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Abstract 

Shifting students to a growth mindset can increase their achievements. Nevertheless, only a few studies have been 

conducted on this topic in developing countries. This study aims to examine the relationship between growth 

mindset, school context, and mathematics achievement in Indonesia. Using a multilevel model on the PISA 2018 

data, this study explored the variables that contributed to mathematics achievement. The multilevel analysis 

showed that students’ gender, growth mindset, index of economic social, and cultural status were statistically 

significant predictors of students’ mathematics achievement. Girls have been reported to have a higher 

mathematics achievement than boys in Indonesia. As the students’ growth mindset increases, so do their 

mathematics achievement.    

Keywords: PISA 2018, Mathematics, Multilevel, Growth Mindset 

Abstrak  

Keyakinan siswa terhadap growth mindset atau pemikiran yang berkembang dapat meningkatkan prestasi belajar 

mereka. Namun hanya beberapa penelitian yang telah dilakukan pada topik ini di negara berkembang. Penelitian 

ini bertujuan menyelidiki hubungan antara growth mindset, konteks sekolah, dan prestasi belajar matematika 

siswa di Indonesia. Menggunakan model multilevel pada data PISA 2018, penelitian ini mengeksplorasi variabel-

variabel yang berkontribusi pada prestasi belajar matematika. Analisis multilevel menunjukkan bahwa jenis 

kelamin siswa, growth mindset, indeks sosial ekonomik dan status budaya merupakan prediktor yang signifikan 

secara statistik terhadap prestasi belajar matematika siswa. Pelajar perempuan dilaporkan memiliki prestasi 

matematika yang lebih tinggi dibandingkan pelajar laki-laki di Indonesia. Seiring meningkatnya growth mindset, 

prestasi matematika siswa juga mengalami peningkatan. 

Kata kunci: PISA 2018, Matematika, Multilevel, Pemikiran Berkembang 
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In December 2019, the Organization of Economic Cooperation and Development (OECD) published 

the result of the Programme for International Student Assessment (PISA) 2018, which placed Indonesia 

in the quadrant of low performance and high equity (Avvisati et al., 2019). The average mathematical 

score of Indonesian students were 379, far below the average mathematical score of all PISA participants 

which equaled to 489. In the first participation in the year 2000, Indonesian students had obtained an 

average of 367 for mathematics score. From 2003 to 2015, the average mathematics score fluctuated 

between 360 and 386 (Nugrahanto & Zuchdi, 2019). As a consequence, large efforts should be done to 

improve students’ mathematical ability. 

The PISA is a routine evaluation or assessment held by the Organization of Economic 

Cooperation and Development (OECD) to measure the literacy of students around the world (Stacey, 

2011). Besides the scores obtained from standardized tests, some additional data are collected from 
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students, parents, and teachers using questionnaires. Consequently, the result of the PISA test can be 

compared at various levels and further analyzed to find a way for improving the educational quality. 

For a long time, some Indonesian as well as foreign researchers were trying to explain the PISA 

results using their datasets. Thien et al. (2015) used multilevel analysis on PISA datasets to compare the 

mathematics performances of students from Indonesia, Malaysia, and Thailand. This study found that 

attitude towards learning outcomes and mathematics self-efficacy were the main factors affecting 

student level performance in Indonesia. Pakpahan (2016) used correlation analysis on the PISA 2012 

data and found that students’ discipline, socioeconomic and cultural conditions, computer ownership, 

and textbooks were the main factors influencing the achievement of Indonesian students' mathematical 

literacy. Kartianom and Ndayizeye (2017) used the multilevel model to analyze the PISA 2015 data and 

found that the socio-economic status of the family, the socio-economic average of the school, and 

students’ sense of belonging to mathematics affect the Indonesian students’ mathematics achievement. 

In Serbia, a multi-level analysis revealed that students’ achievement in mathematics is affected by 

gender, non-cognitive characteristics, habits of study, student-perceived teaching quality, and several 

school-level factor (Lazarević & Orlić, 2018). Using a binary multilevel model to analyze the PISA 

2012 data, Karakolidis et al. (2016) found that students’ gender, immigration status, self-constructs in 

mathematics, and the mean socio-economic status (SES) in school significantly affect the students’ 

mathematical achievement in Greece. Using the hierarchical linear model, Anderson et al. (2009) 

analyzed the students’ mathematical literacy based on the PISA 2006 data.  

