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Abstract

Mathematics learning is widely recognized as a fundamental component of school curricula, as it equips students
with essential competencies, particularly mathematical reasoning, which underpins logical analysis, problem
solving, and decision making. The importance of cultivating reasoning skills is especially pronounced in the
current era of disruption, characterized by rapid advances in information and communication technology and the
automation of human labor by machines and autonomous systems. As physical tasks are increasingly performed
by technology, human capacities such as reasoning and emotional intelligence become critical. Mathematical
reasoning provides the foundation for understanding concepts, formulating logical arguments, and generating
solutions across domains such as the natural sciences, society, and engineering, while also enabling students to
approach problems critically and systematically. However, despite its significance, research in primary education
has often emphasized procedural knowledge rather than examining how students construct and apply reasoning
when confronted with mathematical challenges, leaving a gap in understanding how reasoning develops in
authentic classroom contexts. To address this issue, the present study investigates how Grade 4 and Grade 5
students in a primary school in Banjarmasin, Indonesia, employ mathematical reasoning strategies to solve non-
routine problems. Through a classroom-based experimental approach, we analyzed students’ solution pathways
and the reasoning patterns they demonstrated in navigating mathematical tasks. The findings offer insights into
the developmental characteristics of mathematical reasoning in upper primary school and contribute to broader
discussions on fostering reasoning skills effectively, with implications for designing mathematics instruction that
prepares students to meet the cognitive demands of an era increasingly shaped by automation and technological
disruption.
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Many consider May 11, 1997, as the symbolic beginning of humanity's challenge against machines, when
World Chess Champion Garry Kasparov was defeated by IBM’s Deep Blue computer. The development of
technologies enabling machines to think and learn—extending beyond robotics—has been a persistent
human endeavor (Prabhu, & Premraj, 2025). For instance, Deep Blue could evaluate between 100 and 200
billion positions in just three minutes, demonstrating computational capabilities far beyond human capacity
(Hsu, 2022). Since Kasparov's defeat over two decades ago, artificial intelligence (Al) has advanced at an
unprecedented pace, raising concerns that excessive reliance on Al could diminish human agency.

Al is now embedded in everyday life, most notably through smartphones, which serve as ubiquitous
interfaces for intelligent systems (Lee et al., 2023). The current era is characterized by profound disruptions
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driven by advancements in information and communication technologies (Carayannis et al., 2022). Many
aspects of human labor are increasingly being replaced by machines, leaving humans primarily with
cognitive and emotional capacities when autonomous systems assume routine tasks.

A strong foundation in mathematical reasoning is essential for understanding mathematical
concepts and solving problems in a wide range of real-world contexts (Sun et al., 2025). Such reasoning
connects mathematics to engineering, social sciences, and the natural sciences. Mathematical reasoning
provides a framework for logical thinking, problem solving, and decision making (Herbert & Williams,
2023). It enables students to critically analyze problems and formulate appropriate solutions.
Furthermore, Ernie et al. (2023) emphasizes that mathematical reasoning allows individuals to move
beyond rote memorization of facts, rules, and procedures; it fosters the ability to make conjectures based
on prior experience, thereby facilitating a deeper and more meaningful understanding of interconnected
mathematical concepts. Reasoning, both inductive and deductive, is central to learning mathematics, as
it cultivates students’ logical thinking and problem-solving abilities.

The National Council of Teachers of Mathematics (NCTM, 2000) highlights the critical role of
mathematical reasoning, advocating for its exploration in every classroom, across all students, and in
connection with all mathematical content. Mathematical processes should be integrated into instruction
from the earliest grades, enabling students to engage in problem solving, problem posing, explanation of
thinking, and evidence-based reasoning (Torres-Pefia et al., 2025). Teachers are encouraged to connect
mathematical concepts, relate mathematics to other disciplines, and support multiple representations of
the same mathematical situations. Finally, Baroody and Coslick (1998) identify several benefits of training
students in mathematical reasoning:

1. Students gain direct experience in observing patterns, formulating conjectures, and evaluating
them, which deepens their understanding of mathematical processes.

2. Students develop confidence in making conjectures, even when uncertain of exact answers,
reducing anxiety associated with problem-solving.

