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Abstract  

When students solve an algebra problem, students try to deduce the facts in the problem. This step is imperative, 

students can draw conclusions from the facts and devise a plan to solve the problem. Drawing conclusions from 

facts is called reasoning. Some kinds of reasoning are deductive, inductive, and abductive. This article explores 

the characteristics of some types of abductive reasoning used by mathematics education students in problem-

solving related to using facts on the problems. Fifty-eight students were asked to solve an algebra problem. It 

was found that the student’s solutions could be grouped into four types of abductive reasoning. From each group, 

one student was interviewed to have more details on the types. First, the creative conjectures type, the students 

can solve the problems and develop new ideas related to the problems; second, fact optimization type,  the 

students make conjecture of the answer, then confirm it by deductive reasoning; third, factual error type, students 

use facts outside of the problems to solve it, but the facts are wrong; and fourth,  mistaken fact type, the students 

assume the questionable thing as a given fact. Therefore, teachers should encourage the students to use creative 

conjectures and fact optimization when learning mathematics. 

Keywords: Characteristics, Abductive reasoning, Algebra problems 

Abstrak 

Ketika mahasiswa menyelesaikan masalah aljabar, mahasiswa berusaha untuk menyimpulkan fakta-fakta yang 

terdapat pada masalah. Langkah ini sangat penting karena mahasiswa dapat menarik kesimpulan dari fakta-fakta 

dan merancang rencana untuk menyelesaikan masalah. Penarikan kesimpulan dari fakta-fakta disebut penalaran. 

Beberapa jenis penalaran di antaranya adalah penalaran deduktif, induktif dan abduktif. Artikel ini 

mendiskusikan karakteristik dari beberapa tipe penalaran abduktif yang digunakan oleh mahasiswa pendidikan 

matematika dalam penyelesaian masalah yang dikaitkan dengan penggunaan fakta pada masalah. Lima puluh 

delapan mahasiswa diminta untuk menyelesaikan masalah aljabar. Ditemukan bahwa jawaban mahasiswa dapat 

dikelompokkan ke dalam empat tipe penalaran abduktif. Dari masing-masing kelompok, diambil satu mahasiswa 

untuk diwawancara dengan tujuan mendapatkan penjelasan yang lebih detil dari masing-masing tipe tersebut. 

Empat tipe tersebut dapat dijelaskan sebagai berikut, pertama, tipe kreatif konjektur, mahasiswa dapat 

menyelesaikan masalah dan mengembangkan ide baru yang berkaitan dengan masalah; kedua, tipe optimalisasi 

fakta, mahasiswa membuat konjektur tentang jawaban masalah, kemudian mengonfirmasi konjektur dengan 

melakukan penalaran deduktif; ketiga, tipe fakta salah, mahasiswa mengambil fakta di luar soal untuk 

menyelesaikan masalah, namun fakta yang diambil salah; dan keempat, tipe kesalahan fakta, mahasiswa 

menganggap hal yang ditanyakan pada soal sebagai  fakta yang diberikan.  Oleh karena itu, dosen seharusnya 

mendorong mahasiswa untuk menggunakan kreatif konjektur dan optimalisasi fakta ketika mempelajari 

matematika. 
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Problem-solving has been regarded as an essential domain in the teaching and learning of mathematics, 

though it takes several requirements to understand the process of doing problem-solving. In recent 

years, several studies have been carried out to explore the essence of problem-solving in mathematics 

learning (Gurat, 2018; Jäder et al., 2019; Chew et al., 2019; Reiss & Törner, 2007; Ekawati et al., 2019). 

For instance, Gurat (2018) discussed problem-solving strategies in teacher-student interaction, and  
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Reiss and Törner (2007) investigated cognitive psychologists influencing students to solve mathematics 

problems in a classroom. A recent report also informed that problem-solving learning must be supported 

by the availability of books (Jäder et al., 2019).  

Based on our classroom observations, some students encountered difficulties in problem-solving 

activities. Their inability may be caused by the complexities of making conclusions of the given facts 

in the problem-solving. Students’ failure in problem-solving shows that the importance of problem-

solving has not been well-taught in mathematics learning.  

