Main Article Content
Abstract
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Aubuson, P., Burke, P., Schuck, S., & Kearney, M. (2014). Teachers choosing rich tasks: The moderating impact of technology on student learning, enjoyment, and preparation. Educational Researcher, 43(5), 219-229. https://doi.org/10.3102/0013189X14537115
- Ávila, A., Altamirano, A. C., Galindo, A. A. G., Ramos, M. T. G., López-Bonilla, G., & Ramírez, J. L. (2013). Una década de investigación educativa en conocimientos disciplinares en México. Colección, 9 (786074), 510881.
- Basto, M., & Pereira, J. M. (2012). An SPSS R-menu for ordinal factor analysis. Journal of Statistical Software, 46(4), 1-29. http://doi.org/10.18637/jss.v046.i04
- Bostic, J., Lesseig, K., Sherman, M., & Boston, M. (2021). Classroom observation and mathematics education research. Journal of Mathematics Teacher Education, 24(1), 5-31.
- Boston, M. (2012). Assessing instructional quality in mathematics. The Elementary School Journal, 113, 76-104. https://doi.org/10.1086/666387
- Boston, M. D., & Smith, M. S. (2009). Transforming secondary mathematics teaching: increasing the cognitive demands of instructional tasks used in teachers' classrooms. Journal of Research in Mathematics Education, 40(2), 119-156.
- Boston, M., & Wolf, M. (2006). Assessing academic rigor in mathematics instruction: The development of instructional quality assessment toolkit. CSE Technical Report 672. CRESST. http://www.cse.ucla.edu/products/reports/r672.pdf
- Burkhardt, H. (2006). Modelling in Mathematics classrooms: Reflections on past developments and the future. ZDM Mathematics Education, 38(2), 178-195 https://doi.org/10.1007/bf02655888
- Cevikbas, M., & Kaiser, G. (2020). Flipped classroom as a reform-oriented approach to teaching mathematics. ZDM Mathematics Education, 52(7), 1291-1305. https://doi.org/10.1007/s11858-020-01191-5
- Courtney, M. G. R., & Gordon, M. (2013). Determining the number of factors to retain in EFA: Using the SPSS R-Menu v2. 0 to make more judicious estimations. Practical Assessment, Research & Evaluation, 18(8), 1-14. https://doi.org/10.7275/9cf5-2m72
- Donovan, M., & Bransford, J. (2005). How Students Learn: History, Mathematics and Science in the Classroom. National Research Council, Committee on How People Learn: A targeted report for teachers. National Academies Press.
- Gleason, J, Livers, S., & Zelkowski, J. (2017) Mathematics Classroom Observation Protocol for Practices (MCOP2): A validation study. Investigations in Mathematics Learning, 9(3), 111-129. https://doi.org/10.1080/19477503.2017.1308697
- Gulikers, J. T., Bastiaens, T. J., & Kirschner, P. A. (2004). A five-dimensional framework for authentic assessment. Educational technology research and development, 52(3), 67-86. https://doi.org/10.1007/BF02504676
- Hiebert, J., Carpenter, T., Fennema, E., Fuson, K., Wearne, D. Murray, H. Oliver, A., & Humen, P. (1997). Making sense: Teaching and learning mathematics with understanding. Hienemann.
- Hill, H., Charalambous, Charalambos Y., & Kraft, M. (2012). When rater reliability is not enough: Teacher observation systems for generalizability study. Educational Researcher, 41(2), 56-64. https://doi.org/10.3102/0013189X12437203
- Hill, H., & Shih, J. (2009). Examining the quality of statistical mathematics education research. Journal of Research in Mathematics Education, 40(3), 241-250.
- Instituto Nacional para la Evaluación de la Educación [INEE]. (2018). Planea resultados nacionales 2018 [Planea national results]. https://www.inee.edu.mx/images/stories/2018/planea/PLANEA06_Rueda_de_prensa_27nov2018
- Jensen, B., Perez Martinez, M. G., & Aguilar Escobar, A. (2016). Framing and assessing classroom opportunity to learn: The case of Mexico. Assessment in Education: Principles, Policy & Practice, 23(1), 149-172.
- Judson, E. (2013). Development of an instrument to assess and deliberate on the integration of mathematics into student-centered science learning. School Science and Mathematics, 113(2), 56–68. https://doi.org/10.1111/ssm.12004
- Llinares, S. (2008). Aprendizaje del estudiante para profesor de matemáticas y el papel de los nuevos instrumentos de comunicación. III Encuentro de Programas de Formación Inicial de Profesores de Matemáticas. Universidad Pedagógica Nacional.