3. Students learn the value of negative feedback in refining their reasoning and decision-making processes.

4. Students recognize the importance of intuition, inductive and conjectural reasoning, and deductive
proof, understanding that intuition underpins higher-order thinking in mathematics and other
scientific domains.

Despite its importance, mathematics education in schools does not always successfully cultivate
students’ reasoning skills (Mukuka et al., 2023; Ramlan et al., 2025). One contributing factor is teacher
preparedness. A survey conducted by the U.S. Department of Education reported that only 63% of
approximately 144,000 high school mathematics teachers held both a mathematics major and
certification, 26% held either a major or certification, and 11% held neither (Sousa, 2015). The situation
in Indonesia may be comparable. Teachers are therefore a pivotal determinant of the effectiveness of
mathematics education. Ideally, teachers should facilitate the development of students’ reasoning skills;
however, current attention to this goal remains limited. Pramudiani (2023) identifies several factors
necessary for teachers to effectively foster mathematical reasoning:

1. Knowledge of learning trajectories and pathways

2. Understanding of how students learn mathematics

3. Ability to accurately observe and interpret student behavior during instruction
4. Competence in applying goal-oriented and diagnostic teaching methods

5. Awareness of diverse student characteristics
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Framework for Mathematical Reasoning

One of the seven elements of mathematical intelligence that humans possess is mathematical reasoning,
as highlighted by Junaid (2022) in Mathematical Intelligence: A Story of Human Superiority over
Machines—What Humans Have That Robots Don't. Junaid (2022) argues that mathematics offers the
most powerful logical framework for establishing timeless truths, emphasizing that our ability to reason
protects us from accepting questionable assertions produced by systems reliant solely on pattern
recognition. The rapid rise of large-scale artificial intelligence (Al) technologies may have shaped his
perspective. In an era where automation and “superintelligent” machines pose potential threats, Junaid
(2022) raises a critical question: what does it mean to be human? He frames this as a profound challenge
to our way of living and thinking.

Reasoning and mathematics are deeply interconnected (Callingham & Siemon, 2021). To
strengthen their mathematical understanding, all children should be provided with opportunities to engage
in mathematical reasoning (Mukuka et al., 2023). Regular exposure to mathematical tasks helps students
internalize mathematical thinking until it becomes a habitual cognitive process (Fonseca, 2018).
Furthermore, Bragg et al. (2015) contend that students should be challenged to solve problems that develop
their capacity for reasoning from an early age, as reasoning is essential for forming conclusions. Because
reasoning forms the cornerstone of a deep understanding of mathematics, it must be embedded
consistently in students’ mathematical experiences beginning as early as kindergarten.

Fonseca (2018), citing the National Council of Teachers of Mathematics (NCTM, 2000), asserts that
students should be able to “recognize reasoning and proof as fundamental aspects of mathematics; make
and investigate mathematical conjectures; develop and evaluate mathematical arguments and proofs; [and]
select and use various types of reasoning and methods of proof” as a result of mathematics education.
NCTM (2000) further advocates the use of meaningful tasks and open-ended questions to foster reasoning
and problem solving, highlighting that effective mathematics instruction should allow multiple entry points
and diverse solution strategies, encouraging students to solve, discuss, and reflect on mathematical tasks.

Bragg et al. (2015) define mathematical reasoning as the process by which students clarify ideas,
draw inferences, transfer knowledge across contexts, assess the validity of claims, compare and contrast
ideas, and justify their conclusions. Finally, mathematical reasoning can be classified into four categories:

1. Inductive reasoning — A process that uses analogies, examples, observations, and experiences to make
generalizations. Inductive reasoning derives general conclusions from specific cases, often by recognizing
patterns, filling conceptual gaps, and explaining why certain counterexamples should be rejected.

2. Deductive reasoning — A process fundamental to mathematics and logic in which conclusions necessarily
follow from given premises, ensuring that if the premises are true, the conclusion cannot be false.

3. Abductive reasoning — A process of generating plausible hypotheses or explanations that account
for observed phenomena, often resulting in novel insights or predictions.