One of the prominent factors that can support problem-solving in practice is reasoning. Therefore, 

NCTM (2000) emphasizes the importance of reasoning and evidence as fundamental aspects of 

mathematics learning. Theoretically, the reasoning is defined as the process of drawing conclusions 

(Leighton & Sternberg, 2003; Sternberg & Sternberg, 2012). Reasoning and evidence are needed in 

building up a reasonable argument to prove the truth of a statement.  

Reasoning in mathematics learning has been found to be varied such as quantitative reasoning 

(Moore, 2014), covariational reasoning (Subanji & Supratman, 2015), proportional reasoning (Im & 

Jitendra, 2020), analogy reasoning (Lailiyah, et al., 2018), algebra reasoning (Otten et al., 2019), and 

many more. The nature of mathematical thinking serves as a character in reasoning. In this research, 

one aspect of thinking in mathematics learning that is drawing a conclusion from an abductive 

perspective is discussed. In particular, the term abductive reasoning is used in this paper.  

Abductive reasoning is closely related to human lives in the form of conjecture that is made based 

on some facts. Abductive reasoning is also widely explored in several fields, such as in medical 

diagnosis (Alirezaie & Loutfi, 2014; Aliseda, 2006), computer and programing (Dong et al., 2015; Ma 

et al., 2008), and critical thinking-related activities (O’Reilly, 2016).  

In the context of mathematics learning, abductive reasoning is adopted to improve discovery 

making and develop students’ creative reasoning (Ferguson, 2019). Other researchers have developed 

a learning model by using abductive reasoning and drawing the conclusion process to generate 

conjectures in geometry (Baccaglini-Frank, 2019), explore the effect of learning with abductive-

deductive reasoning (Shodikin, 2017), and facilitate students’ inquiries in calculus (Park & Lee, 2016). 

The importance of abductive reasoning in problem-solving is discussed further by Cifarelli (2016). 

Abductive reasoning is another type of reasoning, besides deductive and inductive reasoning 

(Peirce, 1958). Deductive reasoning is defined as the process of reasoning from general principles to 

particular cases (Cohen & Stemmer, 2007). It involves reasoning from one or more general statements 

that are known to a specific case of the general statement. In contrast, deductive reasoning involves 

reaching conclusions from a set of conditional propositions or a syllogistic pair of premises (Sternberg 

& Sternberg, 2012).  

Inductive reasoning is the process of reasoning from specific facts or observations to reach a 

conclusion that may explain the facts (Johnson-Laird, 1999).  Inductive reasoning is a type of reasoning 

which takes a conclusion as approximate as possible because it is derived from a method of inference 
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that generally leads to the truth in the long run (Peirce, 1958). Although we cannot reach logically 

certain conclusions through inductive reasoning, we can still at least reach highly probable conclusions 

through careful reasoning (Sternberg & Sternberg, 2012). 

Abductive reasoning is defined as the process of forming an explanatory hypothesis from an 

observation that requires an explanation. Abductive reasoning is started from the facts, uses any 

particular theory in view, and it is motived by the feeling that a theory is needed to explain the surprising 

facts. Abductive reasoning is a data-driven process and also dependent on the knowledge domain. This 

process is not algorithmic, which is less on its logical form and an act of insight, although it is extremely 

fallible insight (Peirce, 1958). Abductive reasoning is often portrayed as explanatory reasoning that 

leads back from facts to a proposed explanation of those facts (Seel, 2012). 

Deductive, inductive, and abductive reasoning plays an important role together in scientific 

inquiry to find new knowledge (Bellucci, 2018; Moscoso & Palacios, 2019; Peirce, 1958; Shodikin, 

2017). Abduction plays a role as the track from facts towards ideas and theories, while induction is the 

path from concepts and theories towards facts, and deductive plays a role to prove a theory.  

Students can form inferences using abductive reasoning when given facts in the problem-solving 

activities. The inference is indeed unnecessary and logically correct, so it needs to be investigated for 

its truth by using deductive reasoning. According to some experts, abductive reasoning proposes a 

plausible conclusion, inductive reasoning proposes a probable conclusion, and deductive 

reasoning produces a certain conclusion (Hwang et al., 2019; Mirabile & Douven, 2020; Moscoso & 

Palacios, 2019; Peirce, 1958). From this explanation, it appears that what plays a role in the forming of 

knowledge, ideas, or new ideas is abductive reasoning. We need abductive reasoning if we wish to 

“learn anything” new (Niiniluoto, 2018), and abductive reasoning can produce a piece of new 

knowledge (Rapanta, 2018). 

