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Abstract 

The conceptual and procedural understanding of the derivative remains a persistent challenge in undergraduate 
engineering education, particularly in bridging symbolic, graphical, and applied interpretations. Despite advances 
in digital tools, few instructional designs systematically integrate interactive exploration with formal mathematical 
reasoning. This study addresses this gap by proposing an instructional framework that combines functional 
modeling with GeoGebra-based simulations, grounded in the Ontosemiotic Approach to Mathematical Knowledge 
and Instruction (OSA), specifically targeting first-year engineering students in Chile. A mixed exploratory–
descriptive design was implemented, combining quantitative and qualitative analyses. A three-session 
intervention involved 102 students who engaged in tasks assessing derivative understanding across multiple 
representations, including graphical slopes, symbolic differentiation, and applied rate-of-change problems. Data 
were collected via performance questionnaires and written productions, with validity ensured through expert 
review and reliability confirmed via pilot testing. Students exhibited strong proficiency in graphical interpretation 
and procedural manipulation of derivatives, with success rates exceeding 85%. Conversely, tasks requiring formal 
argumentation, rigorous use of limit definitions, and theoretical justification showed reduced performance at 68%, 
highlighting the challenge of connecting exploratory simulations with formal mathematical reasoning. The findings 
demonstrate that integrating functional dependency analysis, interactive simulations, and OSA principles can 
strengthen comprehension of derivatives, particularly in geometric interpretations and formal rate-of-change 
reasoning. This research provides a replicable instructional design that enhances both conceptual insight and 
procedural competence, offering evidence-based strategies for technology-enhanced mathematics instruction in 
engineering curricula and contributing to broader curriculum development. 

Keywords: Derivative, Instructional Process, Interactive Simulation, Mathematical Modelling, Ontosemiotic Approach 

How to Cite: Galindo Illanes, M. K., Chamorro Manríquez, D., Breda, A., & Sala-Sebastià, G. (2025). Instructional 
process for the construction of the derivative function: Modelling and simulation in GeoGebra from the Ontosemiotic 
Approach. Journal on Mathematics Education, 16(3), 1001-1022. http://doi.org/10.22342/jme.v16i3.pp1001-1022   

 

The teaching of calculus remains a persistent challenge in engineering programs worldwide, with high 

failure rates, limited conceptual understanding, and an overreliance on procedural algebraic techniques 

being well-documented (Galindo Illanes et al., 2022). In many instructional contexts, teaching continues 

to follow a transmissive model, privileging the unidirectional delivery of content and providing limited 

opportunities to connect mathematical concepts with students’ prior experiences or professional practice 

scenarios. The integration of Learning and Knowledge Technologies (LKT) is therefore particularly 
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relevant, as these tools enable the exploration of mathematical objects across multiple semiotic 

registers—graphical, symbolic, tabular, and geometric—facilitating representational transitions and 

supporting deeper conceptual learning (López & Hernández, 2016; Aguilera et al., 2017). Beyond their 

instrumental value, LKTs serve as strategic didactic resources: they create opportunities to rethink not 

only how calculus is taught, but also why it is taught, positioning instructors as active mediators between 

mathematical meanings and professional applications, while simultaneously generating empirical 

evidence on how students construct such meanings. 

The construction of the derivative concept requires the coordinated articulation of several 

interconnected mathematical objects—including slope, rate of change, tangent, limit, and continuity—

across diverse representational registers. This integration constitutes a significant cognitive demand for 

students and reflects the complexity of derivative-related tasks (Galindo Illanes & Breda, 2023). However, 

dominant pedagogical practices often privilege algebraic-symbolic manipulation, leaving graphical and 

conceptual interpretations underemphasized, despite their importance for a comprehensive 

understanding of the derivative (Galindo Illanes & Breda, 2024; Galindo Illanes et al., 2025). The literature 

thus reveals a persistent gap: although many studies have documented students’ difficulties with 

derivative concepts, far fewer have developed, implemented, and systematically evaluated replicable 

instructional processes that combine mathematical modeling, digital simulations, and robust theoretical 

frameworks such as the Ontosemiotic Approach to Mathematical Knowledge and Instruction (OSA). 

The present study is framed within the Ontosemiotic Approach (Godino et al., 2007; 2019; Godino, 

2024), which provides a powerful lens for examining the diversity of mathematical meanings associated with 

objects such as the derivative and for identifying the didactic configurations that promote their emergence in 

instructional settings. In particular, tasks involving tangents are treated as pivotal contexts for introducing the 

derivative, as they allow for a coordinated use of geometric, visual, and symbolic representations. 

Accordingly, the main objective of this study is to analyze the impact of an instructional process—

designed under the OSA, grounded in functional modeling, and supported by interactive GeoGebra 

simulations—on engineering students’ construction of the derivative concept. Specifically, the study 

addresses two research questions: (1) How does this process foster the construction of meanings of the 

derivative, particularly its geometric interpretation as a slope or rate of change? and (2) What strengths 

and difficulties do students display when engaging with tasks centered on the tangent problem field? The 

instructional design aims to promote the progressive construction of the derivative concept by 

encouraging students to discover mathematical patterns, articulate multiple representations, and connect 

empirical exploration with formal definitions. 

This research makes a scientific contribution by going beyond the mere description of a teaching 

experience: it proposes, implements, and rigorously evaluates a replicable instructional design capable 

of addressing well-documented challenges in calculus education. Its relevance extends internationally, 

as difficulties in teaching and learning the derivative are not restricted to the Chilean context but are 

reported globally. The novelty of this study lies in its explicit integration of the OSA, mathematical 

modeling, and interactive GeoGebra simulations within a coherent and replicable design—an approach 

that remains underexplored in the literature. 

