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Abstract 

Mathematics learning is widely recognized as a fundamental component of school curricula, as it equips students 
with essential competencies, particularly mathematical reasoning, which underpins logical analysis, problem 
solving, and decision making. The importance of cultivating reasoning skills is especially pronounced in the 
current era of disruption, characterized by rapid advances in information and communication technology and the 
automation of human labor by machines and autonomous systems. As physical tasks are increasingly performed 
by technology, human capacities such as reasoning and emotional intelligence become critical. Mathematical 
reasoning provides the foundation for understanding concepts, formulating logical arguments, and generating 
solutions across domains such as the natural sciences, society, and engineering, while also enabling students to 
approach problems critically and systematically. However, despite its significance, research in primary education 
has often emphasized procedural knowledge rather than examining how students construct and apply reasoning 
when confronted with mathematical challenges, leaving a gap in understanding how reasoning develops in 
authentic classroom contexts. To address this issue, the present study investigates how Grade 4 and Grade 5 
students in a primary school in Banjarmasin, Indonesia, employ mathematical reasoning strategies to solve non-
routine problems. Through a classroom-based experimental approach, we analyzed students’ solution pathways 
and the reasoning patterns they demonstrated in navigating mathematical tasks. The findings offer insights into 
the developmental characteristics of mathematical reasoning in upper primary school and contribute to broader 
discussions on fostering reasoning skills effectively, with implications for designing mathematics instruction that 
prepares students to meet the cognitive demands of an era increasingly shaped by automation and technological 
disruption. 
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Many consider May 11, 1997, as the symbolic beginning of humanity's challenge against machines, when 

World Chess Champion Garry Kasparov was defeated by IBM’s Deep Blue computer. The development of 

technologies enabling machines to think and learn—extending beyond robotics—has been a persistent 

human endeavor (Prabhu, & Premraj, 2025). For instance, Deep Blue could evaluate between 100 and 200 

billion positions in just three minutes, demonstrating computational capabilities far beyond human capacity 

(Hsu, 2022). Since Kasparov's defeat over two decades ago, artificial intelligence (AI) has advanced at an 

unprecedented pace, raising concerns that excessive reliance on AI could diminish human agency. 

AI is now embedded in everyday life, most notably through smartphones, which serve as ubiquitous 

interfaces for intelligent systems (Lee et al., 2023). The current era is characterized by profound disruptions 
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driven by advancements in information and communication technologies (Carayannis et al., 2022). Many 

aspects of human labor are increasingly being replaced by machines, leaving humans primarily with 

cognitive and emotional capacities when autonomous systems assume routine tasks. 

A strong foundation in mathematical reasoning is essential for understanding mathematical 

concepts and solving problems in a wide range of real-world contexts (Sun et al., 2025). Such reasoning 

connects mathematics to engineering, social sciences, and the natural sciences. Mathematical reasoning 

provides a framework for logical thinking, problem solving, and decision making (Herbert & Williams, 

2023). It enables students to critically analyze problems and formulate appropriate solutions. 

Furthermore, Ernie et al. (2023) emphasizes that mathematical reasoning allows individuals to move 

beyond rote memorization of facts, rules, and procedures; it fosters the ability to make conjectures based 

on prior experience, thereby facilitating a deeper and more meaningful understanding of interconnected 

mathematical concepts. Reasoning, both inductive and deductive, is central to learning mathematics, as 

it cultivates students’ logical thinking and problem-solving abilities. 

The National Council of Teachers of Mathematics (NCTM, 2000) highlights the critical role of 

mathematical reasoning, advocating for its exploration in every classroom, across all students, and in 

connection with all mathematical content. Mathematical processes should be integrated into instruction 

from the earliest grades, enabling students to engage in problem solving, problem posing, explanation of 

thinking, and evidence-based reasoning (Torres-Peña et al., 2025). Teachers are encouraged to connect 

mathematical concepts, relate mathematics to other disciplines, and support multiple representations of 

the same mathematical situations. Finally, Baroody and Coslick (1998) identify several benefits of training 

students in mathematical reasoning: 

1. Students gain direct experience in observing patterns, formulating conjectures, and evaluating 

them, which deepens their understanding of mathematical processes. 

2. Students develop confidence in making conjectures, even when uncertain of exact answers, 

reducing anxiety associated with problem-solving. 