In PISA 2018 test, a new important variable has been added into the student questionnaire, namely 

growth mindset. A growth mindset is the belief that someone’s ability and intelligence can develop over 

time (Caniëls et al., 2018). Blackwell et al. (2007) as well as Dweck (2007) show that students with a 

growth mindset are more likely to believe that learning and understanding require efforts. When faced 

with challenges, they may be more willing to make more effort and take more risk. A growth mindset is 

also related to poverty, where more students from a lower-income family exhibit a fixed mindset (Claro 

et al., 2016). Change in students’ mindsets can be affected by academic experiences, peers, and formal 

learning (Limeri et al., 2020). 

Related to the mathematics ability, students in all levels may explore mathematics if they know 

that mathematics can be learned (Alpar & Van Hoeve, 2019). However, the belief that ability is a fixed 

trait (instead a growth trait) is particularly common and may be a key reason for students' 

underperformance and disinterest in mathematics (Sun, 2018). In United States, it has been proven that 

a short intervention in growth mindset can improve grades among lower-achieving students and 

increased overall enrolment to advanced mathematics courses in secondary education (Good et al., 2012; 

Yeager et al., 2019). Similarly, a fixed mindset may contribute to poor student performance, inequitable 

participation, and disinterest in mathematics (Horn, 2007; Boaler et al., 2018). However, a large meta-

analysis by Sisk et al. (2018) shows that the overall effect of growth mindset on academic achievement 
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was weak. Despite these differences, the growth mindset still becomes a popular research topic around 

the world (Sun, 2019).  

The PISA 2018 result shows that the majority of students across OECD countries has a growth 

mindset, as evident by their responses (“disagree” or “strongly disagree”) with the statement “Your 

intelligence is something about you that you can’t change very much”. In contrast, at least 60% of 

students in Indonesia believe that their intelligence is something that they cannot change by themselves, 

which represents the fixed mindset (Avvisati et al., 2019). Similar results have been observed in students 

from Dominican Republic, Kosovo, Panama and the Philippines, which are countries with low 

achievement in the PISA 2018 test.  

The dominance of fixed mindsets in Indonesian students leads us to explore the PISA 2018 data 

and examine whether a growth mindset contributes significantly to their mathematics achievement. To 

ensure the effects, we examine several variables that significantly affect students’ mathematics 

achievement. Following some earlier studies using PISA datasets (e.g. Kartianom & Ndayizeye, 2017), 

this study uses the multi-level model framework to see the effects on both the student and school levels.  

 

METHOD 

Data Collection 

The data set used in this study are the PISA 2018 data. The PISA is a triennial survey of 15-year-

old students assessing to what extent they have acquired the key knowledge and skills that are essential 

for full participation in society. The assessment focuses on proficiency in reading, mathematics, science 

and an innovative domain, and as well as on students’ well-being (OECD, 2019). The Indonesian PISA 

2018 data set includes all observations from 12,098 students and 397 schools. The response variable is 

students’ mathematics achievement which is calculated by averaging ten plausible values of the 

mathematics scores. The structured data were found in PISA 2018 in Indonesia, where the level-1 of 

hierarchy is the students and the level-2 is the school. The level-1 predictors in this study are students’ 

gender, students’ growth mindset, and students’ socio-economic status which is estimated by the PISA 

index of economic, social, and cultural status (ESCS). The level-2 predictor is student-to-teacher-ratio 

(STR). As missing values were found in the growth mindset, ESCS, and STR variables, the comprised 

samples became 9,196 students and 308 schools. 

Socio-demographic variables were gender (female or male) and ESCS. The students’ ESCS is 

derived from several variables relating to home and background information of students and ranged 

from -8.17 to 4.21 (OECD, 2016).  

Growth mindset was assessed by responses toward the following statement: “Your intelligence is 

something about you that you can't change very much.” Responses were coded as 1: Strongly disagree, 

2: Disagree, 3: Agree, 4: Strongly agree. As the growth mindset represents belief that an individual can 

improve his/her abilities over time, then the coded responses must be reversed from 1: Strongly agree 

up to 4: Strongly disagree. As a result, 1 indicates the lowest growth mindset score, while 4 indicates 
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the highest growth mindset score for each individual. In this study, the growth mindset is treated as a 

continuous predictor in order to have insightful interpretation.  