Finally, four conceptual and methodological pillars provide coherence and innovation to the study: (1) 

the Ontosemiotic Approach as a theoretical and analytical framework, (2) the integration of Learning and 

Knowledge Technologies as mediators of representational transitions, (3) the use of mathematical modeling 

as a core instructional strategy, and (4) the incorporation of interactive simulations as a means of supporting 

exploration and meaning-making. These elements are grounded in prior empirical work demonstrating their 
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effectiveness in calculus instruction, and together they offer a comprehensive and theoretically informed 

proposal for re-signifying the teaching and learning of differential calculus in engineering education. 

The Ontosemiotic Approach to Mathematical Knowledge and Instruction 

This study is framed within the Ontosemiotic Approach to Mathematical Knowledge and Instruction 

(OSA), which offers a robust conceptual and methodological foundation for analyzing and designing 

teaching–learning processes in differential calculus, particularly within professional training contexts. This 

perspective is especially relevant for engineering programs, as it facilitates the articulation of 

mathematical meanings with professional practices, promoting a deeper, more situated, and functionally 

meaningful comprehension of calculus concepts. 

In what follows, the three axes that structure the theoretical foundations of this study are 

developed: the fundamental principles of the OSA, its contributions to didactical design and analysis, and 

its specific implications for the teaching of differential calculus.  

Fundaments of the OSA 

Developed by Godino et al. (2020b; 2024), the OSA interprets mathematical knowledge as a socially 

constructed system mediated by norms, tools, and contexts. It integrates ontological dimensions (the nature 

of mathematical objects and practices) with semiotic dimensions (the representation, communication, and 

validation of knowledge) (Godino, 2024). Its integrative character establishes a dialogue with semiotics, 

constructivism, and activity theory, emphasizing that mathematical objects are polysemic entities whose 

meanings vary across contexts and purposes (Godino et al., 2024; Godino, 2022). 

A central construct of the approach is the epistemic configuration, which encompasses the 

practices, representations, and normative systems associated with a particular mathematical object. This 

construct provides a lens for analyzing what is taught, how it is taught, and for what instructional purpose 

(Godino, 2016; Godino et al., 2020a). The OSA adopts a critical and situated stance: rather than offering 

prescriptive formulas, it promotes context-sensitive understandings, an especially relevant perspective 

for engineering education where mathematical knowledge must be connected to professional practices 

(Godino, 2013; Godino et al., 2020b). 

Methodologically, the OSA contributes categories such as learning trajectories, semiotic conflicts, 

and didactical suitability that support both research and instructional decision-making (Godino et al., 

2021). In this study, the OSA is used not only as a theoretical lens but also as a methodological guide for 

examining how students and teachers construct meanings around the derivative. 

Design and Didactic Analysis in the OSA 

The OSA informs didactical design by providing a framework for planning and evaluating instruction while 

accounting for multiple dimensions of learning. It goes beyond descriptive analysis, guiding evidence-

based interventions concerning content selection, instructional strategies, and assessment practices 

(Godino, 2024). From this perspective, instructional design involves identifying the meanings to be 

constructed, the practices to be activated, and the resources that will mediate learning, articulating 

epistemic, cognitive, affective, interactional, and mediational dimensions (Godino et al., 2007).  

Previous research has demonstrated how OSA-based analyses allow the reconstruction of 

learning trajectories and the identification of semiotic conflicts and conceptual difficulties, highlighting the 

role of technology in meaning construction (Gusmão & Font, 2022; Godino et al., 2020b). Furthermore, 

Ontosemiotic reference models have been successfully developed for topics such as proportionality, 

supporting curriculum design and instructional planning (Burgos & Godino, 2020; Burgos et al., 2020). 
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The OSA thus assumes an integrative stance between objectivist and constructivist views, positioning 

the teacher as an active mediator who supports students’ progressive construction of mathematical 

meanings (Godino & Burgos, 2020; Godino et al., 2019). In this article, these conceptual tools are applied 

to analyze the teaching of the derivative in engineering programs, identifying discrepancies between 

intended and constructed meanings and informing the design of a contextualized instructional sequence. 

Didactics of Calculus with the OSA  

The OSA has been extensively used to study fundamental concepts of calculus—such as limit, function, 

derivative, and integral—emphasizing the multiplicity of meanings that emerge around these objects. For 

example, Burgos et al. (2021) examined the semiotic complexity of the definite integral, Verón and 

Giacomone (2021) investigated the meanings of the differential, and Araya et al. (2021) proposed criteria 

for designing limit-related tasks. Other contributions include analyses of algebraic objects (Sepúlveda-

Delgado et al., 2021) and studies of the function within the Chilean curriculum (Pino-Fan et al., 2019). 

In the domain of differential calculus for engineering, recent research has emphasized the 

integration of LKTs, simulations, and contextualized modeling (Galindo Illanes et al., 2022; Galindo 

Illanes & Breda, 2023; 2024; Galindo Illanes et al., 2023; 2025). These studies range from curriculum 

reviews to detailed characterizations of problem subfields related to the derivative, underscoring the need 

to connect mathematical content with authentic professional situations. 

In summary, the OSA provides a coherent theoretical–methodological framework for analyzing, 

designing, and transforming calculus instruction from a critical, situated perspective. Its constructs—

Ontosemiotic configurations, didactical suitability criteria, and teachers’ didactical–mathematical knowledge—

serve as guiding principles in the development of the instructional process proposed in this study, ensuring 

theoretical coherence and practical relevance in the teaching of derivatives in engineering contexts. 