We will understand abductive reasoning through an example of deductive, inductive, and 

abductive reasoning. The following is an example of deductive, inductive, and abductive reasoning 

made by Peirce (1958). The examples contain some facts and inferences.  The example of deductive 

reasoning is: “Suppose there is a bag that only contains red marbles, and you take one (as facts). You 

can conclude that the marble is red.” From the example, “there is a bag that only contains red marbles” 

is a general fact, and “we take one marble” is a fact. The conclusion, that is, “the marble has taken is 

red”, is a particular case. In the example, we conclude by modus ponens rule. Thus, the drawing 

conclusion is valid by deductive reasoning. We can use modus tollens, syllogism or another rule to draw 

conclusions provided such that the argument is valid. The following is an example of inductive 

reasoning: “Suppose there is a bag on the table, but you don't know the color of the marbles in the bag. 

You take one by one marble, and it's red. You may infer that all the marbles in the bag are red.” From 

the example of inductive reasoning, the proposition, “We take one marble from a bag” is a fact, and 

“It’s red” is a specific fact. If we take one by one marble from a bag, although we do not take all 
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marbles in the bag, we can conclude that all marbles in the bag are red. Even though the drawing 

conclusion by inductive is not mathematically valid but sometimes inductive reasoning used in science.   

The example of abductive reasoning is: “Suppose there is a bag on the table. All marbles in the 

bag are red, and you find a red marble around a bag. You can conclude that the red marble is from the 

bag.” From the example above, “All marbles in the bag are red”, and “you find a red marble around 

a bag” is some facts. The conclusion “the red marble is from the bag” could serve as part of an 

explanation for the fact. The conclusion “the red marble is from the bag” may be true or false. We must 

find explanations so that we get the conclusion which true. Finding explaining hypotheses is one of the 

most challenging creative tasks (Preyer & Mans, 1999). 

Thus, we can draw a conclusion based on some facts. In problem-solving, some facts can be 

founded from the problems. If people who do a reason think that something is true, then something is 

called a fact (Ferrando, 2006).  It means that a matter is considered a fact or not depends on each 

individual as a problem solver. Some students can find a fact easily, but others cannot. Therefore, it is 

fascinating to explore the students’ abductive reasoning in making conclusions based on the use of the 

fact. 

Fact is a piece of information that can be found in a problem. Something is called fact if people 

think that something is true. From some facts, we can draw a conclusion. By abductive reasoning, the 

conclusion is stated as a conjecture. A conjecture is a logical statement, but its truth has not been 

confirmed (Cañadas & Castro, 2007). A conjecture can play a role as a "hypothesis," which is an idea 

suggested as a possible explanation for a particular situation or condition and as a "fact-conjecture" that 

is the final answer to a problem or solution to specific steps of the settlement process. Facts and 

conjectures can be expressed in the statement form (Ferrando, 2006). In a problem-solving process, we 

can make a conjecture many times. 

Conclusions by using deductive reasoning are valid because their arguments form a tautology. In 

contrast, abductive reasoning produces findings that are 'not always true' so that further clarification is 

needed to check the truth of the conclusions. Therefore, abductive reasoning can arise an opportunity 

to explore new ideas that are indispensable for the development of knowledge in overcoming problems. 

One exciting part of abductive reasoning is it can produce new knowledge for someone who has a 

reason. The new knowledge in mathematics can be in the form of a new concept or unique nature 

(Gonzalez & Haselager, 2005; Niiniluoto, 2018). 

Several studies have been carried out to investigate abductive reasoning enacted by students in 

high school algebra contexts. These studies have informed that generalization processes figural patterns 

in algebra (Rivera, 2013; Rivera, 2010; Rivera & Becker, 2007).  While research of abductive reasoning 

in high school contexts has been widely explored, little attention has been directed to uncovering 

abductive reasoning enacted by university students majoring in mathematics education. Thereby, to fill 

such a void, the present study was designed to explore some types of abductive reasoning employed by 

mathematics education students in higher education contexts to solve algebra problems related to using 
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facts on the problems. During the enactment of this study, the students were taking algebra courses. 