- Lloret, S., Ferretes, A., Hernández A., & Tomás, I. (2014). Exploratory Item Factor Analysis: a practical guide revised and updated. Annals of Psychology 30(3), 1151-1169. https://doi.org/10.6018/analesps.30.3.199361
- López & Mota, Á. (2003). Saberes científicos, humanísticos y tecnológicos: procesos de enseñanza y aprendizaje [Scientific, humanistic and technological knowledge: teaching and learning processes]. Consejo Mexicano de Investigación Educativa.
- Martínez Rizo, F. (2012). Procedimientos para el estudio de las prácticas docentes: Revisión de la literatura [An empirical study of the impact of formative assessment: A literature review]. Revista Electrónica de Investigación y Evaluación Educativa, 18(1), 1–22.
- Martínez Rizo, F., & Chávez, Y. (2015). La enseñanza de las matemáticas y Ciencias Naturales en Educación Básica en México. Revisión de literatura [Teaching Mathematics and Natural Sciences in Basic Education in Mexico. Literature review]. Universidad Autónoma de Aguascalientes.
- McTighe, J. & Wiggins, G. (2012). Understanding by design framework. http://www.ascd.org/ASCD/pdf/siteASCD/publications/UbD_WhitePaper0312.pdf
- MET Project (2010). Validation Engine for Observational Protocols. Bill y Melinda Gates Foundation.
- National Council of Teachers of Mathematics [NCTM] (2014). Principles to actions. Ensuring mathematical success for all. NCTM.
- Newmann, F., Marks, H., & Gamoran, A. (1996). Authentic pedagogy and student performance. American Journal of Education, 104(4), 280-312. https://doi.org/10.1086/444136
- Newmann, F.M., Lopez, G., & Bryk, A.S. (1998) The quality of intellectual work in Chicago schools: A baseline report. Consortium on Chicago School Research.
- Newmann, F., & Wehlage, G. (1993). Five standards of authentic instruction. Educational Leadership, 50(7), 8-12. https://www.ascd.org/el/articles/five-standards-of-authentic-instruction
- Organization for Economic Co-operation and Development [OECD]. (2015). Programa para la evaluación internacional de alumnos (PISA). Resultados 2015. https://www.oecd.org/pisa/PISA-2015-Mexico-ESP.pdf
- Organization for Economic Co-operation and Development [OECD]. (2019). Programme for International Student Assessment (PISA). Results from PISA 2018. https://www.oecd.org/pisa/publications/PISA2018_CN_MEX.pdf
- Osman, K. (2013). Scientific Inventive Thinking Skills in Children. In E.G. Carayannis (Ed.), Encyclopedia of Creativity, Invention, Innovation and Entrepreneurship. Springer. https://doi.org/10.1007/978-1-4614-3858-8_389
- Oura, G. K. (2001). Authentic task-based materials: Bringing the real world into the classroom. Sophia Junior College Faculty Bulletin, 21, 65-84.
- Oviedo, H. C., & Campo-Arias, A. (2005). Aproximación al uso del coeficiente alfa de Cronbach. Revista colombiana de psiquiatría, 34(4), 572-580.
- Picaroni, B., & Loureiro, G. (2010). Qué matemáticas se enseña en aulas de sexto año de primaria en escuelas de Latinoamérica [What mathematics is taught in sixth grade classrooms in Latin American schools]. Páginas de Educación, 3(1), 29-60. https://doi.org/10.22235/pe.v3i1.657
- Rodríguez-Martínez, L.Y. (2018). Diseño y validación de un protocolo de observación para evaluar las actividades de enseñanza en quinto grado de primaria en la asignatura de Matemáticas. [Tesis de Doctorado, Universidad Autónoma de Aguascalientes]. Repositorio bibliográfico Universidad Autónoma de Aguascalientes. http://hdl.handle.net/11317/1505
- Schlesinger, L., & Jentsch, A. (2016). Theoretical and methodological challenges in measuring instructional quality in mathematics education using classroom observations. ZDM Mathematics Education, 48(1-2), 29-40. https://doi.org/10.1007/s11858-016-0765-0
- Secretaría de Educación Pública. (2011). Plan de Estudios. Educación Básica. SEP.
- Secretaría de Educación Pública. (2012). Desafíos matemáticos [Mathematical Challenges]. Libro para el maestro. Quinto grado de primaria. SEP.
- Shavelson, R. J., & Webb, N. M. (1991). A primer on generalizability theory. Sage Publications.