Learning and Knowledge Technologies as Semiotic Mediators 

In contemporary higher education—particularly in mathematics teaching and initial teacher training—LKT have 

assumed a central role in pedagogical innovation. Beyond their instrumental function, these technologies are 

now conceptualized as semiotic mediators that enable new forms of mathematical representation, exploration, 

and meaning construction. This perspective is especially pertinent in differential calculus, where the high level 

of abstraction frequently poses obstacles to students’ conceptual understanding. 

Research has consistently shown that a deliberate and reflective integration of LKT can transform 

teaching practices in ways that make learning more dynamic, contextualized, and student-centered. 

Alarcón et al. (2019) highlight that the strategic use of these tools reconfigures the teacher’s role from 

transmitter of knowledge to facilitator of meaningful processes. Similarly, Valarezo and Santos (2019) 

emphasize that early exposure to LKT in teacher preparation contributes to the development of 

pedagogical practices that are responsive to evolving educational contexts. Illescas et al. (2024) stress 

that the true potential of these technologies lies not in the tools themselves, but in instructors’ abili ty to 

transform them into powerful learning environments. 

Recent developments such as artificial intelligence (AI) and augmented reality (AR) exemplify the 

evolving potential of LKT. For instance, Torres-Peña et al. (2024) report improvements in students’ 

problem-solving accuracy and motivation when virtual assistants such as ChatGPT and Wolfram Alpha 

were incorporated into calculus instruction. Similarly, Rahman et al. (2024) developed an AR-based 

application for teaching solids of revolution, observing gains in academic performance and collaborative 

engagement. These findings underscore that, when implemented within a coherent didactic plan, LKT 
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enriches differential calculus instruction by promoting visual, interactive, and professionally relevant 

approaches that support the development of mathematical meaning.  

Mathematical Modeling as a Pedagogical Strategy 

In recent years, mathematical modeling has gained prominence as a powerful pedagogical strategy for 

connecting calculus concepts with situations drawn from professional engineering practice. Rather than 

being reduced to the routine application of formulas, modeling invites students to mobilize mathematical 

knowledge in authentic contexts, requiring them to interpret, represent, and solve real-world problems 

(Ledezma, 2024; Ledezma et al., 2023). In this way, calculus instruction transcends rote algorithmic practice 

and becomes an avenue for promoting critical thinking and bridging the gap between theory and application. 

Scholars such as Kaiser et al. (2015) have emphasized the potential of modeling to foster general 

competencies, including analytical reasoning, intellectual autonomy, and a structured understanding of 

mathematical concepts. These claims are corroborated by Spooner (2023), who examined instructional 

experiences involving modeling projects in differential equations courses, reporting gains in both conceptual 

comprehension and student motivation. Similarly, Rezaei and Asghary (2024) compared traditional 

instruction with a modeling-based approach and found that students engaged in modeling not only achieved 

higher academic performance but also developed stronger competencies for addressing practical problems. 

Other studies underscore the motivational and creative dimensions of modeling. Winkel (2023) 

argues that presenting students with carefully designed real-world challenges facilitates the appropriation 

of complex mathematical ideas, such as those involved in differential equations. Weinhandl and Lavicza 

(2021) further highlight that modeling encourages mathematical creativity, particularly when paired with 

digital technologies and collaborative learning, allowing students to generate original and flexible 

mathematical solutions that extend beyond purely technical applications. 

In sum, mathematical modeling is not merely a didactic technique but a distinctive paradigm for 

teaching calculus. It seeks to prepare students to use mathematical knowledge as a tool for 

understanding and transforming their environment. Within engineering education, this approach is 

particularly relevant, as it enables the design of instructional experiences that connect classroom 

mathematics with the demands, constraints, and complexity of professional practice.  

Interactive Simulation as a Didactic Resource 

Interactive simulations have emerged as a central strategy for rendering abstract concepts in differential 

calculus more tangible and accessible. Dynamic software such as GeoGebra allows students to 

manipulate mathematical objects in real time—exploring limits, slopes, and derivatives—thus fostering 

hypothesis testing, conjecture formation, and the development of metacognitive strategies (Colquepisco-

Paucar, 2019; Del Río, 2020; Guilcapi et al., 2019). Empirical evidence confirms their effectiveness: Kado 

(2021) observed both improved performance and more positive attitudes among students using 

GeoGebra compared to traditional approaches, while Zagoto et al. (2025) reported increased 

participation and conceptual understanding linked to its visual and interactive affordances. 

Structured implementations have also been positively evaluated. Bedada and Machaba (2022) 

found that more than 70% of students valued a teaching cycle incorporating GeoGebra, citing increased 

motivation and comprehension of complex content. The use of such tools also promotes a shift in 

teachers’ roles, positioning them as facilitators of active knowledge exploration (Mora-Casasola, 2023). 

Nevertheless, sustainable implementation requires adequate teacher training, infrastructure, and 

institutional support (Ardina et al., 2025; Breda et al., 2021).  
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Finally, in this study, interactive simulation is integrated with the OSA, LKT, and mathematical 

modeling to form a coherent instructional design. This integration is intended to enhance students’ 

conceptual understanding of the derivative, support the transition between semiotic registers, and 

promote a deeper engagement with mathematical meaning-making processes.  

METHODS  

This study employed a mixed exploratory–descriptive design (Creswell & Plano Clark, 2018), combining 

quantitative and qualitative techniques to capture both the frequency of correct responses and the meanings 

underlying students’ reasoning. The design was particularly suited to exploring how students construct and 

articulate mathematical knowledge when engaging with modeling tasks and interactive simulations. 

Study Context and Participants 

The research was conducted at a Chilean university with a full cohort of 102 first-year Industrial Civil 

Engineering students enrolled in a calculus course. The sample was selected by convenience, 

corresponding to the class assigned to the principal investigator. Participants were between 18 and 19 

years old; 62% identified as male and 38% as female. None had previously used GeoGebra in formal 

settings, although 15% reported informal familiarity. To ensure reliability, two researchers independently 

coded students’ responses using categories from the OSA, achieving 85% inter-rater agreement. 

