Main Article Content
Abstract
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52, 215-241.
- Ball, L., & Stacey, K. (2019). Technology-supported classrooms: New opportunities for communication and development of mathematical understanding. In A. Büchter, M. Glade, R. Herold-Blasius, M. Klinger, F. Schacht, & P. Scherer. (Eds) Vielfältige Zugänge zum Mathematikunterricht (pp. 121-129). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-24292-3_9
- Biesta, G. J. J., & Burbules, N. C. (2004). Pragmatism and educational research. Rowman & Littlefield.
- Borba, M. C. (2021). The future of mathematics education since COVID-19: humans-with-media or humans-with-non-living-things. Educational Studies in Mathematics, 108, 385-400.
- Bozkurt, G., & Yiğit Koyunkaya, M. (2022). Supporting prospective mathematics teachers’ planning and teaching technology-based tasks in the context of a practicum course. Teaching and Teacher Education, 119, 103830. https://doi.org/10.1016/j.tate.2022.103830
- Bruner, J. S., Oliver, R. S., & Greenfield, P. M. (1971). Studien zur kognitiven Entwicklung. Kohlhammer.
- Büchter, A., & Leuders, T. (2009). Mathematikaufgaben selbst entwickeln: Lernen fördern - Leistung überprüfen (4th ed.). Cornelsen Scriptor.
- Bundesministerium für Unterricht und Kunst. (2021). Gesamte Rechtsvorschrift für Lehrpläne -- allgemeinbildende höhere Schulen. https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10008568
- Clark-Wilson, A., & Hoyles, C. (2017). Dynamic digital technologies for dynamic mathematics: Implications for teachers’ knowledge and practice (Issue April). UCL Institute of Education Press, University College.
- Clark-Wilson, A., Robutti, O., & Thomas, M. (2020). Teaching with technology. ZDM Mathematics Education, 52(7), 1223–1242. https://doi.org/10.1007/s11858-020-01196-0
- Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13. https://doi.org/10.3102/0013189X032001009
- Dick, T. P. (2008). Keeping the faith: Fidelity in technological tools for mathematics education. In G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics: Vol. 2. Cases and perspectives (pp. 333–339). Information Age.
- Donevska-Todorova, A., Trgalová, J., Schreiber, C., & Rojano, T. (2021). Quality of task design in technology-enhanced resources for teaching and learning mathematics. In A. Clark-Wilson, A. Donevska-Todorova, E. Faggiano, J. Trgalova, & H.-G. Weigand (Eds.), Mathematics Education in the Digital Age (pp. 23–41). Routledge. https://doi.org/10.4324/9781003137580-3
- Drijvers, P. (2015). Digital technology in mathematics education: Why it works (or doesn’t). In S. J. Cho (Ed.), Selected Regular Lectures from the 12th International Congress on Mathematical Education (pp. 135–151). Springer International Publishing. https://doi.org/10.1007/978-3-319-17187-6_8
- Drijvers, P. (2018). Tools and taxonomies: A response to Hoyles. Research in Mathematics Education, 20(3), 229–235. https://doi.org/10.1080/14794802.2018.1522269
- Drijvers, P., Ball, L., Barzel, B., Heid, M. K., Cao, Y., & Maschietto, M. (2016). Uses of technology in lower secondary mathematics education. Springer International Publishing.
- Drijvers, P., Boon, P., & Van Reeuwijk, M. (2011). Algebra and technology. In P. Drijvers (Ed.), Secondary algebra education. Revisiting topics and themes and exploring the unknown (pp. 179–202). Sense.
- Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1-2), 103–131.
- Fahlgren, M., Szabo, A., & Vinerean, M. (2022). Prospective teachers designing tasks for dynamic geometry environments. In J. Hodgen, E. Geraniou, G. Bolondi, & F. Ferretti (Eds.), Proceedings of the Twelfth Congress of the European Society for Research in Mathematics Education (CERME12) (pp. 2526–2533). Free University of Bozen-Bolzano and ERME. https://hal.science/hal-03747493/
- Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? Educational Studies in Mathematics, 71(3), 199–218. https://doi.org/10.1007/s10649-008-9159-8
- Hughes, J., Thomas, R., & Scharber, C. (2006). Assessing technology integration: The RAT - replacement, amplification, and transformation - framework. In C. Crawford, R. Carlsen, K. McFerrin, J. Price, R. Weber, & D. Willis (Eds.), Proceedings of SITE 2006 - Society for Information Technology & Teacher Education International Conference (pp. 1616–1620). Association for the Advancement of Computing in Education. http://www.editlib.org/p/22293/
- Kimeswenger, B. (2017). Identifying and assessing quality of dynamic materials for teaching mathematics [Doctoral dissertation, Johannes Kepler Universität Linz]. https://epub.jku.at/obvulihs/content/titleinfo/2581881
- Leacock, T. L., & Nesbit, J. C. (2007). A framework for evaluating the quality of multimedia learning resources. Journal of Educational Technology & Society, 10(2), 44–59.