3. Students learn the value of negative feedback in refining their reasoning and decision-making processes. 

4. Students recognize the importance of intuition, inductive and conjectural reasoning, and deductive 

proof, understanding that intuition underpins higher-order thinking in mathematics and other 

scientific domains. 

 

Despite its importance, mathematics education in schools does not always successfully cultivate 

students’ reasoning skills (Mukuka et al., 2023; Ramlan et al., 2025). One contributing factor is teacher 

preparedness. A survey conducted by the U.S. Department of Education reported that only 63% of 

approximately 144,000 high school mathematics teachers held both a mathematics major and 

certification, 26% held either a major or certification, and 11% held neither (Sousa, 2015). The situation 

in Indonesia may be comparable. Teachers are therefore a pivotal determinant of the effectiveness of 

mathematics education. Ideally, teachers should facilitate the development of students’ reasoning skills; 

however, current attention to this goal remains limited. Pramudiani (2023) identifies several factors 

necessary for teachers to effectively foster mathematical reasoning: 

1. Knowledge of learning trajectories and pathways 

2. Understanding of how students learn mathematics 

3. Ability to accurately observe and interpret student behavior during instruction 

4. Competence in applying goal-oriented and diagnostic teaching methods 

5. Awareness of diverse student characteristics 
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Framework for Mathematical Reasoning 

One of the seven elements of mathematical intelligence that humans possess is mathematical reasoning, 

as highlighted by Junaid (2022) in Mathematical Intelligence: A Story of Human Superiority over 

Machines—What Humans Have That Robots Don’t. Junaid (2022) argues that mathematics offers the 

most powerful logical framework for establishing timeless truths, emphasizing that our ability to reason 

protects us from accepting questionable assertions produced by systems reliant solely on pattern 

recognition. The rapid rise of large-scale artificial intelligence (AI) technologies may have shaped his 

perspective. In an era where automation and “superintelligent” machines pose potential threats, Junaid 

(2022) raises a critical question: what does it mean to be human? He frames this as a profound challenge 

to our way of living and thinking. 

Reasoning and mathematics are deeply interconnected (Callingham & Siemon, 2021). To 

strengthen their mathematical understanding, all children should be provided with opportunities to engage 

in mathematical reasoning (Mukuka et al., 2023). Regular exposure to mathematical tasks helps students 

internalize mathematical thinking until it becomes a habitual cognitive process (Fonseca, 2018). 

Furthermore, Bragg et al. (2015) contend that students should be challenged to solve problems that develop 

their capacity for reasoning from an early age, as reasoning is essential for forming conclusions. Because 

reasoning forms the cornerstone of a deep understanding of mathematics, it must be embedded 

consistently in students’ mathematical experiences beginning as early as kindergarten. 

Fonseca (2018), citing the National Council of Teachers of Mathematics (NCTM, 2000), asserts that 

students should be able to “recognize reasoning and proof as fundamental aspects of mathematics; make 

and investigate mathematical conjectures; develop and evaluate mathematical arguments and proofs; [and] 

select and use various types of reasoning and methods of proof” as a result of mathematics education. 

NCTM (2000) further advocates the use of meaningful tasks and open-ended questions to foster reasoning 

and problem solving, highlighting that effective mathematics instruction should allow multiple entry points 

and diverse solution strategies, encouraging students to solve, discuss, and reflect on mathematical tasks. 

Bragg et al. (2015) define mathematical reasoning as the process by which students clarify ideas, 

draw inferences, transfer knowledge across contexts, assess the validity of claims, compare and contrast 

ideas, and justify their conclusions. Finally, mathematical reasoning can be classified into four categories: 

1. Inductive reasoning – A process that uses analogies, examples, observations, and experiences to make 

generalizations. Inductive reasoning derives general conclusions from specific cases, often by recognizing 

patterns, filling conceptual gaps, and explaining why certain counterexamples should be rejected. 

2. Deductive reasoning – A process fundamental to mathematics and logic in which conclusions necessarily 

follow from given premises, ensuring that if the premises are true, the conclusion cannot be false. 

3. Abductive reasoning – A process of generating plausible hypotheses or explanations that account 

for observed phenomena, often resulting in novel insights or predictions. 