Discrepancies were resolved through discussion and consensus. 

Study Phases 

The research was structured into four phases summarized in Table 1. 

Table 1. Study phases and description of activities 

Phases Description 

Phase 1. Instructional design Construction of a teaching sequence based on modeling and 

GeoGebra simulations, grounded in the Ontosemiotic Approach. 

Definition of tasks, development of instruments, and validation through 

expert judgment. 

Phase 2. Implementation Application of the sequence in three consecutive sessions with a first-

year Industrial Civil Engineering class (n = 102). 

Phase 3. Data collection Administration of performance questionnaires, collection of written 

productions, and classroom observations. 

Phase 4. Data analysis Descriptive processing of frequencies and qualitative categorization of 

responses, articulating both approaches to identify strengths and 

difficulties. 
 

Instructional Design and Didactic Proposal 

The instructional intervention was designed around three core elements that guided the development of 

students’ understanding of the derivative function. 

1. Field of the problem: The proposal focused on the problem field of tangents (PT), as characterized 

by Galindo Illanes et al. (2025), to promote the conceptual construction of the derivative through 

tasks involving secant and tangent lines. 

2. Epistemic configurations: The design incorporated three epistemic configurations—manipulative, 
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computational, and algebraic—previously validated in Galindo Illanes and Breda (2024), to ensure 

a progressive transition from exploratory manipulation to formal symbolic representation. 

3. Synchronous work: The learning trajectory was implemented during regular face-to-face class 

sessions, emphasizing collaborative interaction and real-time feedback to consolidate students’ 

conceptual development. 

Development of the Teaching 

The study plan of the calculus subject is of a total duration of 18 weeks. Each week is structured in four 

chronological hours dedicated to theoretical classes, called lectures, and two additional hours assigned 

to practical and collaborative activities in a workshop modality. 

The teaching of the derivative function was organized into one week-long unit, distributed in 3 

synchronic sessions of 120 minutes each. These sessions were carried out in the habitual schedule 

assigned to lectures and workshops. In the planning of this unit, problems about tangents (PT) were 

incorporated, which served as a basis to deal with the process of the construction of the derivative 

function. The distribution of these six sessions is detailed in Table 2. 

Table 2. Temporalization and task planning 

Session 
Didactic 
Action 

Objective Representations 
Epistemic 

Configurations 

1 (Lecture) Activity 1 
Task 1 

Introduce the derivative via its geometric 
interpretation using secant lines. 

Graphic, tabular, 
descriptive 

Computational 

2 (Workshop) Activity 2 
Task 2 

Connect the derivative at a point with the 
derivative function. 

Tabular, graphic, 
symbolic, descriptive 

Computational, 
algebraic 

3 (Lecture) Activity 3 
Task 3 

Generalize the derivative function and 
explore contextual applications (rates of 
change, optimization). 

Graphic, symbolic, 
descriptive 

Computational, 
algebraic, 
manipulative 

 

The purpose of session 1, with a duration of 120 minutes, was for students to explore the notion 

of the derivative in one point starting the approximation through secant lines. For this, tabular activities 

were developed oriented towards the calculation of slopes of secant lines close to a point of interest in 

the analyzed function. The session concluded with an interactive simulation in GeoGebra as shown in 

Figure 1, from which the conclusion was drawn that the derivative in a point corresponds to the slope of 

the tangent line at that point. 

 

Activity 1 (Session 1): Exploring the concept of the derivative through the secant line. 
Instructions: 
Use your telephone to scan the following QR code or access the following link 
https://www.geogebra.org/m/pPAJ6Zf8  

 
1. Observe the graph of a function f together with two points 𝑃 and 𝑄 that belong to the curve. 

2. Utilize the slider “a” to displace point 𝑃 and bring it progressively closer to point 𝑄. 
3. Pay attention to how the slope of the secant line that joins the points 𝑃 and 𝑄 varies. 
4. Note your observations and answer the following questions:  

https://www.geogebra.org/m/pPAJ6Zf8
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Guide questions:  

(a) How does the slope of the secant line change when point 𝑃 moves close to point 𝑄? 
(b) How can you interpret the limit value of this slope? 

(c) What happens with the secant line when 𝑃 coincides with 𝑄? What name would you give this line? 

 

Figure 1. Image of Activity 1: Exploring the concept of the derivative through the secant line 

Figure 2 depicts the graph of a function 𝑓 together with a point 𝑄 on the curve and its corresponding tangent 

line 𝐿𝑇. This visual representation is intended to support students’ conceptual transition from the secant line, 

examined in the previous session, to the formal notion of the tangent line as the limiting position of secants when 

the interval between two points tends to zero. The tangent line 𝐿𝑇 is shown as touching the curve at 𝑄 and 

providing the best local linear approximation of 𝑓 at that point, without intersecting the curve in its immediate 

neighborhood. This activity is designed to prompt students to identify the tangent line as a unique mathematical 

object associated with the function at 𝑄, to interpret its slope as the instantaneous rate of change of 𝑓, and to 

articulate the relationship between the curve and its tangent as a predictor of the function’s local behavior. By 

engaging in observation and guided discussion, students consolidate their geometric intuition of tangency, laying 

a foundation for the symbolic computation of derivatives and the generalization to the derivative function that 

follows in subsequent sessions. 

Activity 2 (Session 2): Analysis of the tangent line of a curve 

Observe the following image, which presents a graph of a function 𝑓 at a point 𝑄 belonging to that 

curve, and the tangent line 𝐿𝑇 at 𝑓 at the point 𝑄. 