- Lindenbauer, E. (2018). Students’ conceptions and effects of dynamic materials regarding functional thinking [Doctoral dissertation, Johannes Kepler Universität Linz]. https://epub.jku.at/obvulihs/content/titleinfo/3548223
- Lindenbauer, E. (2020). Interactive worksheets assisting students’ functional thinking conceptions in lower secondary education. Mathematica Didactica, 43(1), 1-23.
- Lindenbauer, E., Lavicza, Z., & Weinhandl, R. (2022). Initiating the development of a pre-service teacher training course based on research on students’ digital resource and teaching designs. In J. Hodgen, E. Geraniou, G. Bolondi, & F. Ferretti (Eds.), Proceedings of the Twelfth Congress of the European Society for Research in Mathematics Education (CERME12) (pp. 2570–2577). Free University of Bozen-Bolzano and ERME. https://hal.archives-ouvertes.fr/hal-03747531
- McCulloch, A., Leatham, K., Bailey, N., Cayton, C., Fye, K., & Lovett, J. (2021). Theoretically framing the pedagogy of learning to teach mathematics with technology. Contemporary Issues in Teacher Education, 21(2), 325–359.
- Roth, J. (2017). Computer einsetzen: Wozu, wann, wer & wie? Mathematik lehren, 205, 35–38.
- Sherman, M., & Cayton, C. (2015). Using appropriate tools strategically for instruction. The Mathematics Teacher, 109(4), 306–310. https://doi.org/10.5951/mathteacher.109.4.0306
- Sinclair, M. P. (2003). Some implications of the results of a case study for the design of pre-constructed, dynamic geometry sketches and accompanying materials. Educational Studies in Mathematics, 52(3), 289–317. https://doi.org/10.1023/A:1024305603330
- Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practice. Mathematics Teaching in the Middle School, 3(5), 344–350.
- Stake, R. E. (1995). The art of case study research. Sage Publications.
- Thomas, A., & Edson, A. J. (2019). A framework for teachers’ evaluation of digital instructional materials: Integrating mathematics teaching practices with technology use in K-8 classrooms. Contemporary Issues in Technology and Teacher Education, 19(3), 351–372. https://citejournal.org/volume-19/issue-3-19/mathematics/a-framework-for-teachers-evaluation-of-digital-instructional-materials-integrating-mathematics-teaching-practices-with-technology-use-in-k-8-classrooms/
- Trgalova, J., & Jahn, A. P. (2013). Quality issue in the design and use of resources by mathematics teachers. ZDM Mathematics Education, 45(7), 973–986. https://doi.org/10.1007/s11858-013-0525-3
- Trocki, A. (2014). Evaluating and writing dynamic geometry tasks. The Mathematics Teacher, 107(9), 701–705. https://doi.org/10.5951/mathteacher.107.9.0701
- Trocki, A. (2015). Designing and examining the effects of a dynamic geometry task analysis framework on teachers’ written Geometer’s Sketchpad tasks. Raleigh: North Carolina State University. Unpublished doctoral dissertation.
- Trocki, A., & Hollebrands, K. (2018). The development of a framework for assessing dynamic geometry task quality. Digital Experiences in Mathematics Education, 4(2–3), 110–138. https://doi.org/10.1007/s40751-018-0041-8
- Watson, A, & Ohtani, M. (2015). Themes and issues in mathematics education concerning task design. In: A. Watson, & M. Ohtani (Eds.), Task design in mathematics education: An ICMI study (pp. 3–15). Springer.
- Yin, R. K. (2009). Case study research: Design and methods (4th ed.). Sage Publications.
References
Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52, 215-241.