Some of the topics were Group Theory, as in Gallian (2016). Thus, this study was set specifically on 

algebra for undergraduate students, which discerned the Group Theory.  

 

METHOD  

The participants in this study were 58 second-year students of a public university based in 

Malang, East Java, Indonesia. On 12 March  2020, they were asked to solve algebra problems. Their 

solutions were included in four groups based on abductive reasoning of using facts. Furthermore, to 

explore the characteristics of each group, we carried out task-based interviews with one student from 

each group. Thus, there were four students to be interviewed. They were chosen because (1) they fulfill 

the indicators of abductive reasoning of using facts, (2) they have good communication skills, and (3) 

they are willing to participate in the study. 

To observe the process of students’ abductive reasoning and record the interviews, an observation 

sheet was employed. It consists of one open-ended question that allows students to do reasoning in the 

problem-solving process. The instruments have been tested for validity and reliability before it was 

used. Content validation of questions and interview sheets was conducted by two mathematics experts 

and two education experts. The item of the validity of the instrument included the eligibility of the item 

test, the truth of concept, multiple interpretations, and appropriate instructions to do abductive 

reasoning.  The algebra problems provided several facts, and the participants were asked to check 

whether a property is true or not based on the fact. The problem can be seen in Figure 1. 

 

Suppose ℤ8 is a set of the integers modulo 8 under multiplication. 

If ∀𝑎, 𝑏, 𝑐 ∈ ℤ8, 𝑎𝑐 = 𝑏𝑐, is 𝑎 = 𝑏?  Please give some reasons for your answer 

 

Figure 1. Algebra Problem to Observe Students’ Abductive Reasoning  

 

To analyze the data, first, we administered a problem to the students, and we sorted it based on 

participants’ reasoning when doing the problem-solving process. Their solution can be grouped into 

four groups based on abductive reasoning related to using facts. From each group, one student was 

observed in-depth related to the reasoning aspect. The triangulation process was done to verify the data 

collected from the interview. The triangulation was also carried out to confirm the finding from the 

students’ answers. We code students as S and researchers as R. Finally, we summarized abductive 

reasoning from four students in solving the problem.  

 

RESULTS AND DISCUSSION  

From four groups with different kinds of answers, the first group involves one student who can 

bring up new conjecture beyond the questions related to the problems. The second group that involves 

twenty students use facts that are “true” outside the problem to solve the problem. The third group that 
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involves twelve students, use facts that are “false” outside the problem to solve the problem. The fourth 

group that involves twenty-five students assume the questionable thing as a given fact. To know deeply 

how students’ reasoning is, the following are the results of the interview with the four students, namely 

Student 1 (S1), Student 2 (S2), Student 3 (S3), and Student 4 (S4). 

 

Abductive Reasoning in Problem Solving Process of S1 

S1 has written down all the facts in the problem. It means that S1 understands what is given and 

what has to be found in the problem. From the student sheet, it was found that S1 also wrote, as seen in 

Figure 2. 

 

 

Translate Version 

ℤ8, 𝑥8 → not a group but symmetrical      

(abelian?) 

 

Figure 2. Conjecture by S1 

 

From the results of the interview with S1, she made the conjecture that built based on Table 

Cayley made by S1. Following interviews with S1. 

 

R : Why do you write question mark “?” in a sentence "ℤ8, 𝑥8 → not a group but 

symmetrical (abelian?)” 

S1 : Because I am not sure about my answer, ma'am 

R : What part are you not sure? 

S1 : On the symmetric (she means abelian) 
 

S1 makes a conjecture that “ℤ8 is not a group under multiplication” but she still doubts the 

commutative property under multiplication. S1 arranges a table of a multiplication modulo 8 to persuade 

her conjecture. So, by abductive reasoning, S1 makes a conjecture and explains it based Cayley Table 

(Thagard & Shelley, 1997). Although a commutative property in ℤ8  is not used in problem-solving, 

but a commutative property is appeared as part of the abductive reasoning process to find new ideas of 

S1. 

The action taken by S1 by making a multiplication table to convince the conjecture is appropriate 

that the activity of deciding conclusions obtained from feeling, seeing, and hearing, is useful when used 

to build a conjecture (Farah, 1988; Ferrando, 2006) and pictures (in this case the modulo 8 

multiplication table) can be made in a creative way to explain the conjecture (Finke & Slayton, 1988). 