 

Data Analysis 

A total of 9,196 students and 308 schools with all variables of interests were used to investigate 

the effects of gender, growth mindset, students’ ESCS, and STR on mathematics achievement by fitting 

two-level multilevel models. Descriptive statistics were calculated to provide information about the 

sample characteristics. The parameters of the multilevel model were estimated using the restricted 

maximum likelihood (REML) method through the use of lme() function in R statistical software version 

3.6.0 from nlme package (Pinheiro et al., 2021). Tree random intercept models and one random slope 

model were fitted to the data. The Akaike information criterion (AIC) and Bayesian information 

criterion (BIC) were used to select the best model, where lower value indicated a more parsimonious 

model. Since the PISA 2018 data consists of school-level data and students-level data, in this study, we 

used the multilevel analysis as follows. 

 

Random Intercept Model 

A random-intercept model is a simple multilevel model with only one random level-1 coefficient 

(Finch et al., 2019). The level-1 of the random intercept model is given as, 

 𝑦𝑖𝑗 = 𝛽0𝑗 + 𝜀𝑖𝑗   (1) 

The level-2 of the random intercept model is expressed as 

 𝛽0𝑗 = 𝛾00 + 𝑈0𝑗   (2) 

where the ij subscript refers to the ith student in the jth school, 𝑦𝑖𝑗 represents the mathematics 

achievement score for the 𝑖th student in the 𝑗th school, 𝜀𝑖𝑗 is assumed to follow a normal distribution 

with a mean of zero and a constant variance of 𝜎2, 𝜀𝑖𝑗~𝑁(0, 𝜎2). Model (1) predicts the mathematics 

achievement from just an intercept which allows to vary randomly within school. The 𝛾00 represents an 

average or general intercept value that holds across schools, 𝑈0𝑗 is a school-specific effect on the 

intercept assuming a normal distribution with a mean of zero and a constant variance value denoted as 

𝜏00, 𝑈0𝑗~𝑁(0, 𝜏00). The 𝛾00 is a fixed effect because it remains constant across all schools, and 𝑈0𝑗 is 

a random effect because it varies between schools. It is assumed that both variances 𝜏00 and 𝜎2 are 

uncorrelated. Model (2) allows the intercept differs across schools which leads to the random intercept. 

Model (1) and (2) can be combined as  

𝑦𝑖𝑗 = 𝛾00 + 𝑈0𝑗 + 𝜀𝑖𝑗  (3) 

Model (3) is also known as an unconditional mean or null or empty model in the multilevel modelling 

context. 

In Equation (1), the mathematics achievement score of students 𝑖 in school 𝑗 (𝑦𝑖𝑗) is modelled as 

a function of the mean score in mathematics achievement for school 𝑗 (𝛽0𝑗) plus a residual term that 
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reflects individual student differences around the mean of school 𝑗 (𝜀𝑖𝑗). In Equation (1), the 

mathematics achievement mean score for school 𝑗 (𝛽0𝑗) is modelled as a function of a grand-mean score 

in mathematics achievement (𝛾00) plus a school-specific deviation from the grand mean (𝑈0𝑗). Equation 

(3) is important for researchers since it facilitates the writing of the syntax commands on statistical 

software packages.  

As the students are clustered within a school unit, the correlation among students’ scores within 

school structure can be derived using the intraclass correlation (ICC) which is expressed as, 

 𝐼𝐶𝐶 =
𝜏00

𝜏00+𝜎2    (4) 

The ICC is a measure of proportion of variation in the outcome variable that occurs between 

groups versus the total variation present. ICC values between 0.05 and 0.20 are common in multilevel 

modelling in social research studies (Peugh, 2010). The need for a multilevel analysis is not only based 

on a non-zero ICC but also the design effect. The design effect is used to justify for accounting the 

multilevel structure in the analysis (Maas & Hox, 2005). The design effect is determined by 

 𝐷𝑒𝑠𝑖𝑔𝑛 𝑒𝑓𝑓𝑒𝑐𝑡 = 1 +
(𝑛𝑐−1)

𝐼𝐶𝐶
   (5) 

where 𝑛𝑐 is the number of students per school. The value of design effect estimates greater than 2.0 

indicate a need for multilevel modelling (Muthén, 1991; 1994; Muthén & Satorra, 1995). 