- Stein, M., Grover, B., & Henningsen, M. (1996). Building student capacity for mathematical thinking and reasoning: An analysis of mathematical task used in reform classroom. American Educational Research Journal, 33, 455-488. https://doi.org/10.3102/00028312033002455
- Stiggins, R. (2007). Assessment for learning: An essential foundation of productive instruction. In R. Douglas (Ed.), Ahead of the curve: The power of assessment to transform teaching and learning (pp. 59-76). Solution Tree Press.
- Stone, R. H., Boon, R. T., Fore III, C., Bender, W. N., & Spencer, V. G. (2008). Use of text maps to improve the reading comprehension skills among students in high school with emotional and behavioral disorders. Behavioral Disorders, 33(2), 87-98. https://doi.org/10.1177/019874290803300203
- Stylianides, A. J., & Stylianides, G. J. (2013). Seeking research-grounded solutions to problems of practice: Classroom-based interventions in mathematics education. ZDM, 45, 333-341. https://doi.org/10.1007/s11858-013-0501-y
- Swan, M. (2015). Designing tasks and lesson that develop conceptual understanding, strategic competence and critical awareness. Center for Research in Mathematics Education: University of Nottingham.
- Turner, R. C., Keiffer, E. A., & Salamo, G. J. (2018). Observing inquiry-based learning environments using the Scholastic Inquiry Observation Instrument. International Journal of Science and Mathematics Education, 16(1), 1455-1478. https://doi.org/10.1007/s10763-017-9843-1
- UNESCO (2021). Los aprendizajes fundamentales en America Latina y el Caribe. Estudio Regional Comparativo y Explicativo (ERCE 2019). Resumen ejecutivo. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000380257
- Walkowiak, T. A., Berry, R. Q., Meyer, J. P., Rimm-Kaufman, S. E., & Ottmar, E. R. (2013). Introducing an observational measure of standards-based mathematics teaching practices: Evidence of validity and score reliability. Educational Studies in Mathematics, 85(1), 109-128. https://doi.org/10.1007/s10649-013-9499-x
- Wiggins, G. (1998). Educative assessment: Designing assessments to inform and improve student performance. Jossey-Bass Publishers. https://doi.org/10.22235/pe.v1i1.718
- Zolkower, B., & Bressan, A. (2012). Educación Matemática Realista [Realistic Math Education]. In M. Pochulu & M. Rodríguez (Eds.), Educación matemática. Aportes a la formación docente desde distintos enfoques teóricos. (pp. 175-200). Universitaria de Villa María y Universidad Nacional de Gral. Sarmiento.
References
Aubuson, P., Burke, P., Schuck, S., & Kearney, M. (2014). Teachers choosing rich tasks: The moderating impact of technology on student learning, enjoyment, and preparation. Educational Researcher, 43(5), 219-229. https://doi.org/10.3102/0013189X14537115
Ávila, A., Altamirano, A. C., Galindo, A. A. G., Ramos, M. T. G., López-Bonilla, G., & Ramírez, J. L. (2013). Una década de investigación educativa en conocimientos disciplinares en México. Colección, 9 (786074), 510881.
Basto, M., & Pereira, J. M. (2012). An SPSS R-menu for ordinal factor analysis. Journal of Statistical Software, 46(4), 1-29. http://doi.org/10.18637/jss.v046.i04
Bostic, J., Lesseig, K., Sherman, M., & Boston, M. (2021). Classroom observation and mathematics education research. Journal of Mathematics Teacher Education, 24(1), 5-31.
Boston, M. (2012). Assessing instructional quality in mathematics. The Elementary School Journal, 113, 76-104. https://doi.org/10.1086/666387
Boston, M. D., & Smith, M. S. (2009). Transforming secondary mathematics teaching: increasing the cognitive demands of instructional tasks used in teachers' classrooms. Journal of Research in Mathematics Education, 40(2), 119-156.
Boston, M., & Wolf, M. (2006). Assessing academic rigor in mathematics instruction: The development of instructional quality assessment toolkit. CSE Technical Report 672. CRESST. http://www.cse.ucla.edu/products/reports/r672.pdf
Burkhardt, H. (2006). Modelling in Mathematics classrooms: Reflections on past developments and the future. ZDM Mathematics Education, 38(2), 178-195 https://doi.org/10.1007/bf02655888
Cevikbas, M., & Kaiser, G. (2020). Flipped classroom as a reform-oriented approach to teaching mathematics. ZDM Mathematics Education, 52(7), 1291-1305. https://doi.org/10.1007/s11858-020-01191-5
Courtney, M. G. R., & Gordon, M. (2013). Determining the number of factors to retain in EFA: Using the SPSS R-Menu v2. 0 to make more judicious estimations. Practical Assessment, Research & Evaluation, 18(8), 1-14. https://doi.org/10.7275/9cf5-2m72
Donovan, M., & Bransford, J. (2005). How Students Learn: History, Mathematics and Science in the Classroom. National Research Council, Committee on How People Learn: A targeted report for teachers. National Academies Press.