 

Figure 2. Image of Activity 2: Analysis of the tangent line of a curve 

The objective of the third session, with a duration of 120 minutes, was to facilitate the transition 

from the derivative at one point to the construction of the derivative function. Given that in the previous 

sessions the students had dealt with the calculation of slopes of secant lines and had explored the 

geometric meaning of the derivative at one point, it was expected that they would be in condition to 

deduce the symbolic expression of 𝑓′(𝑥) without greater difficulties (Galindo Illanes et al., 2022). For 

this, activities were proposed in which, starting from the known function 𝑓(𝑥), the function that represents 

the slopes of the tangent lines was built, i.e., the derivative function 𝑓′(𝑥) (Font, 2005). This process 

was developed through the use of an interactive simulation with GeoGebra illustrated in Figure 3. The 

session finalized with a first approximation to the applications of the derivative, showing examples of 

contextualized problems like the determination of rates of change, or the optimization of functions, with 
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the aim of showing the usefulness of the derivative function in the resolution of real problems from the 

area of engineering. 

 

Activity 3 (Session 3): Exploring the derivative function through interactive simulation. 
 

Instructions:  
Utilize your mobile device to scan the following QR code  

 
Or access the applet directly through the link: https://www.geogebra.org/m/x9wkcztt      
Once inside GeoGebra: 
 

(a) Slide the point Q along the blue curve. Observe how a new graph is simultaneously generated in the 
lower part. 

(b) Analyze how the slope of the tangent line at point Q varies and how this value represents the new curve 
being constructed in parallel. 

(c) In your own words, explain the meaning of the derivative function. What does each point in the resulting 
curve represent? How is it related to the original function? 
 

Figure 3. Image of Activity 3: Exploring the derivative function through interactive simulation 

Data Collection Instruments 

To analyze student learning, a performance questionnaire was designed consisting of five contextualized 

tasks. Content validity was reviewed by three experts in mathematics education, who verified the 

relevance of the statements and their coherence with the study objectives. Internal reliability was tested 

through a pilot application with 18 students from a parallel course, yielding a Cronbach’s alpha coefficient 

of 0.81, which is considered adequate for exploratory purposes. 

In addition, informed consent was obtained from all participants, and approval was granted by the 

institutional ethics committee, ensuring confidentiality and the academic use of the data. For reasons of 

space, this section includes only two representative tasks of that instrument. The instrument applied in 

the first week allowed us to collect information about the specialized knowledge of the student with 

respect to the concept of the tangent, as it considered the transit from an intuitive or implicit use of its 

properties towards a conscious and grounded application. In this process, it is expected that the student 

will be able to explain the conceptual scheme of the tangent line and articulate it with the geometric 

interpretation of the derivative in one point, in such a way as to be able to adequately argue their answer 

to the problem.  

In this activity, students were presented with the resolution of a contextualized problem as shown 

in Figure 4 that required the use of the derivative as the main tool in the analysis. To begin, it was 

expected that the students would obtain the derivative function, be it through the exploration of an 

interactive applet of GeoGebra or using the formal definition of the derivative from the concept of the limit. 

The derivative function they should obtain is the following:  𝑓′(𝑥) = 0.3𝑥2 − 1.8𝑥 + 2. Additionally, 

they had to interpret that the derivative 𝑓′(𝑥) represents the instantaneous slope of the ramp in each 

point x of the defined domain. 

https://www.geogebra.org/m/x9wkcztt
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That is to say, it measures how much the height of the ramp changes for each meter it advances 

horizontally. In a civil engineering context, this slope is crucial for evaluating the inclination of a piece of 

land or structure, for determining risk zones where the slope is very pronounced (for example, greater 

than 15%), and for designing technical solutions, such as automatic braking systems, signage, and other 

safety measures. 

 

Task 2: Designing a ramp with a controlled slope 

Context: 
In an industrial plant an access ramp is being designed to transport materials via automatized carts. 

The height of the ramp in function of the horizontal distance covered is given by the function: 

𝑓(𝑥) = 0.1𝑥3 − 0.9𝑥2 + 2𝑥, con 1.5 ≤ 𝑥 ≤ 4 

where 𝑥 represents the horizontal distance (in meters) and 𝑓(𝑥) the height of the ramp (in meters). 

Objective: 
To determine the exact slope of the ramp at a critical design point and obtain the equation of the 
tangent line, which will permit the installation of safety sensors in zones of maximum inclination. 

Instructions 

(a) Calculate the derivative of the function 𝑓(𝑥). Interpret its meaning in this context. 

(b) Determine 𝑓′(2). What interpretation does this value have? 

(c) Find the equation of the line tangent to the curve 𝑓(𝑥) at the point where 𝑥 = 2. 
(d) Represent graphically in GeoGebra or Desmos the function 𝑓(𝑥), the point 𝑃(2, 𝑓(2)), and the 
tangent line found. 
(e) Reflect: In some contexts of road or industrial engineering, a slope is considered a risk if it exceeds 
10%, and, in many cases, it is recommended to implement automatic braking systems if the slope is 
greater than 15%. 
Based on the value for the slope you obtained in point 𝑃(2, 𝑓(2)), do you consider it to be necessary 
to incorporate an additional safety system in this section of the ramp? Justify your answer considering 
the risks an elevated slope implies in terms of load or structural safety. 
 

Figure 4. Image of Task 2: Designing a ramp with controlled slope 

 In the following stage, the students had to interpret that the slope of the function at a point indicates 

how fast and in which direction the height of the ramp changes with respect to the horizontal distance. 

