Main Article Content
Abstract
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Ángeles-Navarro, M., & Pérez-Carreras, P. (2010). A socratic methodological proposal for the study of the equality 0 . 999 . . . = 1. The Teaching of Mathematics, XIII(1), 17–34. http://www.teaching.math.rs/vol/tm1312.pdf
- Belmonte, J. L., & Sierra, M. (2011). Modelos intuitivos del infinito y patrones de evolución nivelar. Revista Latinoamericana de Investigación en Matematica Educativa, 14(2), 139–171. https://www.scielo.org.mx/pdf/relime/v14n2/v14n2a2.pdf
- Carey, S. (1991). Knowledge aquisition: enrichment or conceptual change? In S. Carey & R. Gelman (Eds.), The Epigenesis of Mind: Essays on biology and cognition (pp. 257–291). Psychology Press. https://doi.org/10.4324/9781315807805-18
- Chi, M. T. H. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change (pp. 61–82). Routledge, Taylor & Francis Group. https://education.asu.edu/sites/default/files/lcl/chi_concpetualchangechapter_0.pdf
- Cihlář, J., Eisenmann, P., & Krátká, M. (2015). Omega Position – a specific phase of perceiving the notion of infinity. Scientia in Educatione, 6(2), 51–73. https://doi.org/10.14712/18047106.184
- Cihlář, J., Eisenmann, P., Krátká, M., & Vopĕnka, P. (2009). Cognitive conflict as a tool of overcoming obstacles in understanding infinity. Teaching Mathematics and Computer Science, 7(2), 279–295. https://doi.org/10.5485/TMCS.2009.0240
- Date-Huxtable, E., Cavanagh, M., Coady, C., & Easey, M. (2018). Conceptualisations of infinity by primary pre-service teachers. Mathematics Education Research Journal, 30(4), 545–567. https://doi.org/10.1007/s13394-018-0243-9
- Díaz-Espinoza, I. A., & Juárez-López, J. A. (2023). Mathematics teachers’ conceptions about infinity: A preliminary study at the secondary and high school level. Union: Jurnal Ilmiah Pendidikan Matematika, 11(3), 426–435. https://doi.org/10.30738/union.v11i3.16006
- Díaz-Espinoza, I. A., Juárez-López, J. A., & Juárez-Ruiz, E. (2023). Exploring a mathematics teacher’s conceptions of infinity: The case of Louise. Indonesian Journal of Mathematics Education, 6(1), 1–6. https://doi.org/10.31002/ijome.v6i1.560
- Dubinsky, E., Weller, K., McDonald, M. A., & Brown, A. (2005a). Some historical issues and paradoxes regarding the concept of infinity: An APOS-based analysis: Part 1. Educational Studies in Mathematics, 58(3), 335–359. https://doi.org/10.1007/s10649-005-2531-z
- Dubinsky, E., Weller, K., McDonald, M. A., & Brown, A. (2005b). Some historical issues and paradoxes regarding the concept of infinity: An APOS analysis: Part 2. Educational Studies in Mathematics, 60(2), 253–266. https://doi.org/10.1007/s10649-005-0473-0
- Eisenmann, P. (2008). Why is it not true that 0.999 … < 1? Teaching of Mathematics, 11(1), 35–40. http://teaching.math.rs/vol/tm1114.pdf
- Fischbein, E., Tirosh, D., & Hess, P. (1979). The intuition of infinit. Educational Studies in Mathematics, 10(1), 3–40. https://doi.org/https://doi.org/10.1007/BF00311173
- Hannula, M. S., Pehkonen, E., Maijala, H., & Soro, R. (2006). Levels of students’ understanding on infinity. Teaching Mathematics and Computer Science, 4(2), 317–337. https://doi.org/10.5485/tmcs.2006.0129
- Holton, D., & Symons, D. (2021). ‘Infinity-based thinking’ in the primary classroom: a case for its inclusion in the curriculum. Mathematics Education Research Journal, 33(3), 435–450. https://doi.org/10.1007/s13394-020-00311-4
- Homaeinejad, M., Barahmand, A., & Seif, A. (2021). The relationship between notions of infinity and strategies used to compare enumerable infinite sets. International Journal of Mathematical Education in Science and Technology, 53(12), 3307-3325. https://doi.org/10.1080/0020739X.2021.1941362