4. Adaptive reasoning — One of the five strands of mathematical proficiency, along with conceptual
understanding, procedural fluency, strategic competence, and productive disposition (Kilpatrick et
al., 2001). Adaptive reasoning encompasses inductive, deductive, and abductive reasoning and is
reflected in students’ abilities to justify, explain, and reflect on their mathematical practices. Students
engage in adaptive reasoning when they use facts, procedures, and concepts to construct and
evaluate solutions, generalize findings, and refute conjectures through counterexamples (Bragg et
al., 2015).
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METHODS

We conducted a classroom-based qualitative study in a partner primary school to investigate the
processes of teaching and learning division using a realistic mathematics education (RME) approach.
Prior to classroom implementation, we collaborated with the classroom teachers to design context-based
mathematical problems aligned with the topics currently taught in their classes.

Grade 4 Intervention

At the time of the study, the Grade 4 class was learning the concept of division. Together with Hamidah, an
experienced teacher with more than ten years of teaching experience, we designed a lesson around a
contextual problem involving division with whole numbers. The problem posed to students was as follows:

Uncle Gathering Dragon Fruit

Uncle collected 98 dragon fruits from his garden. He wishes to distribute them equally among
his relatives, both near and distant. To do so, he will pack the dragon fruits into boxes, with
six fruits per box. How many boxes are needed?

The class consisted of 32 students. We discussed the scenario with the teacher before
implementing the lesson. The instructional design followed a four-step didactical intervention:

1. Problem Presentation — The teacher presented the contextual problem and instructed students to

solve it individually for approximately ten minutes.

2. Group Work — Students were then divided into groups of four to compare and discuss their solutions.
Poster Production — Each group summarized their solution strategy on a poster for presentation.
4. Whole-Class Discussion — Groups presented their posters to the class, explained their reasoning,

and received feedback from peers and the teacher.

w

This structure aimed to stimulate individual reflection, peer interaction, and collective knowledge
construction (see Figure 1 for problem presentation).
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Figure 1. Problem presentation

Grade 5 Intervention

A similar intervention was conducted in a Grade 5 class of 36 students, led by Yusri, a mathematics
teacher with over 20 years of experience. At the time, the class was studying division involving fractions.
Together with Yusri, we co-designed a problem that was both contextually meaningful and mathematically
relevant to the topic as shown in Figure 2.
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Rice Consumption Problem

Father bought a 25-kg bag of rice.
Each day, Mother cooks Z kg of rice.
For how many days will the rice last?

Figure 2. Contextual problem for division by fraction

The same four-step didactical intervention (problem presentation, individual work, group discussion, and
whole-class discussion) was implemented in this lesson (see Figure 2).

Data Collection and Analysis

Given the exploratory nature of the study, a qualitative research approach was employed. Data were
collected through multiple sources, including students’ written solutions, participant observation, planned
and spontaneous conversations, audio and video recordings, and field notes. Triangulation of data
sources was used to enhance the trustworthiness of findings.

The partner school where the study was conducted is part of our ongoing collaboration to develop
and implement RME-based instructional practices. The RME approach emphasizes contextual problems
as starting points for learning mathematics, fostering student engagement and sense-making.
Interactivity is a key principle of the approach: students are encouraged to explore problems using their
own strategies and representations before formalizing their mathematical understanding.

RESULTS AND DISCUSSION

Our findings confirm that providing students with opportunities to reason informally before introducing
formal methods can facilitate deeper understanding. This aligns with RME principles, which view
students’ own strategies and representations as crucial steppingstones toward formal mathematical
reasoning (Rianasari & Guzon, 2024; Siswantari et al., 2025).

Grade 4 Intervention

In the Grade 4 classroom, the lesson did not unfold entirely as anticipated. The primary challenge was
that students were not accustomed to verbalizing their thinking or explaining their reasoning processes.
Although they were capable of arriving at correct solutions, they often struggled to articulate the steps
they had taken. This presented a challenge for the teacher, who found it difficult to support students in
expressing their ideas effectively. The teacher further explained that this difficulty was partly due to the
prolonged school closures during the COVID-19 pandemic, during which students had been learning from
home for more than two years. This disrupted their opportunities for classroom interaction and
mathematical discourse, which are essential for the development of reasoning skills.