Then, the students had to evaluate the slope of the ramp at 𝑥 = 2 that corresponds to the value of the 

derivative of the function at that point, as previously calculated in the activity: 𝑓′(2) = 0.3(2)2 −

1.8(2) + 2 = −0.4, which means that at point 𝑥 = 2, the ramp is descending and the negative slope 

indicates a fall, and the value −0.4 can be interpreted as a decrease of 0.4 meters in height for each 

meter that it advances horizontally. Finally, the students had to calculate the ordinate of the point whose 

abscissa is 𝑥 = 2, for that they evaluate 𝑓(2) = 0.1(2)3 − 0.9(2)2 + 2(2) = 1.2, in order to obtain 

the coordinates of the point at which the tangent line would be drawn. 

In the next stage the students used the form point-slope to obtain the equation of the tangent: 

 

𝑦 − 𝑓(2) = 𝑓′(2)(𝑥 − 2).  
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Thus,  

𝑦 − 1.2 = −0.4(𝑥 − 2) 

Finally, the equation of the line tangent to the curve in 𝑥 = 2 is: 

𝑦 = −0.4𝑥 + 2 

The graph of the situation is now presented in Figure 5. The task finalized with a reflection in relation to 

the context of the problem, remembering that in some problems in industrial or road engineering, a slope 

is considered risky if greater than 10%, and, in many cases, it is recommended to implement automatic 

braking systems if the slope is greater than 15%. 

Based on the value of the slope that you obtained in the point 𝑃(2, 𝑓(2)), do you consider that it 

would be necessary to incorporate additional safety systems in this stretch of the ramp? Justify your 

answer considering the risks a steep slope implies in terms of load or structural safety. 

 

Figure 5. The situation graph of the purposed problem 

In next task presented in Figure 6, the students were given a problem of optimization that required 

the application of the concept of the derivative, using pieces of cardboard of different dimensions as a 

base material. The objective was to construct a box without a lid from a rectangular piece of cardboard 

in such a way as to make its volume maximum. For this, it was expected that the students would formulate 

and resolve the problem following a series of linked steps that reflect the complete mathematical process. 

Initially, the student must identify and define the objective function, which, in this case, 

corresponded to the volume of the box in function an independent variable 𝑥, that represented the 

measurement of the squares that are cut out in the corners of the cardboard to make the box. From this 

general formulation, they had to substitute the specific dimensions of the available material —for 

example, if the cardboard measures 30cm wide by 20cm long, the function is expressed as 𝑉(𝑥) =

(30 − 2𝑥)(20 − 2𝑥)𝑥, which would permit them to establish the concrete function that will be 

optimized. 

Once the function is defined, the student should develop it through algebraic operations, expanding 

the products to obtain an explicit expression of 𝑉(𝑥). In the following, the first derivative of this function 

was calculated, which should be done using the GeoGebra applet seen in class and should obtain 𝑉′(𝑥), 
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with the aim of finding the critical values, i.e., those values of x for which the derivative is zero. The 

resolution of the equation 𝑉′(𝑥) = 0 provides possible candidates for the maximum and minimum 

volume. These values must be evaluated in the original function to determine the critical points. 

 

Task 3: Construction of a box without a lid optimized in its volume 

Context: 
Given a rectangular piece of cardboard of known dimensions (for example, 30 cm × 20 cm), you need 
to construct a box without a lid, cutting equal squares in each corner and folding the sides. How big 

does the cut square need to be for the volume of the box to be maximum? 
 

 
Objective: 

To apply derivatives to resolving problems of optimization in geometric contexts. 
 

Instructions 

(a) Define the variable and express the Volume in function of that variable as, for example:  

𝑉(𝑥) = (𝑙𝑒𝑛𝑔𝑡ℎ − 2𝑥)(𝑤𝑖𝑑𝑡ℎ − 2𝑥)𝑥 
(b) Determine the critical values. 
(c) Determine the relative extremes using the criterion of the first derivative.  
 

Reflect: 
In the context of the packaging industry and considering that the dimensions of products vary, 

what other variables do you consider necessary to optimize and protect the product during packaging? 

Figure 6. Image of Task 3: Construction of a box without a lid with optimal volume 

To establish which of these points provides the maximum volume of the box, the criterion of the 

first derivative was applied: the sign of 𝑉′(𝑥) was analyzed in intervals around each critical value. If the 

derivative were to change from a positive sign to a negative one, the conclusion would be that a local 

maximum was reached, which permits the justification that the volume found is effectively the greatest 

possible under the conditions given. 

Data Analysis 

The analysis followed a mixed-method approach (Johnson & Onwuegbuzie, 2004). Quantitatively, 

descriptive statistics and chi-square tests were used to analyze performance frequencies and compare 

task outcomes. Qualitatively, students correct and incorrect responses were categorized using OSA 

epistemic and cognitive configurations, allowing for the identification of semiotic conflicts and persistent 
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reasoning errors. The integration of both analyses provided a comprehensive characterization of 

students’ understanding of the derivative and their ability to apply it to contextualized problems. 

RESULTS AND DISCUSSION 

Results 

This section reports the outcomes obtained in Tasks 2 and 3, completed by 102 first-year students 

enrolled in the Industrial Civil Engineering program. An exploratory analysis of students’ procedures and 

reasoning is also provided. Table 3 summarizes the results for Task 2, “Designing a ramp with a controlled 

slope,” in which students’ performance was evaluated in relation to mathematical actions associated with 

the primary objects of the OSA. The results reveal generally strong performance. 