4. Adaptive reasoning – One of the five strands of mathematical proficiency, along with conceptual 

understanding, procedural fluency, strategic competence, and productive disposition (Kilpatrick et 

al., 2001). Adaptive reasoning encompasses inductive, deductive, and abductive reasoning and is 

reflected in students’ abilities to justify, explain, and reflect on their mathematical practices. Students 

engage in adaptive reasoning when they use facts, procedures, and concepts to construct and 

evaluate solutions, generalize findings, and refute conjectures through counterexamples (Bragg et 

al., 2015). 
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METHODS 

We conducted a classroom-based qualitative study in a partner primary school to investigate the 

processes of teaching and learning division using a realistic mathematics education (RME) approach. 

Prior to classroom implementation, we collaborated with the classroom teachers to design context-based 

mathematical problems aligned with the topics currently taught in their classes. 

Grade 4 Intervention 

At the time of the study, the Grade 4 class was learning the concept of division. Together with Hamidah, an 

experienced teacher with more than ten years of teaching experience, we designed a lesson around a 

contextual problem involving division with whole numbers. The problem posed to students was as follows: 

 

Uncle Gathering Dragon Fruit 
Uncle collected 98 dragon fruits from his garden. He wishes to distribute them equally among 
his relatives, both near and distant. To do so, he will pack the dragon fruits into boxes, with 
six fruits per box. How many boxes are needed? 

 

The class consisted of 32 students. We discussed the scenario with the teacher before 

implementing the lesson. The instructional design followed a four-step didactical intervention: 

1. Problem Presentation – The teacher presented the contextual problem and instructed students to 

solve it individually for approximately ten minutes. 

2. Group Work – Students were then divided into groups of four to compare and discuss their solutions. 

3. Poster Production – Each group summarized their solution strategy on a poster for presentation. 

4. Whole-Class Discussion – Groups presented their posters to the class, explained their reasoning, 

and received feedback from peers and the teacher. 

 

This structure aimed to stimulate individual reflection, peer interaction, and collective knowledge 

construction (see Figure 1 for problem presentation). 

 

 

Figure 1. Problem presentation 

Grade 5 Intervention 

A similar intervention was conducted in a Grade 5 class of 36 students, led by Yusri, a mathematics 

teacher with over 20 years of experience. At the time, the class was studying division involving fractions. 

Together with Yusri, we co-designed a problem that was both contextually meaningful and mathematically 

relevant to the topic as shown in Figure 2. 
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Rice Consumption Problem 

 

Father bought a 25-kg bag of rice. 

Each day, Mother cooks 
3

4
 kg of rice. 

For how many days will the rice last? 

Figure 2. Contextual problem for division by fraction 

The same four-step didactical intervention (problem presentation, individual work, group discussion, and 

whole-class discussion) was implemented in this lesson (see Figure 2). 

Data Collection and Analysis 

Given the exploratory nature of the study, a qualitative research approach was employed. Data were 

collected through multiple sources, including students’ written solutions, participant observation, planned 

and spontaneous conversations, audio and video recordings, and field notes. Triangulation of data 

sources was used to enhance the trustworthiness of findings. 

The partner school where the study was conducted is part of our ongoing collaboration to develop 

and implement RME-based instructional practices. The RME approach emphasizes contextual problems 

as starting points for learning mathematics, fostering student engagement and sense-making. 

Interactivity is a key principle of the approach: students are encouraged to explore problems using their 

own strategies and representations before formalizing their mathematical understanding. 

RESULTS AND DISCUSSION 

Our findings confirm that providing students with opportunities to reason informally before introducing 

formal methods can facilitate deeper understanding. This aligns with RME principles, which view 

students’ own strategies and representations as crucial steppingstones toward formal mathematical 

reasoning (Rianasari & Guzon, 2024; Siswantari et al., 2025). 

Grade 4 Intervention 

In the Grade 4 classroom, the lesson did not unfold entirely as anticipated. The primary challenge was 

that students were not accustomed to verbalizing their thinking or explaining their reasoning processes. 

Although they were capable of arriving at correct solutions, they often struggled to articulate the steps 

they had taken. This presented a challenge for the teacher, who found it difficult to support students in 

expressing their ideas effectively. The teacher further explained that this difficulty was partly due to the 

prolonged school closures during the COVID-19 pandemic, during which students had been learning from 

home for more than two years. This disrupted their opportunities for classroom interaction and 

mathematical discourse, which are essential for the development of reasoning skills. 