Grade 5 Intervention

In contrast, the Grade 5 classroom produced richer discussions and more interactive participation. A
particularly notable moment occurred when a student volunteered to present his solution to the class. His
explanation sparked dialogue among peers, and several students shared alternative strategies for solving
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the problem. We also collected samples of students” written work, which offered valuable insights into
their reasoning processes.

The students’ solutions illustrated a form of horizontal mathematization, a central concept in RME.
Rather than immediately applying formal algorithms, students constructed their own solution methods,
using personal symbols and informal representations that made sense to them. This process reflects a
transition from informal to formal mathematical understanding and demonstrates the importance of
allowing students to reason through problems in ways that align with their cognitive development.

Formal and Informal Knowledge in Students’ Reasoning

The analysis in this study focuses on students’ mathematical reasoning as expressed through both formal
and informal knowledge. Scholars differ on how to delineate these two forms of knowledge. For example,
Ginsburg et al. (2001) classify counting as informal knowledge, whereas Resnick (1989) considers it
formal knowledge. Furthermore, Chiu and Tron (2004) provide a useful distinction:

1. Informal knowledge refers to knowledge acquired through children’s interaction with the physical
and social world, often involving non-numerical quantities or non-standard symbols. For example,
children may compare sets without counting exact quantities.

2. Formal knowledge refers to knowledge that involves systematic manipulation of symbol systems
(e.g., writing numbers, using symbolic patterns such as AB-AB, or applying mathematical
operations). Formal knowledge is typically acquired through structured classroom instruction.

Chiu and Tron (2004) argue that children frequently develop informal mathematical knowledge
before they are able to verbalize it explicitly. Resnick (1989) categorizes children’s non-numerical
quantitative knowledge into four types:

1. Absolute quantity judgment — using labels such as big, small, many, or few to describe size or
amount.

2. Comparative language - using relational terms such as bigger, smaller, taller, or shorter to
compare quantities.

3. Change in quantity — recognizing increases or decreases in sets (e.g., if one cookie is taken away,
one fewer remains).

4. Part-whole schema — understanding that a subset is smaller than the whole (e.g., a slice of bread
compared to a full loaf).

Prior research has established that children’s informal mathematical knowledge provides an
essential foundation for the acquisition of formal mathematical knowledge (Papandreou & Tsiouli, 2022;
Panaoura & Nitsiou, 2023; Xu & Cai, 2024). For example, children often use informal comparison
strategies and create mental number lines to determine which number is larger (Resnick, 1989). They
also apply intuitive concepts of change to perform informal addition and subtraction on sets (Ginsburg,
2001). When children enter formal schooling, this informal knowledge can be enriched and formalized,
enabling them to work with abstract mathematical objects and symbolic systems (Chiu & Tron, 2004).

Analysis of Students’ Works on Dragon Fruit Problem

The majority of students demonstrated an understanding of the problem posed by the teacher. Their
typical approach began with drawing a square to represent a box and then filling it with six dragon fruits,
as indicated in the problem statement. Students constructed boxes sequentially, each containing six
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dragon fruits, until all 98 dragon fruits were accounted for. The remaining fruits were placed in a final,
partially filled box. While individual solutions varied slightly, common strategies relied on drawing, logical
reasoning, and incremental counting. These strategies can be classified into four main models:

Solution 1: Concrete Representation through Drawing

In the most common solution approach as shown in Figure 3, students drew a square for each box and
manually filled each square with six individual dragon fruits. These included the following: (1) creating a
box and filling it with six dragons-fruits; (2) creating a box and filling it with six dragons, in this case six
dragon-fruits are represented by the number 6; (3) creating a box and filling it with the number 6, then
repeating addition; (4) creating a box and filling it with the number 6, then counting jumping 6 as on a
numberline,i.e.6+6=12,12+6=18, 18 + 6 = 24, and so forth. This highly concrete approach provided
students with a visual and tactile method for tracking quantities. However, it also led to a tedious and
time-consuming process, as students had to count sequentially from 1 to 96 to verify the total number of
fruits placed in the boxes. Despite its inefficiency, this strategy appeared to give students confidence in
their results. Nevertheless, several students miscounted the number of remaining dragon fruits, leading
to incorrect conclusions about the number of boxes required.
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Figure 3. Creating a box and filling it with six dragon fruits