Gleason, J, Livers, S., & Zelkowski, J. (2017) Mathematics Classroom Observation Protocol for Practices (MCOP2): A validation study. Investigations in Mathematics Learning, 9(3), 111-129. https://doi.org/10.1080/19477503.2017.1308697
Gulikers, J. T., Bastiaens, T. J., & Kirschner, P. A. (2004). A five-dimensional framework for authentic assessment. Educational technology research and development, 52(3), 67-86. https://doi.org/10.1007/BF02504676
Hiebert, J., Carpenter, T., Fennema, E., Fuson, K., Wearne, D. Murray, H. Oliver, A., & Humen, P. (1997). Making sense: Teaching and learning mathematics with understanding. Hienemann.
Hill, H., Charalambous, Charalambos Y., & Kraft, M. (2012). When rater reliability is not enough: Teacher observation systems for generalizability study. Educational Researcher, 41(2), 56-64. https://doi.org/10.3102/0013189X12437203
Hill, H., & Shih, J. (2009). Examining the quality of statistical mathematics education research. Journal of Research in Mathematics Education, 40(3), 241-250.
Instituto Nacional para la Evaluación de la Educación [INEE]. (2018). Planea resultados nacionales 2018 [Planea national results]. https://www.inee.edu.mx/images/stories/2018/planea/PLANEA06_Rueda_de_prensa_27nov2018
Jensen, B., Perez Martinez, M. G., & Aguilar Escobar, A. (2016). Framing and assessing classroom opportunity to learn: The case of Mexico. Assessment in Education: Principles, Policy & Practice, 23(1), 149-172.
Judson, E. (2013). Development of an instrument to assess and deliberate on the integration of mathematics into student-centered science learning. School Science and Mathematics, 113(2), 56–68. https://doi.org/10.1111/ssm.12004
Llinares, S. (2008). Aprendizaje del estudiante para profesor de matemáticas y el papel de los nuevos instrumentos de comunicación. III Encuentro de Programas de Formación Inicial de Profesores de Matemáticas. Universidad Pedagógica Nacional.
Lloret, S., Ferretes, A., Hernández A., & Tomás, I. (2014). Exploratory Item Factor Analysis: a practical guide revised and updated. Annals of Psychology 30(3), 1151-1169. https://doi.org/10.6018/analesps.30.3.199361
López & Mota, Á. (2003). Saberes científicos, humanísticos y tecnológicos: procesos de enseñanza y aprendizaje [Scientific, humanistic and technological knowledge: teaching and learning processes]. Consejo Mexicano de Investigación Educativa.
Martínez Rizo, F. (2012). Procedimientos para el estudio de las prácticas docentes: Revisión de la literatura [An empirical study of the impact of formative assessment: A literature review]. Revista Electrónica de Investigación y Evaluación Educativa, 18(1), 1–22.
Martínez Rizo, F., & Chávez, Y. (2015). La enseñanza de las matemáticas y Ciencias Naturales en Educación Básica en México. Revisión de literatura [Teaching Mathematics and Natural Sciences in Basic Education in Mexico. Literature review]. Universidad Autónoma de Aguascalientes.
McTighe, J. & Wiggins, G. (2012). Understanding by design framework. http://www.ascd.org/ASCD/pdf/siteASCD/publications/UbD_WhitePaper0312.pdf
MET Project (2010). Validation Engine for Observational Protocols. Bill y Melinda Gates Foundation.
National Council of Teachers of Mathematics [NCTM] (2014). Principles to actions. Ensuring mathematical success for all. NCTM.
Newmann, F., Marks, H., & Gamoran, A. (1996). Authentic pedagogy and student performance. American Journal of Education, 104(4), 280-312. https://doi.org/10.1086/444136
Newmann, F.M., Lopez, G., & Bryk, A.S. (1998) The quality of intellectual work in Chicago schools: A baseline report. Consortium on Chicago School Research.