- Juter, K. (2019). University students’ general and specific beliefs about infinity, division by zero and denseness of the number line. Nordic Studies in Mathematics Education, 24(2), 69–88. https://ncm.gu.se/wp-content/uploads/2020/06/24_2_069088_juter-1.pdf
- Kattou, M., Thanasia, M., Katerina, K., Constantinos, C., & George, P. (2010). Teachers’ perceptions about infinity : a process or an object ? In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the 6th Congress of the European Society for Research in Mathematics Education (pp. 1771–1780). www.inrp.fr/editions/cerme6
- Kidron, I., & Tall, D. (2015). The roles of visualization and symbolism in the potential and actual infinity of the limit process. Educational Studies in Mathematics, 88(2), 183–199. https://doi.org/10.1007/s10649-014-9567-x
- Krátká, M. (2013). Zdroje epistemologických překážek v porozumění nekonečnu. Scientia in Educatione, 1(1), 87–100. https://doi.org/10.14712/18047106.7
- Krátká, M., Eisenmann, P., & Cihlář, J. (2021). Four conceptions of infinity. International Journal of Mathematical Education in Science and Technology, 53(10), 2661-2685. https://doi.org/10.1080/0020739X.2021.1897894
- Mamolo, A., & Zazkis, R. (2008). Paradoxes as a window to infinity. Research in Mathematics Education, 10(2), 167–182. https://doi.org/10.1080/14794800802233696
- Manfreda Kolar, V., & Čadež, T. H. (2012). Analysis of factors influencing the understanding of the concept of infinity. Educational Studies in Mathematics, 80(3), 389–412. https://doi.org/10.1007/s10649-011-9357-7
- Medina Ibarra, L., Romo-Vázquez, A., & Sánchez Aguilar, M. (2019). Using the work of Jorge Luis Borges to identify and confront students’ misconceptions about infinity. Journal of Mathematics and the Arts, 13(1–2), 48–59. https://doi.org/10.1080/17513472.2018.1504270
- Mena-Lorca, A., Mena-Lorca, J., Montoya-Delgadillo, E., Morales, A., & Parraguez, M. (2015). El obstáculo epistemológico del infinito actual: persistencia, resistencia y categorías de análisis. Revista Latinoamericana de Investigación en Matemática Educativa, 18(3), 329–358. https://doi.org/10.12802/relime.13.1832
- Monaghan, J. (2001). Young peoples’ ideas of infinity. Educational Studies in Mathematics, 48(2–3), 239–257. https://doi.org/10.1023/A:1016090925967
- Montes, M. A., Carrillo, J., & Ribeiro, C. M. (2014). Teachers knowledge of infinity, and its role in classroom practice. In P. Liljedahl, S. Oesterle, C. Nicol, & D. Allan (Eds.), Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education (Vol. 4, pp. 233–239). North American Chapter of the International Group for the Psychology of Mathematics Education. https://eric.ed.gov/?id=ED599915
- Moreno Armella, L. E., & Waldegg, G. (1991). The conceptual evolution of actual mathematical infinity. Educational Studies in Mathematics, 22(3), 211–231. https://doi.org/10.1007/BF00368339
- Roa-Fuentes, S., & Oktaç, A. (2014). El infinito potencial y actual : descripción de caminos cognitivos para su construcción en un contexto de paradojas. Educación Matemática, 26(1), 73–102. http://www.revista-educacion-matematica.com/revista/2016/05/15/vol26-1-3/
- Schwarzenberger, R. L. E., & Tall, D. (1978). Conflicts in the learning of real numbers and limits. Mathematics Teaching, 82, 44–49. https://wrap.warwick.ac.uk/494/1/WRAP_Tall_dot1978c-with-rolph.pdf
- Singer, M., & Voica, C. (2003). Perception of infinity: does it really help in problem solving? In A. Rogerson (Ed.), Proceedings of the International Conference The Decidable and the Undecidable in Mathematics Education (pp. 1–7). http://dipmat.math.unipa.it/~grim/21_project/21_brno_03.htm
- Smith III, J. P., DiSessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: a constructivist analysis of knowledge in transition. Journal of the Learning Sciences, 3(2), 115–163. https://doi.org/10.1207/s15327809jls0302_1
- Tall, D. (1980). The notion of infinite measuring number and its relevance in the intuition of infinity. Educational Studies in Mathematics, 11(3), 271–284. https://doi.org/10.1007/BF00697740