Adding three predictors of level-1 in the random intercept model is extending the empty model 

into four equations in the level-2. The scales of two continuous variables are centered around the grand 

mean. Thus, the grand mean centering variables with zero values represent the overall mathematics 

achievement mean score across all schools. The level-1 of the random intercept model with three 

predictors of level-1 is expressed as, 

 𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑥1𝑖𝑗 + 𝛽2𝑗(𝑥2𝑖𝑗 − �̅�2..) + 𝛽3𝑗(𝑥3𝑖𝑗 − �̅�3..) + 𝜀𝑖𝑗   (6) 

The level-2 of the random intercept model with three predictors of level-1 is formulated as, 

 𝛽0𝑗 = 𝛾00 + 𝑈0𝑗  

 𝛽1𝑗 = 𝛾10 

 𝛽2𝑗 = 𝛾20 

 𝛽3𝑗 = 𝛾30   (7) 

Combining Eq. (6) and (7) yield,  

           𝑦𝑖𝑗 = 𝛾00 + 𝛾10𝑥1𝑖𝑗 + 𝛾20(𝑥2𝑖𝑗 − �̅�2..) + 𝛾30(𝑥3𝑖𝑗 − �̅�3..) + 𝑈0𝑗 + 𝜀𝑖𝑗  (8) 

The first term in Equation (8) is identical to Equation (2) where 𝛾00 is the grand mean and 𝑈0𝑗 is 

a residual that allows the mathematics achievement mean scores to vary across schools. Equation (6) 

illustrates the definition of a fixed effect model in level-1: the impact of gender (𝑥1𝑖𝑗, 1 for male and 0 

for female), growth mindset ((𝑥2𝑖𝑗 − �̅�2..), the growth mindset of student 𝑖 at the school 𝑗 is centered 

around the grand mean), and students’ ESCS ((𝑥3𝑖𝑗 − �̅�3..), the ESCS of student 𝑖 at the school 𝑗 is 

centered around the grand mean) on mathematics achievement across each school (𝛽1𝑗 , 𝛽2𝑗   and 𝛽3𝑗 
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respectively) are captured by single estimates that express the average effect of gender, growth mindset, 

and students’ ESCS on mathematics achievement across all schools (𝛾10, 𝛾20 and 𝛾30 respectively).  

The addition of three predictors of level-1 and one predictor of level-2 in the random intercept 

model is expressed as, 

 𝑦𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑥1𝑖𝑗 + 𝛽2𝑗(𝑥2𝑖𝑗 − �̅�2..) + 𝛽3𝑗(𝑥3𝑖𝑗 − �̅�3..) + 𝛽4𝑗(𝑤𝑗 − �̅�.) + 𝜀𝑖𝑗 (9) 

where 𝑤𝑗 is the predictor at level-2 which represents the STR at school 𝑗. The predictor 𝑤𝑗 is also 

centered around its grand mean. 

The level-2 of the random intercept model with three predictors of level-1 and one of predictor 

level-2 is formulated as, 

 𝛽0𝑗 = 𝛾00 + 𝑈0𝑗  

 𝛽1𝑗 = 𝛾10 

 𝛽2𝑗 = 𝛾20 

 𝛽3𝑗 = 𝛾30 

 𝛽4𝑗 = 𝛾40  (10) 

Combining Equations (9) and (10) yield,  

𝑦𝑖𝑗 = 𝛾00 + 𝛾10𝑥1𝑖𝑗 + 𝛾20(𝑥2𝑖𝑗 − �̅�2..) + 𝛾30(𝑥3𝑖𝑗 − �̅�3..) + 𝛾40(𝑤𝑗 − �̅�.) + 𝑈0𝑗 + 𝜀𝑖𝑗   (11) 

where the addition of 𝛽4𝑗 represents the impact of STR on mathematics achievement across each school 

that is captured by a single estimate of 𝛾40.  

 

Random Slope Model 

A random slope model involves the mean scores from each of many schools as an outcome to be 

predicted by group characteristics (Raudenbush & Bryck, 2002). The random slope model in this study 

uses Equation (9) as the level-1model, whereas the level-2 model is given as follows, 

 𝛽0𝑗 = 𝛾00 + 𝑈0𝑗  

 𝛽1𝑗 = 𝛾10 

 𝛽2𝑗 = 𝛾20 

 𝛽3𝑗 = 𝛾30 

 𝛽4𝑗 = 𝛾40 + 𝑈1𝑗 (12) 

where there is one level-2 predictor 𝑤𝑗 (STR). Substituting Equation (12) into Equation (9) yield the 

combined model as follows, 

𝑦𝑖𝑗 = 𝛾00 + 𝛾10𝑥1𝑖𝑗 + 𝛾20(𝑥2𝑖𝑗 − �̅�2..) + 𝛾30(𝑥3𝑖𝑗 − �̅�3..) + 𝛾40(𝑤𝑗 − �̅�.) + 

          𝑈0𝑗 + 𝑈1𝑗(𝑤𝑗 − �̅�.) + 𝜀𝑖𝑗   (13) 