Solution 2: Symbolic Representation of Quantity

Some students adopted a more efficient approach illustrated in Figure 4 by replacing the individual
drawings of dragon fruits with the numeral 6, thereby symbolically representing the quantity in each box.
This transition to symbolic representation reflects a shift toward abstraction. Nevertheless, students still
faced the challenge of tracking cumulative totals and often repeated their work on a second page when
space was insufficient.
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Figure 4. Creating a box and filling it with six dragons, in this case six dragons are represented by symbol of 6

Although slightly more efficient than Solution 1, the process remained labor-intensive, and students relied
on mental counting or fingerspelling to confirm their results as shown in Figure 5.

Figure 5. Counting on fingers for justification of answer

Solution 3: Repeated Addition

A subset of students employed repeated addition as a means of tracking quantities presented in Figure
6. Rather than recounting from the beginning for each box, students wrote cumulative sums above
each box, suchas 6 + 6 + 6 + --- + 6 = 96. This strategy reflects a higher level of reasoning than the
first two approaches, as students demonstrated an understanding of grouping and accumulation. They
correctly identified that 16 boxes contained 96 dragon fruits, and that the remaining 2 fruits would be
placed in a 17t box.
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Figure 6. Creating a box and filling it with the number 6, and repeating addition

Solution 4: Jump Counting and Number Line Representation

Another group of students extended Solution 3 by using a number-line representation to “jump” by
sixes (e.g., 6, 12, 18, 24, ...) illustrated in Figure 7. This approach made the process of repeated
addition more visual and systematic, reducing cognitive load and facilitating verification of intermediate
results. The use of number lines is pedagogically significant because it bridges the gap between
concrete counting strategies and more abstract symbolic reasoning.
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Figure 7. Make a box and fill it with 6 then count the jumps of 6

Emergence of Multiplicative Reasoning

Notably, at least one student demonstrated a transition from repeated addition to multiplicative
reasoning as shown in Figure 8. This student represented the situation using boxes, filled each with
six dragon fruits, and then confirmed the result using the equation 6 x 16 = 96. After determining that
two fruits remained, the student placed them in a final box, thus verifying that 17 boxes were needed
in total. This solution illustrates the student’s ability to formalize reasoning by connecting a concrete
representation with an abstract mathematical operation, a key step in the process of vertical
mathematization.
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Figure 8. Repeated addition as multiplication

Overall, the students’ solutions reveal a range of reasoning strategies that reflect their varying
levels of mathematical development. Students with less formal mathematical knowledge tended to rely
on concrete, visual strategies (e.g., drawing individual fruits), while those with more advanced
reasoning skills used symbolic representations, repeated addition, and multiplicative reasoning. This
progression suggests that as students’ mathematical understanding deepens, their solution methods
become more efficient and abstract, indicating a higher level of mathematical reasoning.

Analysis of Students’ Works on Rice Problem

Mathematical reasoning involves the ability to identify relationships among mathematical ideas and to
apply these relationships to solve novel problems (Alexander et al., 1997; Garcia-Garcia & Dolores-
Flores, 2021; Hwang & Ham, 2021). Even at its most basic level, mathematical reasoning requires
more than simply following procedural instructions. It involves the establishment of correspondences
between physical or symbolic representations and the abstract concepts they express—a process that
relies heavily on analogical reasoning (Sari et al., 2024; Aljura et al., 2025).