Grade 5 Intervention 

In contrast, the Grade 5 classroom produced richer discussions and more interactive participation. A 

particularly notable moment occurred when a student volunteered to present his solution to the class. His 

explanation sparked dialogue among peers, and several students shared alternative strategies for solving 



942                        Hadi, Dolk, Kamaliyah, & Hidayanto 
 

 

the problem. We also collected samples of students’ written work, which offered valuable insights into 

their reasoning processes. 

The students’ solutions illustrated a form of horizontal mathematization, a central concept in RME. 

Rather than immediately applying formal algorithms, students constructed their own solution methods, 

using personal symbols and informal representations that made sense to them. This process reflects a 

transition from informal to formal mathematical understanding and demonstrates the importance of 

allowing students to reason through problems in ways that align with their cognitive development. 

Formal and Informal Knowledge in Students’ Reasoning 

The analysis in this study focuses on students’ mathematical reasoning as expressed through both formal 

and informal knowledge. Scholars differ on how to delineate these two forms of knowledge. For example, 

Ginsburg et al. (2001) classify counting as informal knowledge, whereas Resnick (1989) considers it 

formal knowledge. Furthermore, Chiu and Tron (2004) provide a useful distinction: 

1. Informal knowledge refers to knowledge acquired through children’s interaction with the physical 

and social world, often involving non-numerical quantities or non-standard symbols. For example, 

children may compare sets without counting exact quantities.  

2. Formal knowledge refers to knowledge that involves systematic manipulation of symbol systems 

(e.g., writing numbers, using symbolic patterns such as AB–AB, or applying mathematical 

operations). Formal knowledge is typically acquired through structured classroom instruction. 

 

Chiu and Tron (2004) argue that children frequently develop informal mathematical knowledge 

before they are able to verbalize it explicitly. Resnick (1989) categorizes children’s non-numerical 

quantitative knowledge into four types: 

1. Absolute quantity judgment – using labels such as big, small, many, or few to describe size or 

amount. 

2. Comparative language – using relational terms such as bigger, smaller, taller, or shorter to 

compare quantities. 

3. Change in quantity – recognizing increases or decreases in sets (e.g., if one cookie is taken away, 

one fewer remains). 

4. Part–whole schema – understanding that a subset is smaller than the whole (e.g., a slice of bread 

compared to a full loaf). 

 

Prior research has established that children’s informal mathematical knowledge provides an 

essential foundation for the acquisition of formal mathematical knowledge (Papandreou & Tsiouli, 2022; 

Panaoura & Nitsiou, 2023; Xu & Cai, 2024). For example, children often use informal comparison 

strategies and create mental number lines to determine which number is larger (Resnick, 1989). They 

also apply intuitive concepts of change to perform informal addition and subtraction on sets (Ginsburg, 

2001). When children enter formal schooling, this informal knowledge can be enriched and formalized, 

enabling them to work with abstract mathematical objects and symbolic systems (Chiu & Tron, 2004). 

Analysis of Students’ Works on Dragon Fruit Problem 

The majority of students demonstrated an understanding of the problem posed by the teacher. Their 

typical approach began with drawing a square to represent a box and then filling it with six dragon fruits, 

as indicated in the problem statement. Students constructed boxes sequentially, each containing six 
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dragon fruits, until all 98 dragon fruits were accounted for. The remaining fruits were placed in a final, 

partially filled box. While individual solutions varied slightly, common strategies relied on drawing, logical 

reasoning, and incremental counting. These strategies can be classified into four main models: 

Solution 1: Concrete Representation through Drawing 

In the most common solution approach as shown in Figure 3, students drew a square for each box and 

manually filled each square with six individual dragon fruits. These included the following: (1) creating a 

box and filling it with six dragons-fruits; (2) creating a box and filling it with six dragons, in this case six 

dragon-fruits are represented by the number 6; (3) creating a box and filling it with the number 6, then 

repeating addition; (4) creating a box and filling it with the number 6, then counting jumping 6 as on a 

number line, i.e. 6 + 6 = 12, 12 + 6 = 18, 18 + 6 = 24, and so forth. This highly concrete approach provided 

students with a visual and tactile method for tracking quantities. However, it also led to a tedious and 

time-consuming process, as students had to count sequentially from 1 to 96 to verify the total number of 

fruits placed in the boxes. Despite its inefficiency, this strategy appeared to give students confidence in 

their results. Nevertheless, several students miscounted the number of remaining dragon fruits, leading 

to incorrect conclusions about the number of boxes required. 