Ball, L., & Stacey, K. (2019). Technology-supported classrooms: New opportunities for communication and development of mathematical understanding. In A. Büchter, M. Glade, R. Herold-Blasius, M. Klinger, F. Schacht, & P. Scherer. (Eds) Vielfältige Zugänge zum Mathematikunterricht (pp. 121-129). Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-24292-3_9
Biesta, G. J. J., & Burbules, N. C. (2004). Pragmatism and educational research. Rowman & Littlefield.
Borba, M. C. (2021). The future of mathematics education since COVID-19: humans-with-media or humans-with-non-living-things. Educational Studies in Mathematics, 108, 385-400.
Bozkurt, G., & Yiğit Koyunkaya, M. (2022). Supporting prospective mathematics teachers’ planning and teaching technology-based tasks in the context of a practicum course. Teaching and Teacher Education, 119, 103830. https://doi.org/10.1016/j.tate.2022.103830
Bruner, J. S., Oliver, R. S., & Greenfield, P. M. (1971). Studien zur kognitiven Entwicklung. Kohlhammer.
Büchter, A., & Leuders, T. (2009). Mathematikaufgaben selbst entwickeln: Lernen fördern - Leistung überprüfen (4th ed.). Cornelsen Scriptor.
Bundesministerium für Unterricht und Kunst. (2021). Gesamte Rechtsvorschrift für Lehrpläne -- allgemeinbildende höhere Schulen. https://www.ris.bka.gv.at/GeltendeFassung.wxe?Abfrage=Bundesnormen&Gesetzesnummer=10008568
Clark-Wilson, A., & Hoyles, C. (2017). Dynamic digital technologies for dynamic mathematics: Implications for teachers’ knowledge and practice (Issue April). UCL Institute of Education Press, University College.
Clark-Wilson, A., Robutti, O., & Thomas, M. (2020). Teaching with technology. ZDM Mathematics Education, 52(7), 1223–1242. https://doi.org/10.1007/s11858-020-01196-0
Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13. https://doi.org/10.3102/0013189X032001009
Dick, T. P. (2008). Keeping the faith: Fidelity in technological tools for mathematics education. In G. W. Blume & M. K. Heid (Eds.), Research on technology and the teaching and learning of mathematics: Vol. 2. Cases and perspectives (pp. 333–339). Information Age.
Donevska-Todorova, A., Trgalová, J., Schreiber, C., & Rojano, T. (2021). Quality of task design in technology-enhanced resources for teaching and learning mathematics. In A. Clark-Wilson, A. Donevska-Todorova, E. Faggiano, J. Trgalova, & H.-G. Weigand (Eds.), Mathematics Education in the Digital Age (pp. 23–41). Routledge. https://doi.org/10.4324/9781003137580-3
Drijvers, P. (2015). Digital technology in mathematics education: Why it works (or doesn’t). In S. J. Cho (Ed.), Selected Regular Lectures from the 12th International Congress on Mathematical Education (pp. 135–151). Springer International Publishing. https://doi.org/10.1007/978-3-319-17187-6_8
Drijvers, P. (2018). Tools and taxonomies: A response to Hoyles. Research in Mathematics Education, 20(3), 229–235. https://doi.org/10.1080/14794802.2018.1522269
Drijvers, P., Ball, L., Barzel, B., Heid, M. K., Cao, Y., & Maschietto, M. (2016). Uses of technology in lower secondary mathematics education. Springer International Publishing.
Drijvers, P., Boon, P., & Van Reeuwijk, M. (2011). Algebra and technology. In P. Drijvers (Ed.), Secondary algebra education. Revisiting topics and themes and exploring the unknown (pp. 179–202). Sense.
Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1-2), 103–131.
Fahlgren, M., Szabo, A., & Vinerean, M. (2022). Prospective teachers designing tasks for dynamic geometry environments. In J. Hodgen, E. Geraniou, G. Bolondi, & F. Ferretti (Eds.), Proceedings of the Twelfth Congress of the European Society for Research in Mathematics Education (CERME12) (pp. 2526–2533). Free University of Bozen-Bolzano and ERME. https://hal.science/hal-03747493/
Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? Educational Studies in Mathematics, 71(3), 199–218. https://doi.org/10.1007/s10649-008-9159-8
Hughes, J., Thomas, R., & Scharber, C. (2006). Assessing technology integration: The RAT - replacement, amplification, and transformation - framework. In C. Crawford, R. Carlsen, K. McFerrin, J. Price, R. Weber, & D. Willis (Eds.), Proceedings of SITE 2006 - Society for Information Technology & Teacher Education International Conference (pp. 1616–1620). Association for the Advancement of Computing in Education. http://www.editlib.org/p/22293/
Kimeswenger, B. (2017). Identifying and assessing quality of dynamic materials for teaching mathematics [Doctoral dissertation, Johannes Kepler Universität Linz]. https://epub.jku.at/obvulihs/content/titleinfo/2581881
Leacock, T. L., & Nesbit, J. C. (2007). A framework for evaluating the quality of multimedia learning resources. Journal of Educational Technology & Society, 10(2), 44–59.