- Tall, D. (2001). Natural and formal infinities. Educational Studies in Mathematics, 48(2–3), 199–238. https://doi.org/10.1023/A:1016000710038
- Tall, D., & Tirosh, D. (2001). The never-ending struggle. Educational Studies in Mathematics, 48(2–3), 129–136. https://doi.org/10.1023/A:1016019128773
- Tsamir, P. (1999). The transition from comparison of finite to the comparison of infinite sets: Teaching prospective teachers. Educational Studies in Mathematics, 38, 209–234. https://doi.org/10.1023/A:1003514208428
- Villabona Millán, D., Roa Fuentes, S., & Oktaç, A. (2022). Concepciones dinámicas y estáticas del infinito: procesos continuos y sus totalidades. Enseñanza de Las Ciencias. Revista de Investigación y Experiencias Didácticas, 40(1), 179–197. https://doi.org/10.5565/rev/ensciencias.3277
- Vinner, S., & Kidron, I. (1985). The concept of repeating and non-repeating decimals at the senior high level. In L. Streefland (Ed.), Proceedings of the 9th Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 357–361). https://eric.ed.gov/?id=ED411130
- von Aufschnaiter, C., & Rogge, C. (2010). Misconceptions or Missing Conceptions? EURASIA Journal of Mathematics, Science and Technology Education, 6(1), 3–18. https://doi.org/10.12973/ejmste/75223
- Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to the problem of conceptual change. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change (pp. 3–34). Routledge, Taylor & Francis Group. https://www.researchgate.net/profile/Stella-Vosniadou/publication/284495667_The_framework_theory_approach_to_the_problem_of_conceptual_change/links/5c57fd05a6fdccd6b5e1128d/The-framework-theory-approach-to-the-problem-of-conceptual-change.pdf
- Waldegg, G. (2005). Bolzano’s approach to the paradoxes of infinity: Implications for teaching. Science & Education, 14(6), 559–577. https://doi.org/10.1007/s11191-004-2014-0
- Wijeratne, C., & Zazkis, R. (2015). On painter’s paradox: Contextual and mathematical approaches to infinity. International Journal of Research in Undergraduate Mathematics Education, 1(2), 163–186. https://doi.org/10.1007/s40753-015-0004-z
- Wistedt, I., & Martinsson, M. (1996). Orchestrating a mathematical theme: Eleven-year olds discuss the problem of infinity. Learning and Instruction, 6(2), 173–185. https://doi.org/10.1016/0959-4752(96)00001-1
- Yopp, D. A., Burroughs, E. A., & Lindaman, B. J. (2011). Why it is important for in-service elementary mathematics teachers to understand the equality .999...=1. Journal of Mathematical Behavior, 30(4), 304–318. https://doi.org/10.1016/j.jmathb.2011.07.007
- Zippin, L. (1962). Uses of infinity. The Mathematical Association of America. https://www.ams.org/books/nml/007/nml007-endmatter.pdf
References
Ángeles-Navarro, M., & Pérez-Carreras, P. (2010). A socratic methodological proposal for the study of the equality 0 . 999 . . . = 1. The Teaching of Mathematics, XIII(1), 17–34. http://www.teaching.math.rs/vol/tm1312.pdf
Belmonte, J. L., & Sierra, M. (2011). Modelos intuitivos del infinito y patrones de evolución nivelar. Revista Latinoamericana de Investigación en Matematica Educativa, 14(2), 139–171. https://www.scielo.org.mx/pdf/relime/v14n2/v14n2a2.pdf
Carey, S. (1991). Knowledge aquisition: enrichment or conceptual change? In S. Carey & R. Gelman (Eds.), The Epigenesis of Mind: Essays on biology and cognition (pp. 257–291). Psychology Press. https://doi.org/10.4324/9781315807805-18
Chi, M. T. H. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change (pp. 61–82). Routledge, Taylor & Francis Group. https://education.asu.edu/sites/default/files/lcl/chi_concpetualchangechapter_0.pdf
Cihlář, J., Eisenmann, P., & Krátká, M. (2015). Omega Position – a specific phase of perceiving the notion of infinity. Scientia in Educatione, 6(2), 51–73. https://doi.org/10.14712/18047106.184
