Main Article Content

Abstract

This is a comprehensive study aiming to examine pre-service primary school teachers’ (PPST) mathematical disposition levels in terms of various variables, and to explain the results thoroughly. It employed the explanatory sequential design among the mixed method research designs. The data were collected through Mathematics Dispositional Functions Inventory (MDFI) and semi-structured interviews. The participants consisted of 361 PPSTs in the quantitative phase, and six PPSTs in the qualitative phase. Quantitative data were analyzed with descriptive and inferential statistics, while qualitative data were analyzed with descriptive analysis. The PPSTs’ mathematical disposition levels did not differ significantly in terms of grade level, high school type, area of education at high school and ability area variables; however, their scores in the attitude toward mathematics lesson factor of MDFI differed significantly in terms of area of education at high school and ability area variables. There were significant, positive, and low-level relationships between PPSTs’ mathematical disposition levels and their levels of mathematics learning experience in primary, middle and high schools, and their perception level of mathematics teaching efficacy. The PPSTs’ scores in attitude toward mathematics lesson factor related to ability area were consistent with their statements in the interviews. The quantitative analysis results regarding mathematics learning experience levels and mathematics teaching efficacy perception levels, defined as continuous variables, overlapped with the qualitative analysis results.

Keywords

Mathematical Disposition Mathematics Education Mixed-Method Pre-Service Primary School Teacher

Article Details

How to Cite
Albay, A., & Cetin, H. (2023). A mixed method research study on pre-service primary school teachers’ mathematical disposition. Journal on Mathematics Education, 14(2), 311–338. https://doi.org/10.22342/jme.v14i2.pp311-338