The making conclusion by abductive reasoning of S1 can be described as follows. 

(Fact)  The set ℤ8  with multiplication modulo 8 

   multiplication table modulo 8 of ℤ8   

          ∴   ℤ8  is not a group but ℤ8  is symmetric (it’s mean abelian) 
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The fact, " multiplication modulo 8 table of ℤ8 " is not clearly stated in the question, but S1 raised 

it to help to solve algebra problems. The conjecture stated in the statement "ℤ8  is not a group but 

symmetrical (abelian?)" is a temporary conclusion that decided from the facts. It means that at that time, 

S1 made a conclusion that was not based on deductive or inductive reasoning. The conclusion made by 

S1 is something new. We can see that abductive reasoning can build a new idea (Eco, 1984; Moscoso 

& Palacios, 2019; Niiniluoto, 2018; Peirce, 1958). The next step taken by S1 is writing the statement as 

shown in Figure 3. 

 

 

Translate Version 

According to the Cayley Table, ℤ8,×8 is 

not a group, so it is not an abelian group, 

that applies 𝑎𝑐 = 𝑏𝑐 ↔ 𝑎𝑐 = 𝑐𝑎 if  𝑎 =

𝑏. So 𝑎𝑐 =  𝑏𝑐, 𝑎 =  𝑏  does not hold 

∀𝑎, 𝑏, 𝑐 ∈ ℤ8 meaning 𝑎 ≠ 𝑏 ". 

 

Figure 3.  Abductive Statement and Its Explanation 

 

S1 concluded that “ ∀𝑎, 𝑏, 𝑐 ∈ ℤ8, 𝑎𝑐 = 𝑏𝑐 but 𝑎 ≠ 𝑏 " based on the Cayley Table. So actually 

S1 understands that to show that the statement is false, she must make one counterexample such as 𝑎 =

4 and 𝑐 = 3, 𝑎𝑐 = 4. From the interviews, it was seen that to get 𝑏 ∈ ℤ8, S1 used trial and error as seen 

in the following interview. 

 

R 

 

S1 

: 

 

: 

Why are 𝑎, 𝑏, 𝑐  in ℤ8? try to check again, is the sentence "If 𝑎𝑐 =  𝑏𝑐 for any 

𝑎, 𝑏, 𝑐 ∈ ℤ8, then 𝑎 ≠ 𝑏 " true? 

I was trying like this, can I, ma'am? I take 𝑎 =  4 and 𝑐 =  3, 𝑎𝑐 =  4, 

Because 𝑎𝑐 =  𝑏𝑐, 𝑏𝑐 =  4. Because 𝑐 =  3, then the possible is b= 4. So 𝑎 =  𝑏  
 

The drawing conclusion by abductive reasoning of S1 can be described as follows. 

(Fact)  (ℤ8, 𝑥8) not a group → (ℤ8, 𝑥8) is not an abelian group anyway  

   𝑎𝑐 = 𝑏𝑐 ↔ 𝑎𝑐 = 𝑐𝑎 𝑗𝑖𝑘𝑎 𝑎 = 𝑏. 

         ∴  𝑎𝑐 =  𝑏𝑐 →  𝑎 =  𝑏 is not held. 

 

The drawing conclusion made by S1 is not deductive nor inductive. However, the conclusion 

decided is true that " 𝑎𝑐 = 𝑏𝑐 →  𝑎 = 𝑏 is not held". It should be ∃𝑎, 𝑏, 𝑐 ∈ ℤ8 with 𝑎𝑐 =  𝑏𝑐 but 𝑎 ≠

𝑏. 

From this step, the problem should have been answered even though the answer to S1 was not 

complete because there was still a slight error, but in fact, S1 continued the answer also though the 
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problem did not ask it. S1 had a desire to find another set with the multiplication of modulo 8 so that it 

applies "𝑎𝑐 = 𝑏𝑐 →   𝑎 = 𝑏". The statement that appears is "if you discard some elements of  ℤ8 that 

causes ℤ8 is failed to become a group then a new set, that is 𝑈(8) will become group under 

multiplication modulo 8”. A set 𝑈(8) is a set of all positive integers less than 8 and relatively prime to 

8. So, proposition  ∀𝑎, 𝑏, 𝑐 ∈ 𝑈(8), 𝑎𝑐 = 𝑏𝑐 → 𝑎 = 𝑏 is true, as shown in Figure 4. 

 

 

Translate Version 

 

If we discard element that causes Ζ8 

fails to be group, be U(8), then will be 

applied ac=bc, a=b because U(8) is a 

group and Abelian group. 