A total of 94 % of students successfully represented both the function and its tangent line in a 

digital environment, indicating a robust ability to use technological tools for visualizing mathematical 

objects. Similarly, 90 % correctly calculated the derivative of the function and interpreted it within the 

context of the problem, evidencing an appropriate understanding of the derivative as an instantaneous 

rate of change. Furthermore, 80 % accurately evaluated the slope at 𝑥 = 2 and correctly interpreted its 

meaning, while 76 % were able to derive the equation of the tangent line using the point–slope form. The 

action with the lowest success rate was the formulation of an argued reflection regarding the need for a 

safety system on the ramp (71 %), suggesting a challenge in connecting mathematical results to real-

world decision-making. 

To strengthen the quantitative analysis, chi-square tests of independence were conducted in 

addition to frequency calculations, revealing statistically significant differences (𝑝 < 0.05) between 

procedural–representational actions and those involving argumentative reasoning. 

Table 3. Frequency of accuracy in Task 2 (n=102) 

Actions for Task 2: Designing a 

Ramp with a Controlled Slope 
Primary Objects 

Absolute 

Frequency 

Relative 

Frequency (%) 

Correctly calculate the derivative of 

the function and recognize its 

contextual meaning 

Representation / 

Argument 

92 90 

Correctly evaluate the slope of the 

ramp 𝑥 = 2 and interpret it. 

Representation / 

Argument 

82 80 

Correctly determine the equation of 

the tangent line using the point–

slope form 

Procedure /        

Representation / 

Definition 

78 76 

Adequately represent the function 

and the tangent line in a digital 

environment 

Representation 96 94 

Formulate an argued reflection 

regarding the need for a safety 

system 

Argument 72 71 

 

Table 4 presents the results for Task 3, which required students to model and optimize the volume 

of a box without a lid. This task assessed their ability to formulate functions, apply derivatives, and justify 
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optimization procedures. The results indicate relatively strong performance in the initial modeling steps, 

followed by a decline as tasks required higher levels of formal reasoning and argumentation. Specifically, 

86 % of students correctly modeled the volume function, defined the independent variable appropriately, 

and used the given dimensions of the cardboard, demonstrating a solid understanding of the problem’s 

translation into mathematical language. In subsequent steps, 77 % utilized the GeoGebra applet to 

explore the function graphically and compute its derivative, indicating effective coordination between 

dynamic representations and analytical reasoning. However, accuracy dropped to 68 % when identifying 

critical values, justifying their optimality, and determining the value of 𝑥 that maximizes the volume using 

first- or second-derivative tests. Chi-square tests confirmed that this decline was statistically significant 

(𝑝 < 0.05), highlighting the need to strengthen students’ ability to construct formal mathematical 

arguments. 

Table 4. Frequency of accuracy of Task 3 (n = 102) 

Actions for Task 3: Construction of 

a Box without a Lid Optimized in 

Its Volume 

 

Primary Objects 
Absolute 

Frequency 

Relative 

Frequency (%) 

Correctly models the volume function, 

defining the independent variable and 

using the dimensions of the assigned 

cardboard. 

Procedure 88 86 

Utilizes the simulation applet in 

GeoGebra to determine the derivative 

function (𝑉′(𝑥)) 

Representation 79 77 

Correctly identifies the critical values. Procedure 69 68 

Justifies that the critical values are 

the possible optimums of the function 

volume  

Argument 69 68 

Identifies the value of 𝑥 that allows 

him or her to determine the 

maximum, using criteria of first or 

second derivative 

Definition 69 68 

 

Discussion 

The discussion below synthesizes the findings of this study, reflecting on their implications for the 

proposed teaching design and offering considerations for its refinement and future implementation. 

Furthermore, the results of Task 2 reveal substantial progress in students’ comprehension and application 

of the derivative within a practical context. The very high success rates in the graphical representation of 

the function and its tangent line in a digital environment (94 %) and in the calculation and contextual 

interpretation of the derivative (90 %) suggest that students are not only proficient in carrying out formal 

procedures but are also beginning to establish meaningful connections between algebraic symbolism 

and its applied significance. This finding underscores the pedagogical value of integrating dynamic 

mathematical tools such as GeoGebra, which support visualization and foster an embodied 

understanding of abstract concepts such as the derivative and tangent line. This observation is consistent 

with previous research (Trouche, 2005; Hohenwarter & Preiner, 2007), which highlights the capacity of 



Instructional process for the construction of the derivative function: Modelling and simulation in GeoGebra …                 1015 
 
 

 

digital environments to strengthen functional thinking and promote coordination across multiple semiotic 

representations. 

Nevertheless, a closer examination of actions that demand higher levels of conceptual integration 

and argumentative reasoning—such as deriving the equation of the tangent line (76 %) and formulating 

a reasoned decision about the need for a safety system (71 %)—reveals persistent difficulties. These 

tasks require students to move beyond procedural fluency to articulate mathematically grounded 

judgments that bridge formal results with contextual decision-making. Such challenges have been widely 

reported in the literature as critical points in students’ mathematical development, since they involve 

mobilizing procedural, representational, and argumentative knowledge in an integrated manner (Lithner, 

2017). This underscores the importance of designing learning activities that explicitly incorporate 

argumentation and critical reflection as core objectives, rather than as peripheral tasks. 

A comparable pattern is observed in Task 3, which assessed students’ ability to model and 

optimize the volume of a box without a lid. The high rate of success in constructing the volume function 

(86 %) demonstrates students’ competence in translating a real-world problem into mathematical 

language, representing the essential first step of the modeling cycle. However, accuracy rates decline 

notably when students are required to identify and justify critical values and to determine the value of 𝑥 

that maximizes the volume (68 %). This decline points to persistent gaps in students’ ability to engage 

with definitional knowledge and to apply formal criteria—such as the first- or second-derivative tests—in 

a rigorous manner. Similar trends have been reported in prior studies (Galindo Illanes et al., 2022; Galindo 

Illanes & Breda, 2024), which show that students often exhibit stronger mastery of procedural and 

representational facets of mathematical knowledge while struggling with definitional and argumentative 

dimensions. As noted by Pino-Fan et al. (2019), these difficulties are linked to a lack of systematic 

integration across the different epistemic facets, which limits students’ ability to transfer procedural 

fluency into robust formal reasoning. 