Lindenbauer, E. (2018). Students’ conceptions and effects of dynamic materials regarding functional thinking [Doctoral dissertation, Johannes Kepler Universität Linz]. https://epub.jku.at/obvulihs/content/titleinfo/3548223
Lindenbauer, E. (2020). Interactive worksheets assisting students’ functional thinking conceptions in lower secondary education. Mathematica Didactica, 43(1), 1-23.
Lindenbauer, E., Lavicza, Z., & Weinhandl, R. (2022). Initiating the development of a pre-service teacher training course based on research on students’ digital resource and teaching designs. In J. Hodgen, E. Geraniou, G. Bolondi, & F. Ferretti (Eds.), Proceedings of the Twelfth Congress of the European Society for Research in Mathematics Education (CERME12) (pp. 2570–2577). Free University of Bozen-Bolzano and ERME. https://hal.archives-ouvertes.fr/hal-03747531
McCulloch, A., Leatham, K., Bailey, N., Cayton, C., Fye, K., & Lovett, J. (2021). Theoretically framing the pedagogy of learning to teach mathematics with technology. Contemporary Issues in Teacher Education, 21(2), 325–359.
Roth, J. (2017). Computer einsetzen: Wozu, wann, wer & wie? Mathematik lehren, 205, 35–38.
Sherman, M., & Cayton, C. (2015). Using appropriate tools strategically for instruction. The Mathematics Teacher, 109(4), 306–310. https://doi.org/10.5951/mathteacher.109.4.0306
Sinclair, M. P. (2003). Some implications of the results of a case study for the design of pre-constructed, dynamic geometry sketches and accompanying materials. Educational Studies in Mathematics, 52(3), 289–317. https://doi.org/10.1023/A:1024305603330
Smith, M. S., & Stein, M. K. (1998). Selecting and creating mathematical tasks: From research to practice. Mathematics Teaching in the Middle School, 3(5), 344–350.
Stake, R. E. (1995). The art of case study research. Sage Publications.
Thomas, A., & Edson, A. J. (2019). A framework for teachers’ evaluation of digital instructional materials: Integrating mathematics teaching practices with technology use in K-8 classrooms. Contemporary Issues in Technology and Teacher Education, 19(3), 351–372. https://citejournal.org/volume-19/issue-3-19/mathematics/a-framework-for-teachers-evaluation-of-digital-instructional-materials-integrating-mathematics-teaching-practices-with-technology-use-in-k-8-classrooms/
Trgalova, J., & Jahn, A. P. (2013). Quality issue in the design and use of resources by mathematics teachers. ZDM Mathematics Education, 45(7), 973–986. https://doi.org/10.1007/s11858-013-0525-3
Trocki, A. (2014). Evaluating and writing dynamic geometry tasks. The Mathematics Teacher, 107(9), 701–705. https://doi.org/10.5951/mathteacher.107.9.0701
Trocki, A. (2015). Designing and examining the effects of a dynamic geometry task analysis framework on teachers’ written Geometer’s Sketchpad tasks. Raleigh: North Carolina State University. Unpublished doctoral dissertation.
Trocki, A., & Hollebrands, K. (2018). The development of a framework for assessing dynamic geometry task quality. Digital Experiences in Mathematics Education, 4(2–3), 110–138. https://doi.org/10.1007/s40751-018-0041-8
Watson, A, & Ohtani, M. (2015). Themes and issues in mathematics education concerning task design. In: A. Watson, & M. Ohtani (Eds.), Task design in mathematics education: An ICMI study (pp. 3–15). Springer.
Yin, R. K. (2009). Case study research: Design and methods (4th ed.). Sage Publications.