Newmann, F., & Wehlage, G. (1993). Five standards of authentic instruction. Educational Leadership, 50(7), 8-12. https://www.ascd.org/el/articles/five-standards-of-authentic-instruction
Organization for Economic Co-operation and Development [OECD]. (2015). Programa para la evaluación internacional de alumnos (PISA). Resultados 2015. https://www.oecd.org/pisa/PISA-2015-Mexico-ESP.pdf
Organization for Economic Co-operation and Development [OECD]. (2019). Programme for International Student Assessment (PISA). Results from PISA 2018. https://www.oecd.org/pisa/publications/PISA2018_CN_MEX.pdf
Osman, K. (2013). Scientific Inventive Thinking Skills in Children. In E.G. Carayannis (Ed.), Encyclopedia of Creativity, Invention, Innovation and Entrepreneurship. Springer. https://doi.org/10.1007/978-1-4614-3858-8_389
Oura, G. K. (2001). Authentic task-based materials: Bringing the real world into the classroom. Sophia Junior College Faculty Bulletin, 21, 65-84.
Oviedo, H. C., & Campo-Arias, A. (2005). Aproximación al uso del coeficiente alfa de Cronbach. Revista colombiana de psiquiatría, 34(4), 572-580.
Picaroni, B., & Loureiro, G. (2010). Qué matemáticas se enseña en aulas de sexto año de primaria en escuelas de Latinoamérica [What mathematics is taught in sixth grade classrooms in Latin American schools]. Páginas de Educación, 3(1), 29-60. https://doi.org/10.22235/pe.v3i1.657
Rodríguez-Martínez, L.Y. (2018). Diseño y validación de un protocolo de observación para evaluar las actividades de enseñanza en quinto grado de primaria en la asignatura de Matemáticas. [Tesis de Doctorado, Universidad Autónoma de Aguascalientes]. Repositorio bibliográfico Universidad Autónoma de Aguascalientes. http://hdl.handle.net/11317/1505
Schlesinger, L., & Jentsch, A. (2016). Theoretical and methodological challenges in measuring instructional quality in mathematics education using classroom observations. ZDM Mathematics Education, 48(1-2), 29-40. https://doi.org/10.1007/s11858-016-0765-0
Secretaría de Educación Pública. (2011). Plan de Estudios. Educación Básica. SEP.
Secretaría de Educación Pública. (2012). Desafíos matemáticos [Mathematical Challenges]. Libro para el maestro. Quinto grado de primaria. SEP.
Shavelson, R. J., & Webb, N. M. (1991). A primer on generalizability theory. Sage Publications.
Stein, M., Grover, B., & Henningsen, M. (1996). Building student capacity for mathematical thinking and reasoning: An analysis of mathematical task used in reform classroom. American Educational Research Journal, 33, 455-488. https://doi.org/10.3102/00028312033002455
Stiggins, R. (2007). Assessment for learning: An essential foundation of productive instruction. In R. Douglas (Ed.), Ahead of the curve: The power of assessment to transform teaching and learning (pp. 59-76). Solution Tree Press.
Stone, R. H., Boon, R. T., Fore III, C., Bender, W. N., & Spencer, V. G. (2008). Use of text maps to improve the reading comprehension skills among students in high school with emotional and behavioral disorders. Behavioral Disorders, 33(2), 87-98. https://doi.org/10.1177/019874290803300203
Stylianides, A. J., & Stylianides, G. J. (2013). Seeking research-grounded solutions to problems of practice: Classroom-based interventions in mathematics education. ZDM, 45, 333-341. https://doi.org/10.1007/s11858-013-0501-y
Swan, M. (2015). Designing tasks and lesson that develop conceptual understanding, strategic competence and critical awareness. Center for Research in Mathematics Education: University of Nottingham.
Turner, R. C., Keiffer, E. A., & Salamo, G. J. (2018). Observing inquiry-based learning environments using the Scholastic Inquiry Observation Instrument. International Journal of Science and Mathematics Education, 16(1), 1455-1478. https://doi.org/10.1007/s10763-017-9843-1
UNESCO (2021). Los aprendizajes fundamentales en America Latina y el Caribe. Estudio Regional Comparativo y Explicativo (ERCE 2019). Resumen ejecutivo. UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000380257
Walkowiak, T. A., Berry, R. Q., Meyer, J. P., Rimm-Kaufman, S. E., & Ottmar, E. R. (2013). Introducing an observational measure of standards-based mathematics teaching practices: Evidence of validity and score reliability. Educational Studies in Mathematics, 85(1), 109-128. https://doi.org/10.1007/s10649-013-9499-x
Wiggins, G. (1998). Educative assessment: Designing assessments to inform and improve student performance. Jossey-Bass Publishers. https://doi.org/10.22235/pe.v1i1.718
Zolkower, B., & Bressan, A. (2012). Educación Matemática Realista [Realistic Math Education]. In M. Pochulu & M. Rodríguez (Eds.), Educación matemática. Aportes a la formación docente desde distintos enfoques teóricos. (pp. 175-200). Universitaria de Villa María y Universidad Nacional de Gral. Sarmiento.