Zulfani’s Solution: Visual Representation and Mental Fraction Tracking

The solutions produced by students in this study exemplify these theoretical perspectives. One notable
case is Zulfani’'s work presented in Figure 9, which offers a clear example of high-level mathematical
reasoning. Although his solution contained few formal mathematical symbols, it demonstrated a deep
conceptual understanding of division by fractions and a creative application of visual reasoning.
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Figure 9. Zulfani’s solution to the rice problem
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Zulfani represented the 25 kilograms of rice as 25 squares, each square symbolizing 1 kilogram.
His decision to use squares was mathematically advantageous, as squares are easily partitioned into

four equal parts, enabling each part to represent i kilogram. In his solution, Zulfani shaded three out

of four parts to represent the % kilograms consumed daily, and he annotated each shaded portion with

the label “1 day.”
Rather than performing formal fraction addition symbolically, Zulfani tracked consumption

visually by moving from square to square, mentally combining fractional parts (e.g., i+ % = z) to
represent a day’s consumption. Through this systematic approach, he concluded that the rice supply
would last 33 days, leaving i kilogram unused. This approach bypassed the need for algorithmic

fraction addition and instead relied on intuitive reasoning supported by a visual model.

This solution reflects Junaid’s (2022) observation that visual proofs can convey mathematical
truths without sacrificing rigor, and it illustrates how simple representations can express sophisticated
reasoning. In this sense, Zulfani’s solution embodies Leonardo da Vinci’'s maxim that “simplicity is the
ultimate sophistication.”

Kalnako’s Solution: Implicit Use of Fraction Addition

Kalnako's work presented in Figure 10 demonstrated a different but equally insightful approach. She
began by reasoning that 25 kilograms of rice would last for 25 days if one kilogram were consumed
daily, leaving i kilogram remaining per day. She then determined how many additional days could be
obtained from the daily leftovers. Without explicitly performing formal fraction addition, she reasoned
that three leftover quarters make one whole kilogram (i + i +i = %), which corresponds to one

additional day of cooking.
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Figure 10. Kalnako’s solution to the rice problem

Her solution involved systematically labeling each day on her diagram: the first three squares
were marked with “1,” representing the first full day from remainders, the next three with “2,” and so

forth. On the 25th square, she recorded “9,” showing that after the ninth group, a i—kilogram portion
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still remained. She then combined the results, concluding that the rice would last 33 full days with i

kilogram left over. Kalnako's reasoning demonstrates an implicit understanding of fractional
composition and provides further evidence that students can successfully generalize and extend their
reasoning without relying on formal procedures.

Dina’s Solution: Formal Fraction Operations

In contrast to the primarily visual approaches above, Dina’s work as shown in Figure 11 revealed a
strong command of formal fraction operations. Her solution included symbolic calculations, such as
%+ % + % +% = 3, which she then used as a basis for completing the problem. Dina’s solution

illustrates how procedural fluency, when combined with conceptual understanding, allows students to
connect formal operations with meaningful problem contexts.

Problem 1
Father bought a 25-kg bag of rice. Each day, Mother cooks

% kg of rice. For how many days will the rice last?

So, the rice that Father purchased will be sufficient for 33

days
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Figure 11. Dina’s solution to the rice problem

This finding supports Russell's (1999) characterization of mathematical reasoning as the
development, justification, and application of mathematical generalizations that form a network of
interconnected knowledge. Dina’s solution shows how a student can flexibly move between conceptual
understanding, symbolic representation, and real-world application to reach a correct and justifiable
solution.
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The three examples above demonstrate that students employ diverse reasoning strategies—
ranging from visual modeling to symbolic manipulation—depending on their prior knowledge and
mathematical experiences. Zulfani and Kalnako relied primarily on informal, visual approaches that
enabled them to solve a complex fraction division problem without formal computation. Dina, on the other
hand, applied formal fraction addition to reach the solution efficiently. Together, these findings reinforce
the view that mathematical reasoning is not merely the mechanical execution of arithmetic operations but
rather the dynamic use of conceptual knowledge, representations, and strategies to make sense of and
solve problems.

Interpretation of Students’ Reasoning in the Presented Problem

Analysis of students’ solutions to the dragon fruit problem reveals clear evidence of emergent deductive
thinking. Many students employed an implicit if-then logical structure: if each box holds six dragon fruits,
then sixteen boxes are required to hold ninety-six fruits, and the remaining two fruits must be placed in a
seventeenth box. This reasoning demonstrates their ability to generalize from a contextual situation and
to organize their solution steps coherently.