where [
𝑈0𝑗

𝑈1𝑗
] ~𝑁(𝟎, 𝛕), 𝛕 = [

𝜏00 𝜏10

𝜏01 𝜏11
], and 𝜀𝑖𝑗~𝑁(0, 𝜎2). The 𝜏00 is the variance in intercepts between 

schools (and the level 2 variance at STR equals to 0), 𝜏11 is the variance in slopes (STR) between 
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schools, and 𝜏01 or 𝜏10 is the covariance between intercepts and slopes. Finally, four combined models 

for multilevel analysis are developed in this study, namely the models in Equation (3), (8), (11), and 

(13). 

 

RESULTS AND DISCUSSION 

Descriptive Statistics 

Students’ mean score in mathematics was 399.98 with a standard deviation of 79.91, while 

approximately 53 percent of students’ mathematics scores were below the mean. Given that PISA 

standardized the mathematics score with an average of 487 (SD=89) across the OECD countries, 

Indonesian students appeared to perform worse than the OECD average. Table 1 shows that more boys 

than girls in Indonesia had mathematics scores below the mean. The students with higher belief that 

growth mindset can improve their abilities over time had much larger mathematics mean scores than 

those with less belief.  

The range of students ESCS variable was between -5.78 and 2.97 where its mean score was -1.40 

and standard deviation was 1.11, while the student-to-teacher ratio variable ranged from 1.54 to 100 

where its mean score was 18.19 and standard deviation was 7.46. Although the Pearson´s correlation 

between the students’ ESCS and the mathematics score was low, it showed that the two variables had a 

significant relationship. Also, there was a significant relationship between the student-to-teacher ratio 

and the mathematics score. 

 

Table 1. Gender, Growth Mindset, Student-to-Teacher Ratio, and Mathematics Achievement 

Variable N (%) 
Mean mathematics 

score (SD) 

Percentage of students 

with maths below the means 

Gender 

Boys 

Girls 

 

4,495 (48.88%) 

4,701 (51.12%) 

 

394.85 (80.65) 

404.87 (78.90) 

 

53.26% 

52.80% 

Growth Mindset 

1 

2 

3 

4 

 

1,991 (21.65%) 

4,077 (44.33%) 

2,199 (23.91%) 

929 (10.10%) 

 

380.68 (69.06) 

382.38 (71.76) 

436.30 (81.38) 

432.53 (91.64) 

 

52.59% 

53.50% 

50.52% 

48.65% 

Student ESCS - 0.39 (<0.0001)* - 

Student-to-Teacher 

Ratio 

- 0.05 (<0.0001)* - 

Note: *Pearson´s correlation coefficient (p-value), N(%) represents the total of students in each category 

of the variable, SD represents the standard deviation. 
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Two-Level Multilevel Models 

In this study, the multilevel analysis was developed in a few steps, starting with the most 

straightforward model and gradually moving to a more complex model. The scales variables were 

centered on the grand mean for the purposes of this analysis.  

 

Step 1: Model without Fixed Predictors (MWFP) 

Equation (3) represents the simplest model that considers school effects on the mathematics 

achievement. The multilevel model shown in Equation (3) was estimated and results are shown in the 

first column of Table 2. A significant non-zero grand-mean score in mathematics achievement was 

observed, �̂�00 = 390.63, 𝑝 < 0.001. The level-1 variance component estimate shows the magnitude of 

mathematics achievement score variation across students within a school, �̂�2 = 2,641.25. The variance 

component in the mathematics achievement mean scores across schools was �̂�00 = 3,717.04. The 

estimated ICC can be obtained by substituting these two-variance component estimates in the following 

equation: 

𝐼𝐶�̂� = �̂�00 (�̂�00 + �̂�2)⁄ = 3,717.04 (3,717.04 + 2,641.25)⁄ = 0.58. 

The ICC estimate showed that 58% of the mathematics achievement variance occurred across 

schools. The average number of students per school in the PISA 2018 Indonesian dataset was  𝑛𝑐 = 

9,196/308 = 29.86. The design effect estimate is computed by: 

  𝐷𝑒𝑠𝑖𝑔𝑛 𝐸𝑓𝑓𝑒𝑐𝑡̂ = 1 + (𝑛𝑐 − 1)𝐼𝐶�̂� = 1 + (29.86 − 1)(0.58) = 17.74.  