 

 

Figure 3. Creating a box and filling it with six dragon fruits 

Solution 2: Symbolic Representation of Quantity 

Some students adopted a more efficient approach illustrated in Figure 4 by replacing the individual 

drawings of dragon fruits with the numeral 6, thereby symbolically representing the quantity in each box. 

This transition to symbolic representation reflects a shift toward abstraction. Nevertheless, students still 

faced the challenge of tracking cumulative totals and often repeated their work on a second page when 

space was insufficient.  
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Figure 4. Creating a box and filling it with six dragons, in this case six dragons are represented by symbol of 6 

Although slightly more efficient than Solution 1, the process remained labor-intensive, and students relied 

on mental counting or fingerspelling to confirm their results as shown in Figure 5. 

 

 

Figure 5. Counting on fingers for justification of answer  

Solution 3: Repeated Addition 

A subset of students employed repeated addition as a means of tracking quantities presented in Figure 

6. Rather than recounting from the beginning for each box, students wrote cumulative sums above 

each box, such as 6 + 6 + 6 + ⋯ + 6 = 96. This strategy reflects a higher level of reasoning than the 

first two approaches, as students demonstrated an understanding of grouping and accumulation. They 

correctly identified that 16 boxes contained 96 dragon fruits, and that the remaining 2 fruits would be 

placed in a 17th box.   
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Figure 6. Creating a box and filling it with the number 6, and repeating addition 

Solution 4: Jump Counting and Number Line Representation 

Another group of students extended Solution 3 by using a number-line representation to “jump” by 

sixes (e.g., 6, 12, 18, 24, …) illustrated in Figure 7. This approach made the process of repeated 

addition more visual and systematic, reducing cognitive load and facilitating verification of intermediate 

results. The use of number lines is pedagogically significant because it bridges the gap between 

concrete counting strategies and more abstract symbolic reasoning. 

 

 

Figure 7. Make a box and fill it with 6 then count the jumps of 6 

Emergence of Multiplicative Reasoning 

Notably, at least one student demonstrated a transition from repeated addition to multiplicative 

reasoning as shown in Figure 8. This student represented the situation using boxes, filled each with 

six dragon fruits, and then confirmed the result using the equation 6 × 16 = 96. After determining that 

two fruits remained, the student placed them in a final box, thus verifying that 17 boxes were needed 

in total. This solution illustrates the student’s ability to formalize reasoning by connecting a concrete 

representation with an abstract mathematical operation, a key step in the process of vertical 

mathematization. 
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Figure 8. Repeated addition as multiplication 

Overall, the students’ solutions reveal a range of reasoning strategies that reflect their varying 

levels of mathematical development. Students with less formal mathematical knowledge tended to rely 

on concrete, visual strategies (e.g., drawing individual fruits), while those with more advanced 

reasoning skills used symbolic representations, repeated addition, and multiplicative reasoning. This 

progression suggests that as students’ mathematical understanding deepens, their solution methods 

become more efficient and abstract, indicating a higher level of mathematical reasoning.   

Analysis of Students’ Works on Rice Problem 

Mathematical reasoning involves the ability to identify relationships among mathematical ideas and to 

apply these relationships to solve novel problems (Alexander et al., 1997; García-García & Dolores-

Flores, 2021; Hwang & Ham, 2021). Even at its most basic level, mathematical reasoning requires 

more than simply following procedural instructions. It involves the establishment of correspondences 

between physical or symbolic representations and the abstract concepts they express—a process that 

relies heavily on analogical reasoning (Sari et al., 2024; Aljura et al., 2025). 

Zulfani’s Solution: Visual Representation and Mental Fraction Tracking 

The solutions produced by students in this study exemplify these theoretical perspectives. One notable 

case is Zulfani’s work presented in Figure 9, which offers a clear example of high-level mathematical 

reasoning. Although his solution contained few formal mathematical symbols, it demonstrated a deep 

conceptual understanding of division by fractions and a creative application of visual reasoning. 
 

 

Figure 9. Zulfani’s solution to the rice problem 
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Zulfani represented the 25 kilograms of rice as 25 squares, each square symbolizing 1 kilogram. 