Notably, several students were able to carry out repeated addition symbolically, representing
dragon fruits numerically rather than visually. A small number of students went further, recognizing
repeated addition as a form of multiplication, thereby using multiplication as a tool for confirmation (e.g.,
6 x 16 = 96). These findings indicate that students possess what might be described as latent
mathematical competencies—powers of imagination, symbolization, conjecture, and generalization—that
they express when given an open opportunity to reason through problems. For instance, representing
one kilogram with a square or counting by sixes using a self-constructed number line are examples of
students inventing their own notations to support problem solving.

The findings align with a consensus in the mathematics education literature that mathematical
reasoning forms the foundation for understanding and applying mathematical concepts. Scholars have
emphasized the need to strengthen students’ reasoning abilities by engaging them in activities such as
investigation, representation, conjecture, and justification (Clements et al., 2003; NCTM, 2000; Widjaja
et al., 2021; Russell, 1999; Mukuka et al., 2023). According to the Principles and Standards for School
Mathematics (NCTM, 2000), mathematics learning is most effective when it continually promotes higher-
order thinking and reasoning. Reasoning may thus be seen as the “soil” in which mathematical
understanding takes root and grows. When students learn to reason mathematically, they develop the
ability to transfer knowledge to new situations, construct connections among concepts, and acquire a
foundation for future learning.

Teachers’ reflections on the student work were highly positive. Several noted that students’
mathematical reasoning often differs from that of teachers, providing unique insights into how children
make sense of problems. They also recognized the importance of allowing students to explore multiple
solution paths and acknowledged that teachers should not be the sole source of mathematical knowledge
in the classroom. Strengthening teachers’ understanding of students’ reasoning processes can be a
powerful lever for professional growth (Hacieminoglu et al., 2022; Raza, 2024). As suggested by Fonseca
(2018), creating learning environments that support students in organizing their work, conjecturing, and
justifying their conclusions fosters more consistent reasoning and valid mathematical proofs. These
experiences deepen students’ conceptual understanding and prepare them for more advanced
mathematical thinking.
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CONCLUSION

This study provides evidence that students’ mathematical reasoning abilities are diverse and shaped by
multiple factors, including prior learning experiences and initial mathematical proficiency. The analysis of
students” work on whole-number and fractional division problems revealed a continuum of reasoning
strategies, ranging from concrete, visual approaches (e.g., drawing boxes and counting individual items)
to more abstract representations (e.g., repeated addition, number-line jumps, and multiplication as a
confirmation strategy). These findings suggest that when students are given opportunities to engage with
contextual problems and represent their thinking using self-constructed notations, they display emergent
deductive reasoning, make conjectures, and construct meaningful mathematical generalizations. In line
with previous research (Baroody & Coslick, 1998; NCTM, 2000; Russell, 1999), this study underscores
that mathematical reasoning serves as a foundation for conceptual understanding and should be nurtured
consistently throughout students’ mathematical development.

Furthermore, this study also was conducted in a single primary school with two classes and a
limited number of participants, which restricts the generalizability of the findings. Moreover, the qualitative
design, while valuable for capturing rich descriptions of students’ reasoning, does not allow for strong
causal inferences regarding the effects of instructional interventions on mathematical reasoning
development. Additional variables—such as teacher practices, students’ prior achievement levels, and
socio-cultural factors—may have influenced the outcomes but were not systematically controlled in this
study. Future research should employ mixed-methods designs or longitudinal approaches to more
robustly examine the interaction between instructional approaches, students’ prior knowledge, and the
development of mathematical reasoning over time.

Finally, the findings of this research have important implications for mathematics teaching and
teacher education. Designing lessons around contextual problems appears to stimulate students’
reasoning processes and enables them to construct knowledge actively, which may enhance their long-
term mathematical proficiency. We recommend that future studies systematically investigate the impact
of various instructional models—such as problem-based learning, realistic mathematics education, and
inquiry-oriented approaches—on students’ reasoning skills across diverse educational settings.
Furthermore, professional development programs for teachers should emphasize strategies for eliciting,
interpreting, and building upon students’ reasoning, as this can support teachers in creating classrooms
where reasoning and proof are central to instruction. Strengthening students’ reasoning from the earliest
grades not only promotes deeper mathematical understanding but also prepares them to approach
complex and abstract mathematical ideas with confidence.
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