The ICC estimate of 58% (>0%) and the design effect estimate of 17.74 (>2) indicate the clear need for 

multilevel modelling of mathematics achievement data. 

 

Step 2: Adding Student-Level Predictor to Model (Level 1: Fixed) 

The multilevel model shown in Equation (8) was estimated and results are shown in the second 

column of Table 2. Results again showed a significantly non-zero mean score in mathematics 

achievement (�̂�00 = 392.23, 𝑝 < 0.001). All of the level-1 predictors included in the model were found 

to be statistically significant predictors of students’ achievement in mathematics where it was 

moderately significant for the gender effect (�̂�10 = −1.89, 𝑝 < 0.10). More specifically, boys had 

underperformed in mathematics compared with girls. The first regression slope indicates that 

mathematics achievement increases in growth mindset associated with approximately an eight-point 

increase in achievement, on average (�̂�20 = 8.43, 𝑝 < 0.001). Meanwhile, the second regression slope 

shows that about a three-point increase in mathematics achievement on average was associated with an 

increase in students’ ESCS (�̂�30 = 3.07, 𝑝 < 0.001). By including all these level-1 predictors in the 

multilevel model, the between-school variance component (𝜏00) considerably decreased from 3,717.04 

to 3,308.57. This suggests that much of the variance between schools was attributable to the students’ 

background and growth mindset. The variance within schools also declined from 2,641.25 to 2,589.72. 
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As the level-two variance component was about 11% explained by the student-level variables in this 

model, it was also important to find the predictor at the school level. MWFP denotes the model without 

fixed predictors (equation 3); level-1: fixed denotes the random intercept model with the fixed level-1 

predictors (equation 8), level-1 & 2: fixed denotes the random intercept model with fixed level-1 and 2 

predictors (equation 11), and level-2 denotes the random slope model with fixed level-1 and 2 predictors 

and random level-2 predictor (Equation 13). 

 

Table 2. Model Summaries of Several Multilevel Models 

Parameters MWFP Level-1: fixed 
Level-1 & 2: 

fixed 

Level-2: 

random 

Regression coefficients (fixed effects)    

Intercept (𝛾00) 
390.63 

(3.54)*** 

392.23 

(3.39)*** 
393.42 (3.38)*** 

393.77 

(3.42)*** 

Gender (male) - -1.89 (1.12)• -1.85 (1.12) • -1.85 (1.12) • 

Growth Mindset - 8.43 (0.62)*** 8.43 (0.62)*** 8.43 (0.62)*** 

Student ESCS - 3.07 (0.63)*** 3.07 (0.63)*** 3.07 (0.63)*** 

Student-to-Teacher 

Ratio 
- 

- 
1.08 (0.38)** 1.29 (0.42)** 

     

Variance components (random effects)    

Residual (𝜎2) 
2,641.25 

(39.62) 

2,589.72 

(38.85) 
2,589.57 (38.85) 

2,589.62 

(38.85) 

Intercept (𝜏00) 
3,717.04 

(310.70) 

3,308.57 

(277.48) 

3,236.68 

(272.10) 

3,257.23 

(302.21) 

Slope (𝜏11) - - - 0.21  

Correlation (𝜏01) - - - 0.56  

     

Information criteria     

AIC 99,669.55 99,458.94 99,453.04 99,456.36 

BIC 99,690.93 99,501.69 99,502.92 99,520.49 

Parameter estimate and standard errors listed in parentheses.  

*** 𝑝 < 0.001, ** 𝑝 < 0.01, * 𝑝 < 0.05, •𝑝 < 0.10 

 

Step 3: Adding School-Level Predictor to Model (Level 1 and 2: Fixed) 

Having analyzed the variables at the student level and finding that there was still a lot of 

unexplained variation at the school level, the next step was to determine whether the student-to-teacher 

ratio could explain the remaining variation between schools. The results of implementing the multilevel 
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analysis given in Equation (11) shows that the student-to-teacher ratio was found to be a statistically 

significant predictor of the mathematics achievement with the estimated coefficient (�̂�40 = 1.08, 𝑝 <

0.01) which is about three times its standard error (SE=0.38). Results again showed a significantly non-

zero mean score in mathematics achievement (�̂�00 = 393.42, 𝑝 < 0.001) whereas all of the level-1 

predictors were found to be statistically significant predictors of students’ mathematics achievement 

except for gender. The positive value of the coefficient suggests that there was a large score in 

mathematics achievement among the students who study at schools with high numbers of STR. The 

inclusion of the STR variable in the model resulted in a slight reduction in the between-school variance 

from 3,308.57 to 3,236.68, indicating that about 2 percent of the between-school difference in 

mathematics achievement was explained by the school’s mean STR attended by students, whereas a 

small decrease 2,589.72 to 2,589.57 was seen in the variation within schools. 

