking 

and algebraic notation. Educational Studies in Mathematics, 49(3), 379-402. 

https://doi.org/10.1023/A:1020291317178  

https://doi.org/10.1007/978-3-642-17735-4_16
https://doi.org/10.1007/978-3-319-04993-9_11
https://doi.org/10.1080/10986065.2018.1509421
https://doi.org/10.1007/s11858-007-0061-0
https://doi.org/10.1007/978-3-642-17735-4_17
https://doi.org/10.1016/j.jmathb.2009.09.002
https://doi.org/10.48489/quadrante.22975
https://scholarworks.umt.edu/tme/vol11/iss2/8
https://doi.org/10.1007/s13394-015-0151-1
https://doi.org/10.1007/s10763-015-9668-8
https://www.researchgate.net/profile/Rina_Zazkis?_sg%5B0%5D=YIAqrowVe6Czxm3pNvbj_eWqBH8JkKb63oZbtkKNkGcbd64JX5j6Go3yrt4O9bXzO60U-hg.CtXIDcSVYpHaoO7PDlpc3uDS8lWK8arWadvaZ_SPr-drsSvjtQWJWdU8q0V9B3EDonCPiqtvKUZ4eScozefEbQ&_sg%5B1%5D=iy4MqV7uiH8LWX_Zk280eJuaz79EDHy3ZZS5HY4G87hejeZ7E-TghT9-2b__mGzFTibe3hUY813UnDmX.zlTgCjoSoCeiN9Jh-otDrF2zBOZeKPRGLRxbMABiARMJL9S_yqBWGg2I40D_vDkCEtTmcg3_QezKFnXJiqD7qw
https://www.researchgate.net/profile/Peter_Liljedahl?_sg%5B0%5D=YIAqrowVe6Czxm3pNvbj_eWqBH8JkKb63oZbtkKNkGcbd64JX5j6Go3yrt4O9bXzO60U-hg.CtXIDcSVYpHaoO7PDlpc3uDS8lWK8arWadvaZ_SPr-drsSvjtQWJWdU8q0V9B3EDonCPiqtvKUZ4eScozefEbQ&_sg%5B1%5D=iy4MqV7uiH8LWX_Zk280eJuaz79EDHy3ZZS5HY4G87hejeZ7E-TghT9-2b__mGzFTibe3hUY813UnDmX.zlTgCjoSoCeiN9Jh-otDrF2zBOZeKPRGLRxbMABiARMJL9S_yqBWGg2I40D_vDkCEtTmcg3_QezKFnXJiqD7qw
https://doi.org/10.1023/A:1020291317178