References

  1. Ab, J. S., Margono, G., & Rahayu, W. (2019). The logical thinking ability: mathematical disposition and self-regulated learning. Journal of Physics: Conference Series, (Vol. 1155, p. 012092). IOP Publishing.https://doi.org/10.1088/1742-6596/1155/1/012092
  2. Akar, H., & Boz, N. (2011). Sınıf öğretmeni adaylarının matematiğe yönelik tutumları, matematiğe karşı öz-yeterlik algıları ve öğretmen öz-yeterlik inançları arasındaki ilişkilerin incelenmesi. Türk Eğitim Bilimleri Dergisi, 9(2), 281–312. https://dergipark.org.tr/en/pub/tebd/issue/26100/275000
  3. An, S. A., Tillman, D. A., Boren, R., & Wang, J. (2014). Fostering elementary students’ mathematics disposition through music-mathematics integrated lessons. International Journal for Mathematics Teaching & Learning, 19.
  4. An, S. A., Zhang, M., Flores, M., Chapman, J. R., Tillman, D. A., & Serna, L. (2015). Music Activities as an Impetus for Hispanic Elementary Students’ Mathematical Disposition. Journal on Mathematics Education, 8.
  5. Atallah, F., Lynne Bryant, S., & Dada, R. (2010). A research framework for studying conceptions and dispositions of mathematics: A dialogue to help students learn. Research in Higher Education Journal, 7(1).
  6. Bekdemir, M., Çiltaş, A., & Işık, A. (2008). Matematik eğitiminin gerekliliği ve önemi. Ataturk Universitesi Kazım Karabekir Egitim Fakultesi Dergisi. https://www.academia.edu/25863769/Matematik_E%C4%9Fitiminin_Gereklili%C4%9Fi_Ve_%C3%96nemi
  7. Beyers, J. E. R. (2008). Development and evaluation of an instrument to measure prospective teachers’ dispositions with respect to mathematics. https://www.proquest.com/dissertations-theses/development-evaluation-instrument-measure/docview/304632697/se-2?accountid=159111
  8. Beyers, J. E. R. (2012). An examination of the relationship between prospective teachers’ dispositions and achievement in a mathematics content course for elementary education majors. SAGE Open, 2(4), 1–15. https://doi.org/10.1177/2158244012462589
  9. Bishop, P. A., & Herron, R. L. (2015). Use and misuse of the Likert item responses and other ordinal
  10. measures. International Journal of Exercise Science, 8(3), 297-302. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833473/
  11. Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö. E., Karadeniz, Ş., & Demirel, F. (2012). Bilimsel araştırma yöntemleri (11th ed.). Pegem Akademi.
  12. Çelik, H. C., & Bindak, R. (2005). Sınıf öğretmenliği bölümü öğrencilerinin matematiğe yönelik tutumlarının çeşitli değişkenlere göre incelenmesi | TR Dizin. Gazi Üniversitesi Kastamonu Eğitim Dergisi, 13(2), 427–436. https://app.trdizin.gov.tr/makale/TVRFM01UZ3lNZz09
  13. Cohen, J. (1988). Set correlation and contingency tables. Applied psychological measurement, 12(4), 425-434. https://doi.org/10.1177/014662168801200410
  14. Cooke, A. (2015). Considering pre-service teacher disposition towards mathematics. Mathematics Teachers Education and Development, 17(1), 1–11. https://espace.curtin.edu.au/handle/20.500.11937/47462
  15. Coppola, C., Martino, P. di, Pacelli, T., & Sabena, C. (2013). Primary teachers’ beliefs and emotional disposition towards mathematics and its teaching. Mathematıcs Educatıon In A Globalızed Envıronment: Proceedings of CIEAEM 65, 217–226. https://arpi.unipi.it/handle/11568/532073
  16. Creswell, J. W. (2021). Karma Yöntem Araştırmalarına Giriş (M. Sözbilir, Ed.; 3rd ed.). Pegem Akademi Yayıncılık. https://doi.org/10.14527/9786053184720.
  17. Creswell, J. W., & Plano Clark, V. L. (2020). Karma Yöntem Araştırmaları Tasarımı ve Yürütülmesi (Y. Dede ve S. B. Demir, Eds.; 4th ed.). Anı Yayıncılık.
  18. Cruz, J. M. (2017). Investigating the mathematical dispositions and self-efficacy for teaching mathematics of preservice teachers [The University of Texas Rio Grande Valley]. https://www.proquest.com/dissertations-theses/investigating-mathematical-dispositions-
  19. Cruz, J. M., Wilson, A. T., & Wang, X. (2019). Connections between pre-service teachers’ mathematical dispositions and self-efficacy for teaching mathematics. International Journal of Research in Education and Science, 5(2).
  20. Feldhaus, C. A. (2012). How mathematical disposition and ıntellectual development ınfluence teacher candidates’ mathematical knowledge for teaching in a mathematics. https://www.proquest.com/dissertations-theses/how-mathematical-disposition-intellectual/docview/1098535239/se-2?accountid=159111
  21. Feldhaus, C. A. (2014). How pre service elementary school teachers’ mathematical dispositions are ınfluenced by school mathematics. American International Journal of Contemporary Research, 4(6). www.aijcrnet.com
  22. Hidayat, W., Wahyudin, & Prabawanto, S. (2018). The mathematical argumentation ability and adversity quotient (aq) of pre-service mathematics teacher. Journal on Mathematics Education, 9(2), 239–248. https://eric.ed.gov/?id=EJ1193588
  23. Huck, S.W. (2008). Reading statistics and research (5rd edition). New York: Addison Wesley Longman
  24. Kisunzu, P. K. (2008). Teacher instructional practices, student mathematical dispositions, and mathematics achievement [Northern Illinois University]. In ProQuest Dissertations and Theses. https://www.proquest.com/dissertations-theses/teacher-instructional-practices-student/docview/304541001/se-2?accountid=159111
  25. Kusmaryono, I., Suyitno, H., Dwijanto, D. & Dwidayati, N. (2019). The effect of mathematical disposition on mathematical power formation: Review of dispositional mental functions. International Journal of Instruction, 12(1). https://doi.org/10.29333/iji.2019.12123a
  26. Lestari, S. D., Kartono, & Mulyono. (2019). Mathematical literacy ability and mathematical disposition on team assisted ındividualization learning with RME approach and recitation. Unnes Journal of Mathematics Education Research, 8(2), 2019–2157.
  27. Ma, J. & Radke, S. (2015). Interplay of artistic identities and mathematical dispositions at an art crating company (S. Mukhopadhyay ve B. Greer, Eds.). MES8.
  28. Pearson, E.S. & Heartley, H.O. (1958). Biometrika tables for statistician. New York: Cambridge University Press
  29. Seçer, İ. (2017). SPSS ve LISREL ile Pratik Veri Analizi Analiz ve Raporlaştırma (3rd ed.). Anı Yayıncılık.
  30. Siegfried, J. Z. M. (2012). The hidden strand of mathematical proficiency: defining and assessing for productive disposition in elementary school teachers’ mathematical content knowledge [University of California, San Diego]. https://www.proquest.com/dissertations-theses/hidden-strand-mathematical-proficiency-defining/docview/1081482546/se-2?accountid=159111
  31. Soltis, L. A. (2019). Mathematical dispositions of novice upper-elementary teachers: a phenomenological study [Liberty University]. https://www.proquest.com/dissertations-theses/mathematical-dispositions-novice-upper-elementary/docview/2355994782/se-2?accountid=159111
  32. Sukmadewi, S. T. (2014). Improving students’ mathematical thinking and disposition through probing and pushing questions. Journal Matematika Integratif, 10(2), 127–137.
  33. Teddlie, C. & Tashakkori, A. (2020). Karma yöntem araştırmalarının temelleri (Y. Dede & S. B. Demir, Eds.; 2nd ed.). Anı Yayıncılık.
  34. Ulia, N., & Kusmaryono, I. (2021). Mathematical disposition of students’, teachers, and parents in distance learning: A survey. Premiere Educandum: Jurnal Pendidikan Dasar Dan Pembelajaran, 11(1), 147–159. https://doi.org/10.25273/pe.v11i1.8869
  35. Ulya, H., & Rahayu, R. (2021). Mathematical disposition of students in open-ended learning based on ethnomathematics. Journal of Education Technology, 5(3), 339–345. https://doi.org/10.23887/JET.V5I3.33535
  36. Yaniawati, R. P., Indrawan, R. & Setiawan, G. (2019). Core model on ımproving mathematical communication and connection, analysis of students’ mathematical disposition. International Journal of Instruction, 12(4), 639–654. https://doi.org/10.29333/iji.2019.12441a
  37. Yazgan, Y., Akkaya, R. & Memnun, D. S. (2013). Matematiksel yatkınlık: ilkokul ve ortaokul öğretmen adaylarının yatkınlık düzeylerinin çeşitli değişkenler açısından incelenmesi. Abant İzzet Baysal Üniversitesi Eğitim Fakültesi Dergisi, 13(2). http://acikerisim.ibu.edu.tr/xmlui/handle/20.500.12491/382
  38. Yıldırım, A. & Şimşek, H. (2018). Sosyal bilimlerde nitel araştırma yöntemleri (11th ed.). Seçkin Yayıncılık.
  39. Yörük, S. K. (2019). Matematiksel yatkınlık ölçeği uyarlama çalışması. http://dspace.balikesir.edu.tr/xmlui/handle/20.500.12462/6149