In Equation (11), the level-2 predictor was assumed as a fixed effect. Moreover, Equation (13) 

allows the impact of STR on mathematics achievement to vary from one school to another. The 

multilevel model shown in Equation (13) was estimated and results are shown in the fourth column of 

Table 2. The STR is statistically significant related to the mathematics achievement (�̂�40 = 1.29, 𝑝 <

0.01). The variation across schools is due to the impact of STR on the mathematics achievement (�̂�11) 

is 0.21, suggesting that the coefficient does not differ too much between schools. The unexplained 

variation at level 2 increased slightly from 3,236.68 to 3,257.23, as well as the unexplained variation at 

level 1 from 2,589.57 to 2,589.62. The interaction between gender and growth mindset was tested but 

not shown in the method section and found to have no significant effect on mathematics achievement 

(𝑝 = 0.13). This means that the growth mindset is the same for both boys and girls.  

Comparing across models, the multilevel model in Equation (11) is selected as the best model as 

it has the lowest AIC (AIC = 99,453.04) in comparison with the other three models. Although, the BIC 

of the multilevel model in Equation (11) is similar to model in Equation (8), the significant coefficient 

of STR suggests that this variable should be included in the model. The final estimated model is given 

as follows, 

𝑀𝑎𝑡ℎ̂𝑖𝑗 = 393.42 − 1.85𝑀𝑎𝑙𝑒𝑖𝑗 + 8.43𝐺𝑟𝑜𝑤𝑡ℎ𝑖𝑗 + 3.07𝐸𝑆𝐶𝑆𝑖𝑗 + 1.08𝑆𝑇𝑅𝑗 + 𝑈0𝑗 

with the two variance components of �̂�00 = 3,236.68, �̂�2 = 2,589.57.  It is important to remember that 

the last three independent variables are mean centered.  
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       (a)                                                                                 (b) 

Figure 1. (a) The observed student growth mindset versus mathematics achievement at the averages of 

students’ ESCS and STR for each gender along with the two regression lines, (b) The student growth 

mindset versus predicted mathematics achievement at the averages of students’ ESCS and STR for 

each gender 

 

Figure 1(a) shows a significant increase in mathematics achievement as students’ growth mindset 

increased. Fitting two levels multilevel model in Equation (11) without grand mean centering yields 

Figure 1(b). Figure 1(b) suggests that the mathematics achievement scores increase as the students’ 

growth mindset increases, where girls perform better than boys. 

The MWFP (Equation 3) suggested that about 58% of the variance was attributed to differences 

between school and 42% to differences within school. The final multilevel (Equation 11) model reveals 

that girls in Indonesia outperformed boys in mathematics achievement. This finding is supported by  

previous research which found that girls had scored 10 points higher than boys in mathematics 

achievement based on the 2015 Trends in International Mathematics and Science Study (TIMSS) 

(Luschei, 2017). The significance of gender to the students’ mathematics achievement was also revealed 

in previous PISA 2012 result (Pakpahan, 2016).  

The findings of this study suggested that growth mindset, students’ ESCS and STR are important 

factors to predict the mathematics achievement. This is in line with what Dweck and Yeager (2019) 

proposed, namely that believing in our effort is a positive thing that can help us grow instead of a 

negative thing that leads to deficient ability. More specifically, the finding of positive relationship 

between the growth mindset and mathematics achievement is in line with the result from Boaler et al. 

(2018). They found that students with higher growth mindset showed that their mathematical perceptions 
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improved as the subject became more interesting and seen a creative subject.  

The finding on how the increased students’ ESCS yields higher mathematics achievement is in 

accordance with the previous studies from Incikabi et al. (2012), Thien and Ong (2015) as well as Cheng 

and Hsu (2016).  This result suggests that when discussing about mathematics achievement, social 

economic status should be addressed. This situation can lead to the inequality in mathematics 

achievement between the students’ higher and lower socioeconomic status.   