His decision to use squares was mathematically advantageous, as squares are easily partitioned into 

four equal parts, enabling each part to represent 
1

4
 kilogram. In his solution, Zulfani shaded three out 

of four parts to represent the 
3

4
 kilograms consumed daily, and he annotated each shaded portion with 

the label “1 day.” 

Rather than performing formal fraction addition symbolically, Zulfani tracked consumption 

visually by moving from square to square, mentally combining fractional parts (e.g., 
1

4
+

2

4
=

3

4
) to 

represent a day’s consumption. Through this systematic approach, he concluded that the rice supply 

would last 33 days, leaving 
1

4
 kilogram unused. This approach bypassed the need for algorithmic 

fraction addition and instead relied on intuitive reasoning supported by a visual model. 

This solution reflects Junaid’s (2022) observation that visual proofs can convey mathematical 

truths without sacrificing rigor, and it illustrates how simple representations can express sophisticated 

reasoning. In this sense, Zulfani’s solution embodies Leonardo da Vinci’s maxim that “simplicity is the 

ultimate sophistication.” 

Kalnako’s Solution: Implicit Use of Fraction Addition 

Kalnako’s work presented in Figure 10 demonstrated a different but equally insightful approach. She 

began by reasoning that 25 kilograms of rice would last for 25 days if one kilogram were consumed 

daily, leaving 
1

4
 kilogram remaining per day. She then determined how many additional days could be 

obtained from the daily leftovers. Without explicitly performing formal fraction addition, she reasoned 

that three leftover quarters make one whole kilogram (
1

4
+

1

4
+

1

4
=

3

4
), which corresponds to one 

additional day of cooking. 

 

 

Figure 10. Kalnako’s solution to the rice problem 

Her solution involved systematically labeling each day on her diagram: the first three squares 

were marked with “1,” representing the first full day from remainders, the next three with “2,” and so 

forth. On the 25th square, she recorded “9,” showing that after the ninth group, a 
1

4
-kilogram portion 
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still remained. She then combined the results, concluding that the rice would last 33 full days with 
1

4
 

kilogram left over. Kalnako’s reasoning demonstrates an implicit understanding of fractional 

composition and provides further evidence that students can successfully generalize and extend their 

reasoning without relying on formal procedures. 

Dina’s Solution: Formal Fraction Operations 

In contrast to the primarily visual approaches above, Dina’s work as shown in Figure 11 revealed a 

strong command of formal fraction operations. Her solution included symbolic calculations, such as 
3

4
+

3

4
+

3

4
+

3

4
= 3, which she then used as a basis for completing the problem. Dina’s solution 

illustrates how procedural fluency, when combined with conceptual understanding, allows students to 

connect formal operations with meaningful problem contexts. 

 

 

Figure 11. Dina’s solution to the rice problem 

This finding supports Russell’s (1999) characterization of mathematical reasoning as the 

development, justification, and application of mathematical generalizations that form a network of 

interconnected knowledge. Dina’s solution shows how a student can flexibly move between conceptual 

understanding, symbolic representation, and real-world application to reach a correct and justifiable 

solution. 

Problem 1 
Father bought a 25-kg bag of rice. Each day, Mother cooks 
3

4
 kg of rice. For how many days will the rice last? 

 
So, the rice that Father purchased will be sufficient for 33 
days 
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The three examples above demonstrate that students employ diverse reasoning strategies—

ranging from visual modeling to symbolic manipulation—depending on their prior knowledge and 

mathematical experiences. Zulfani and Kalnako relied primarily on informal, visual approaches that 

enabled them to solve a complex fraction division problem without formal computation. Dina, on the other 

hand, applied formal fraction addition to reach the solution efficiently. Together, these findings reinforce 

the view that mathematical reasoning is not merely the mechanical execution of arithmetic operations but 

rather the dynamic use of conceptual knowledge, representations, and strategies to make sense of and 

solve problems. 

Interpretation of Students’ Reasoning in the Presented Problem 

Analysis of students’ solutions to the dragon fruit problem reveals clear evidence of emergent deductive 

thinking. Many students employed an implicit if–then logical structure: if each box holds six dragon fruits, 

then sixteen boxes are required to hold ninety-six fruits, and the remaining two fruits must be placed in a 

seventeenth box. This reasoning demonstrates their ability to generalize from a contextual situation and 

to organize their solution steps coherently. 