 

Figure 4. New Ideas by S1 

 

S1 finds new ideas, conception, and knowledge. This is consistent with Niiniluoto (2018) that 

abductive reasoning is done when we are learning new things (Niiniluoto, 2018). It was also stated that 

abductive reasoning is bringing up new ideas that are tentative and related to the context being discussed 

(Duarte, 2019; O’Reilly, 2016; Tomiyama et al., 2010). 

 

Abductive Reasoning in Problem Solving Process of  S2 

S2 can solve problems very precisely. They are using all the facts inside the problems and 

knowing that asking about it. The student uses facts that “true” outside the problems to solve the 

problems, that is, a set ℤ8   is not group under multiplication modulo 8. Students in this group made 

appropriate conjectures. The conjecture is "∀𝑎, 𝑏, 𝑐 ∈ ℤ8    if 𝑎𝑐 = 𝑏𝑐, then 𝑎 = 𝑏 is false." The action 

taken by students of this type is finding out "∀𝑎, 𝑏, 𝑐 ∈ ℤ8   who fulfills 𝑎𝑐 = 𝑏𝑐, but 𝑎 ≠ 𝑏. This action 

is very appropriate for solving problems. 

 

Abductive Reasoning in Problem Solving Process of S3  

S3 has written down all the facts contained in the problem. It means S3 understands what given 

and what has to be found in the problem. This is seen in the answer sheet in Figure 5. 
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Translate Version 

Suppose  that a set ℤ𝟖  under multiplication 

modulo 8. For arbitrary 𝒂, 𝒃, 𝒄 ∈ ℤ𝟖 if 𝒂𝒄 =

𝒃c, is 𝒂 = 𝒃 ? Explain your answer! 

Information: (ℤ𝟖, x) 

Question: ∀𝑎, 𝑏, 𝑐 ∈ ℤ8  If 𝑎𝑐 = 𝑏𝑐, is 𝑎 = 𝑏? 

Answer:  

∀𝑎, 𝑏, 𝑐 ∈ ℤ𝟖  

• 𝑎𝑐 = 𝑏𝑐 

• acc−1 = acc−1 

• ae = be → 𝑎 = 𝑏 

 

Figure 5. Answer of S3 

 

After S3 understood the problem, S3 made the conjecture that is "if 𝑎𝑐 =  𝑏𝑐 then 𝑎 =  𝑏 is 

true" by doing the reasoning as in the interview below. 

 

R : Why did you write the words "inverse" on the answer sheet? Do you feel a statement “if 

𝑎𝑐 = 𝑏𝑐, then 𝑎 = 𝑏” is true? 

S3 : Because the two right and left sides have the same element of ℤ8, namely c, Ma’am. 
 

The making conclusion by abductive reasoning of S3 can be described as follows. 

(Fact) ℤ8 with modulo multiplication 8 

∀𝑎, 𝑏, 𝑐 ∈ ℤ8, 𝑎𝑐 = 𝑏𝑐 

Inverse multiplication on ℤ8 

∴ 𝑎𝑐 = 𝑏𝑐 → 𝑎 = 𝑏 

 

S3 performed abductive reasoning by use inverse element concept to the fact, even though there 

are elements ℤ8  that does not have an inverse. Thus, S3 added the wrong concept to the facts. From the 

set of facts chosen by S3, the conjecture is written in the statement form  “𝑎𝑐 = 𝑏𝑐 → 𝑎 = 𝑏.” The 

making conclusion by abductive reasoning of S3 can be described as follows. 