The finding on how the increased STR yields higher mathematics achievement is contrary to the 

finding of Koc and Celik (2015) which pointed out that cities in Turkey with greater number of students 

per teacher tend to have a lower achievement. This result can be explained by the fact that highly 

successful schools in Indonesia tend to have higher student-to-teacher ratio as they have more students 

with relatively similar numbers of teachers compared to other schools. For example, a highly successful 

school can have 1,560 students with 58 teachers, compared to a non-highly successful school with 400 

students and 30 teachers. 

The predictors of student-level and school-level in the final model contributed to a decrease in 

the unexplained variation between schools. More specifically, the final equation model explained the 

13% of the unexplained variance at the school-level. The student-level variables especially student 

growth mindset, made a great contribution to the decrease of the level-two unexplained variance 

components besides the school-level variable of STR.  

In contrast with the PISA 2015 which focused on mathematics ability, the main focus of PISA 

2018 was reading ability. As a consequence, the recent PISA test does not accommodate many specific 

variables related to mathematics. To obtain more information, we could sum up the results of two 

consecutive PISA tests as follows. In the student level, factors that contribute to their achievement in 

mathematics are growth mindset, gender, students’ social-economic status, mathematics self-efficacy, 

attitudes toward learning outcomes, anxiety, mathematics self-concept, mathematics behavior (Thien et 

al., 2015), and students’ sense of belonging toward mathematics (Kartianom & Ndayizeye, 2017). In the 

school level, the student-to-teacher ratio, average of socio-economic status (Kartianom & Ndayizeye, 

2017), average students’ sense-of-belonging, average openness to problem-solving, and average 

mathematics efficacy (Thien et al., 2015) affects the student performance in mathematics. To confirm 

the significance of these factors to student performance, an assessment at the national level should be 

conducted. Otherwise, we may wait until the next PISA is held with a focus on mathematical ability. 

It is also important to note that the PISA test in Indonesia was done on various school levels. A 

large sample has been taken from two provinces, namely DKI Jakarta and DI Yogyakarta so that the 

result from these areas can be compared to the result from other areas in Indonesia as well as other 

countries (Avvisati et al., 2019). For future research, more variables can be analyzed, with special 

attention to the differences between Indonesian provinces. 

This study implies that growth mindset can be considered as important part of policy making 

especially in Indonesia. As Indonesian students achieve lower in Mathematics than other students in 
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other countries, growth mindset can be used for increasing the score, as well as to be more competitive 

students. Two policies can be considered for government and universities, such as providing a large-

scale intervention for increasing and maintaining growth mindset among students, and providing a 

curriculum design which includes growth mindset as a part of teaching mathematics. The former can be 

done by recommending these results to the government institution called the Center for the Development 

and Empowerment of Educators and Education Personnel for Mathematics to include this insight for 

teaching mathematics through their regular training program for mathematics teachers. The program can 

be quite short, done online and scalable as conducted by Yeager et al. (2019) in the United States.  The 

latter can be recommended on the online sharing platform managed by government to share how 

important growth mindset in predicting mathematics achievement, especially among Indonesian 

students. By sharing this insight, teachers can understand the role of growth mindset in teaching 

mathematics and apply that into the classroom settings.  These two recommendations can at least give a 

shine on how to increase mathematics achievement. Besides those, government should consider how 

important socio-economic status and school condition for predicting students’ mathematics 

achievement. However, other factors that affect the low performance in mathematics should be 

addressed at the national level in order to increase the mathematics ability of the students. Even though 

the results of our study are not conclusive, some of the factors that influence the low performance on 

mathematics in the PISA 2018 test can be considered for the policy makers in education of the country 

to start fixing this complex problem, if we want to produce literate people that can help in fully 

participating in the society.   

 

CONCLUSIONS 

Programme for International Students Assessment (PISA) is a large-scale assessment in 

mathematics, science, and reading ability for students in various countries. The PISA 2018 showed that 

Indonesian students exhibited low performance in mathematics. A multilevel analysis shows that several 

student-level factors contributed significantly to this result, namely gender, growth mindset, as well as 

students’ economic and socio-cultural status (ESCS). Girls outperform boys in mathematics 

achievement. As the student growth mindset increases, so does the students’ mathematics achievement, 

as well as the students’ ESCS. At the school level, we found that a higher student-to-teacher ratio is 

related to higher students’ mathematical performance. In sum, students’ mathematics achievement 

should be seen within the context of psychological, social and school factors, instead of merely about 

teaching mathematics. Further research is needed to grasp the effect of other variables, as well as 

comparing the results between schools in different provinces in Indonesia. Even then, these results can 

help policy makers in education of Indonesia to address this problem for the present and future 

development of the society. 
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