The relatively high use of the GeoGebra applet (77 %) further confirms the mediating role of digital 

tools in supporting students’ representational and exploratory activity. However, in line with Drijvers et al. 

(2009), the findings indicate that the use of technology alone does not ensure deep conceptual 

understanding. Rather, digital tools should be complemented by carefully designed tasks that promote 

theoretical validation, encourage students to verbalize and justify their reasoning, and explicitly connect 

dynamic exploration with formal definitions and theorems. 

Taken together, the findings call for a refinement of the instructional design to better balance 

dynamic exploration, contextualized modeling, and the systematic development of argumentative 

competence. Specifically, future iterations of the teaching sequence should incorporate opportunities for 

students to engage in collective validation of results, confront multiple solution strategies, and explicitly 

connect procedural steps with the underlying theoretical constructs of differential calculus. 

No significant differences were observed by gender, although slight, non-conclusive variations 

were detected between students with higher and lower prior mathematical achievement. This result opens 

promising directions for future studies involving larger samples and more controlled variables, which may 

clarify how prior knowledge interacts with the development of representational and argumentative 

competencies. Furthermore, from the perspective of the OSA, these findings make it possible to identify 

knowledge configurations that are relatively stabilized around primary objects associated with 

representation and procedure, whereas those connected to definition and argument remain less 

consolidated. This observation is consistent with prior research (Verón & Giacomone, 2021) and 
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reinforces the relevance of employing OSA as an analytical framework for both the design and evaluation 

of teaching interventions. 

The results obtained in the proposed tasks indicate notable advances in first-year engineering 

students’ comprehension and application of the derivative within the context of authentic problems and 

through the integration of digital environments. Specifically, students demonstrated strong performance 

in actions related to the use of representations and mathematical procedures, including function 

modeling, derivative calculation, and the utilization of dynamic tools such as GeoGebra to explore and 

graphically represent key concepts in differential calculus. These outcomes address the research 

question by evidencing that a teaching approach grounded in modeling and interactive simulation 

effectively promotes learning in procedural and representational dimensions, while challenges remain in 

the development of formal argumentation. 

In Task 2, students exhibited a high level of appropriation of the derivative as a measure of rate of 

change, alongside accurate interpretation of its significance in practical contexts. Furthermore, the strong 

performance in digital graphical representations suggests a successful integration of technological 

resources as mediators of learning. Nevertheless, actions requiring higher-order contextual reasoning—

such as formulating judgments regarding the necessity of a safety system—revealed persistent 

difficulties, reflecting gaps in connecting mathematical procedures with contextualized decision-making. 

This observation aligns with prior research documenting students’ challenges in transitioning from 

procedural fluency to formal justification (Lithner, 2017). 

Task 3, which focused on an optimization problem, showed that students were competent in the 

initial stages, particularly in modeling the problem functionally. However, as the task progressed to steps 

demanding formal interpretation and argumentative justification, performance declined, indicating a need 

to strengthen the systematic application of definitions, theorems, and rigorous mathematical criteria 

beyond procedural execution or the instrumental use of digital tools. From the perspective of the OSA, 

these results highlight that knowledge configurations associated with representation and procedure are 

more readily consolidated than those linked to definition and argument, underscoring the relevance of 

OSA as an analytical framework for examining both the teaching and learning of calculus concepts. 

Finally, two limitations of the study must be acknowledged, such as the short duration of the 

intervention (three sessions over one week), which constrains the ability to infer long-term learning 

effects, and the implementation in a single institutional context, which limits generalizability. These 

limitations highlight the need for future research that replicates the study across diverse educational 

settings and extends the intervention to examine the sustained impact on students’ reasoning and 

argumentation skills. 

CONCLUSION 

This study confirms the value of combining digital simulation, mathematical modeling, and the OSA in 

teaching differential calculus, demonstrating that such integration fosters significant advances in 

procedural and representational learning. Students exhibited strong capabilities in modeling real-world 

situations, calculating derivatives, and graphically representing functions and tangent lines, with 

GeoGebra serving as an effective mediator of conceptual understanding. Importantly, the research 

illustrates that these tools are most effective when complemented with reflective, argumentative, and 

theoretically grounded activities, which support the development of critical reasoning and the contextual 

application of mathematical concepts. 
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The study’s limitations must be acknowledged to contextualize the findings. The intervention was 

short in duration, encompassing only three sessions, and was implemented within a single institutional 

context. The absence of a control group and longitudinal follow-up further restricts the generalizability of 

the results. Consequently, the conclusions should be interpreted with caution, and replication in varied 

educational settings is necessary to confirm the robustness and sustainability of the observed learning 

outcomes. 

Finally, several directions for future research are recommended. First, replicating the instructional 

design across multiple institutions and over extended periods would provide a stronger evaluation of its 

efficacy. Second, incorporating comparative designs with control groups could rigorously assess the 

specific impact of modeling, simulation, and OSA on student learning. Third, examining potential 

differences in performance according to student subgroups—such as prior mathematical achievement, 

gender, or technological familiarity—could provide insights for differentiated instruction. Finally, 

longitudinal studies investigating the transfer of learning to subsequent calculus courses and professional 

engineering contexts would clarify the long-term impact of this integrative approach. Collectively, these 

recommendations highlight the potential of combining theoretical frameworks, digital tools, and modeling 

activities to foster a comprehensive, contextually grounded, and transferable understanding of calculus 

concepts in engineering education. 
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