Notably, several students were able to carry out repeated addition symbolically, representing 

dragon fruits numerically rather than visually. A small number of students went further, recognizing 

repeated addition as a form of multiplication, thereby using multiplication as a tool for confirmation (e.g., 

6 × 16 = 96). These findings indicate that students possess what might be described as latent 

mathematical competencies—powers of imagination, symbolization, conjecture, and generalization—that 

they express when given an open opportunity to reason through problems. For instance, representing 

one kilogram with a square or counting by sixes using a self-constructed number line are examples of 

students inventing their own notations to support problem solving. 

The findings align with a consensus in the mathematics education literature that mathematical 

reasoning forms the foundation for understanding and applying mathematical concepts. Scholars have 

emphasized the need to strengthen students’ reasoning abilities by engaging them in activities such as 

investigation, representation, conjecture, and justification (Clements et al., 2003; NCTM, 2000; Widjaja 

et al., 2021; Russell, 1999; Mukuka et al., 2023). According to the Principles and Standards for School 

Mathematics (NCTM, 2000), mathematics learning is most effective when it continually promotes higher-

order thinking and reasoning. Reasoning may thus be seen as the “soil” in which mathematical 

understanding takes root and grows. When students learn to reason mathematically, they develop the 

ability to transfer knowledge to new situations, construct connections among concepts, and acquire a 

foundation for future learning. 

Teachers’ reflections on the student work were highly positive. Several noted that students’ 

mathematical reasoning often differs from that of teachers, providing unique insights into how children 

make sense of problems. They also recognized the importance of allowing students to explore multiple 

solution paths and acknowledged that teachers should not be the sole source of mathematical knowledge 

in the classroom. Strengthening teachers’ understanding of students’ reasoning processes can be a 

powerful lever for professional growth (Hacıeminoğlu et al., 2022; Raza, 2024). As suggested by Fonseca 

(2018), creating learning environments that support students in organizing their work, conjecturing, and 

justifying their conclusions fosters more consistent reasoning and valid mathematical proofs. These 

experiences deepen students’ conceptual understanding and prepare them for more advanced 

mathematical thinking. 
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CONCLUSION 

This study provides evidence that students’ mathematical reasoning abilities are diverse and shaped by 

multiple factors, including prior learning experiences and initial mathematical proficiency. The analysis of 

students’ work on whole-number and fractional division problems revealed a continuum of reasoning 

strategies, ranging from concrete, visual approaches (e.g., drawing boxes and counting individual items) 

to more abstract representations (e.g., repeated addition, number-line jumps, and multiplication as a 

confirmation strategy). These findings suggest that when students are given opportunities to engage with 

contextual problems and represent their thinking using self-constructed notations, they display emergent 

deductive reasoning, make conjectures, and construct meaningful mathematical generalizations. In line 

with previous research (Baroody & Coslick, 1998; NCTM, 2000; Russell, 1999), this study underscores 

that mathematical reasoning serves as a foundation for conceptual understanding and should be nurtured 

consistently throughout students’ mathematical development. 

Furthermore, this study also was conducted in a single primary school with two classes and a 

limited number of participants, which restricts the generalizability of the findings. Moreover, the qualitative 

design, while valuable for capturing rich descriptions of students’ reasoning, does not allow for strong 

causal inferences regarding the effects of instructional interventions on mathematical reasoning 

development. Additional variables—such as teacher practices, students’ prior achievement levels, and 

socio-cultural factors—may have influenced the outcomes but were not systematically controlled in this 

study. Future research should employ mixed-methods designs or longitudinal approaches to more 

robustly examine the interaction between instructional approaches, students’ prior knowledge, and the 

development of mathematical reasoning over time. 

Finally, the findings of this research have important implications for mathematics teaching and 

teacher education. Designing lessons around contextual problems appears to stimulate students’ 

reasoning processes and enables them to construct knowledge actively, which may enhance their long-

term mathematical proficiency. We recommend that future studies systematically investigate the impact 

of various instructional models—such as problem-based learning, realistic mathematics education, and 

inquiry-oriented approaches—on students’ reasoning skills across diverse educational settings. 

Furthermore, professional development programs for teachers should emphasize strategies for eliciting, 

interpreting, and building upon students’ reasoning, as this can support teachers in creating classrooms 

where reasoning and proof are central to instruction. Strengthening students’ reasoning from the earliest 

grades not only promotes deeper mathematical understanding but also prepares them to approach 

complex and abstract mathematical ideas with confidence. 
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