(Fact)  ∀𝑎, 𝑏, 𝑐 ∈ ℤ8, 𝑎𝑐 = 𝑏𝑐 

𝑎𝑐𝑐−1 = 𝑏𝑐𝑐−1 

∴ 𝑎 = 𝑏 

 

The conclusion decided by S3 appears to be valid because it used deductive reasoning, but due 

to the addition of the fact that there is an inverse of c in ℤ8, the conclusion 𝑎 = 𝑏 is false.  
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Abductive Reasoning in Problem Solving Process of S4 

S4 has written all the facts contained in the problem by writing "ℤ𝟖 = {0̅, 1̅, 2̅, 3̅, 4̅, 5̅, 6̅, 7̅}, will 

be proven if 𝑎𝑐 =  𝑏𝑐 whether 𝑎 =  𝑏". This is seen in the answer sheet in Figure 6. 

 

 

Translate Version 

(ℤ8,×), for a, b, c ∈  ℤ8 

If 𝑎𝑐 = 𝑏𝑐, is 𝑎 = 𝑏? 

Answer: 

ℤ8 =  {0̅, 1̅, 2̅, 3̅, 4̅, 5, 6̅, 7̅} will be proved if 

ac = bc, is a = b ? 

If  a = 2, b = 3, c = 4, a, b, c ∈  ℤ8  that 

ac = bc, so that  

𝑎𝑐 =  𝑏𝑐 

(2.4) 𝑚𝑜𝑑 8  ?  (3.4) 𝑚𝑜𝑑 8 

8 𝑚𝑜𝑑 8    ?    12 𝑚𝑜𝑑 8 ↔  0 ≠ 4 

 

Figure 6.  Answer of S4 

 

After S4 understood the problem by writing down what is known and asked, then S4 plan to solve 

the problem by making a conjecture that is if 𝑎𝑐 =  𝑏𝑐, then 𝑎 =  𝑏 is true as seen from the following 

interview. 

 

R : Why did you immediately take a = 2, b = 3, c = 4, a, b, c ∈  ℤ𝟖? 

S4 

 

: So, first, I look for an element  of ℤ𝟖 then to prove the statement, I take any a, b, c, 

elements of  ℤ𝟖, because in the problem it is known "if 𝑎𝑐 =  𝑏𝑐 𝑡ℎ𝑒𝑛 𝑎 =  𝑏," then I 

want to prove whether if  𝑎, 𝑏, 𝑐 are different, then  𝑎𝑐 ≠ bc 

In my answer, I give a "question mark" because I still want to prove whether ac = bc 

and it was found that 𝑎𝑐 ≠  𝑏𝑐. 

R : Which statement do you want to prove?  

S4 : The statement "if ac = bc then a = ba" 

R : Oh yes ... So, is that statement true or not? 

S4 : True, Ma'am 
 

So, S4 made the conjecture and statement that "if ac = bc then a = b" is true for the following reasons 

(as in the interview). 
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R : Does that mean you guess that statement is correct? Why? 

S4 : Yes Ma'am 

Because of the property of multiplication Ma'am 

R : Could you explain it? 

S4 : If 𝑎𝑐 =  𝑏𝑐, then 𝑎 =  𝑏. So if I multiply two same numbers to each side, then the 

result will be the same. 

Take any 𝑎, 𝑏, 𝑐 member of ℤ𝟖 where 𝑎 =  𝑏 is consequently 𝑎𝑐 =  𝑏𝑐 

a =  b =  3, c =  2 

ac   ?     bc 

(3x2) mod 8       ?   (3 ×  2) mod 8 

6 mod 8   ?     6 mod 8 

6 =  6 

So, it is proven that if 𝑎𝑐 =  𝑏𝑐, then 𝑎 =  𝑏 

 

From the answer of S 4 and interview with S4, the following conclusions can be analyzed  

(Fact)  ℤ8 = {0̅, 1̅, 2̅, 3̅, 4̅, 5̅, 6̅, 7̅} 

Properties of multiplication is that if 𝑎 =  𝑏 then 𝑎𝑐 =  𝑏𝑐 

∴      if ac =  bc then a =  b 

 

The using reasoning in here is not deductive or inductive but abductive, which is following Peirce's 

abductive theory (Niiniluoto, 2018; Peirce, 1958). After making the conjecture, S4 finds 𝑎, 𝑏, 𝑐 so 𝑎𝑐 =

 𝑏𝑐 results in 𝑎 =  𝑏 seen in Figure 7. 

 

 

Translate Version 

ac =  bc 

(2.4)mod 8     ?    (3.4) mod 8 

     8 mod 8     ?        12 mod 8 

0 ≠ 4 

 

Figure 7. Answer the Problem of S4 

 

From the answer of S4, it shows that the conjecture carried out when understanding the problem 

makes the problem-solving plan wrong. When teachers already know their mistakes, it will be easy to 

correct students’ mistakes. 

The analysis of data in this study documented four types of abductive reasoning based on using 

the facts of the problem, such as creative conjecture type, the fact optimization type, the factual error 

type, and the mistaken fact type. Explanation about the characteristics of each type is displayed in Table 

1. 
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Table 1. Characteristics of Students in Abductive Reasoning 

Types of Abductive 

Reasoning based 

on Using The Fact 

Description of Characteristic 

First Type: 

Creative Conjecture  

• using all the facts inside the problem to solve the problem  

• knowing what the questions are asking about, 

• using facts that "true" outside the problem to solve the problem 

• Making a conjecture from facts by writing or describing or 

sketching to design problem-solving 

• writing a new conjecture outside the question on the problem 

related to the question 

Second Type :  

Fact Optimization  

• using all the facts inside the problem to solve the problem  

• knowing what the questions are asking about, 

• using facts that “true” outside the problem to solve the problem 

Third Type:  

Factual Error 

• using all the facts inside the problem to solve the problem  

• knowing what the questions are asking about, 

• using all the fact to solve the problem 

• using facts that “false” outside the problem to solve the problem 

Fourth Type :  

Mistaken Fact 

• not using the facts inside the problem to solve the problem  

• not knowing what the questions are asking about, 

• assuming the questionable thing as a given fact  

 

The uniqueness of the student with "creative conjectures," is writing a new conjecture. The new 

conjecture is outside the question on the problem related to the question. The fact optimization students 

solved problems by using all the facts inside the problem, know what the questions are asking about, 

and using facts that “true” outside the problem to solve the problem knowledge that is not written in the 

problem (i.e ℤ𝟖 is not a group). Because other knowledge taken is the right knowledge and all the facts 

are known, then the conclusion of the facts is right, so that the planning of the solution is also right.  

In the group with "factual error", they used all the facts. When they made a conjecture, this group 

added other knowledge, that is not contained in the problem, that is the inverse of element concept. The 

concept that taken is false because not all elements in ℤ𝟖 have a multiplicative inverse. Adding error 

facts to the problem will be the product of a false conjecture so that the planning of the problem is 

wrong. 

In the group with "Mistaken Fact," The students concluded 𝒂 =  𝒃 by using the questionable 

thing as a given fact. The answer is indeed wrong, but it is interesting to analyze because many students 

do it.  

 

CONCLUSION  

This study captures the types of abductive reasoning enacted by students in solving algebra 

problems related to using facts on the problems. The results showcased some types such as creative 

conjectures type, fact optimization type, factual error type, and mistaken fact type. In the creative 
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conjecture type, the students can solve the problem, but they were unsatisfied with the solution. The 

students develop new ideas related to the questions carried out using abductive reasoning. In fact 

optimization type, students make conjectures about the answers to problems, then confirm the 

conjectures by making deductive reasoning. In the factual error types, students add facts outside of the 

problem to help them solve the problem, but the facts taken are incorrect, leading to the wrong 

conclusion. In the mistaken fact type, students assume that the question is a true value so that it is 

appointed as a fact. As a result, the actions taken to make conclusions are also wrong.  

The creative conjectures type and the fact optimization type are very useful in the problem-

solving process. Therefore, teachers should encourage students to use creative conjectures and fact 

optimization when learning mathematics. Abductive reasoning can encourage students to find new 

knowledge. Meanwhile, abductive reasoning can also lead students to make mistakes in the conclusion. 

By knowing the types of abductive reasoning of the students in solving algebra problems, attentive 

actions can be taken to correct the errors made and can also provide more activities for student learning 

so that new knowledge continues to emerge.  

This study of abductive reasoning was carried out on mathematics education students, who, at 

the time of this study enactment, learn both mathematics and pedagogy materials for teaching and 

learning. The results may be slightly different if it is carried out on students who enroll in the pure 

mathematics program. Therefore, future investigation is encouraged to examine the abductive reasoning 

of students in the non-educational programs. 
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