Cihlář, J., Eisenmann, P., Krátká, M., & Vopĕnka, P. (2009). Cognitive conflict as a tool of overcoming obstacles in understanding infinity. Teaching Mathematics and Computer Science, 7(2), 279–295. https://doi.org/10.5485/TMCS.2009.0240
Date-Huxtable, E., Cavanagh, M., Coady, C., & Easey, M. (2018). Conceptualisations of infinity by primary pre-service teachers. Mathematics Education Research Journal, 30(4), 545–567. https://doi.org/10.1007/s13394-018-0243-9
Díaz-Espinoza, I. A., & Juárez-López, J. A. (2023). Mathematics teachers’ conceptions about infinity: A preliminary study at the secondary and high school level. Union: Jurnal Ilmiah Pendidikan Matematika, 11(3), 426–435. https://doi.org/10.30738/union.v11i3.16006
Díaz-Espinoza, I. A., Juárez-López, J. A., & Juárez-Ruiz, E. (2023). Exploring a mathematics teacher’s conceptions of infinity: The case of Louise. Indonesian Journal of Mathematics Education, 6(1), 1–6. https://doi.org/10.31002/ijome.v6i1.560
Dubinsky, E., Weller, K., McDonald, M. A., & Brown, A. (2005a). Some historical issues and paradoxes regarding the concept of infinity: An APOS-based analysis: Part 1. Educational Studies in Mathematics, 58(3), 335–359. https://doi.org/10.1007/s10649-005-2531-z
Dubinsky, E., Weller, K., McDonald, M. A., & Brown, A. (2005b). Some historical issues and paradoxes regarding the concept of infinity: An APOS analysis: Part 2. Educational Studies in Mathematics, 60(2), 253–266. https://doi.org/10.1007/s10649-005-0473-0
Eisenmann, P. (2008). Why is it not true that 0.999 … < 1? Teaching of Mathematics, 11(1), 35–40. http://teaching.math.rs/vol/tm1114.pdf
Fischbein, E., Tirosh, D., & Hess, P. (1979). The intuition of infinit. Educational Studies in Mathematics, 10(1), 3–40. https://doi.org/https://doi.org/10.1007/BF00311173
Hannula, M. S., Pehkonen, E., Maijala, H., & Soro, R. (2006). Levels of students’ understanding on infinity. Teaching Mathematics and Computer Science, 4(2), 317–337. https://doi.org/10.5485/tmcs.2006.0129
Holton, D., & Symons, D. (2021). ‘Infinity-based thinking’ in the primary classroom: a case for its inclusion in the curriculum. Mathematics Education Research Journal, 33(3), 435–450. https://doi.org/10.1007/s13394-020-00311-4
Homaeinejad, M., Barahmand, A., & Seif, A. (2021). The relationship between notions of infinity and strategies used to compare enumerable infinite sets. International Journal of Mathematical Education in Science and Technology, 53(12), 3307-3325. https://doi.org/10.1080/0020739X.2021.1941362
Juter, K. (2019). University students’ general and specific beliefs about infinity, division by zero and denseness of the number line. Nordic Studies in Mathematics Education, 24(2), 69–88. https://ncm.gu.se/wp-content/uploads/2020/06/24_2_069088_juter-1.pdf
Kattou, M., Thanasia, M., Katerina, K., Constantinos, C., & George, P. (2010). Teachers’ perceptions about infinity : a process or an object ? In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the 6th Congress of the European Society for Research in Mathematics Education (pp. 1771–1780). www.inrp.fr/editions/cerme6
Kidron, I., & Tall, D. (2015). The roles of visualization and symbolism in the potential and actual infinity of the limit process. Educational Studies in Mathematics, 88(2), 183–199. https://doi.org/10.1007/s10649-014-9567-x
Krátká, M. (2013). Zdroje epistemologických překážek v porozumění nekonečnu. Scientia in Educatione, 1(1), 87–100. https://doi.org/10.14712/18047106.7
Krátká, M., Eisenmann, P., & Cihlář, J. (2021). Four conceptions of infinity. International Journal of Mathematical Education in Science and Technology, 53(10), 2661-2685. https://doi.org/10.1080/0020739X.2021.1897894
Mamolo, A., & Zazkis, R. (2008). Paradoxes as a window to infinity. Research in Mathematics Education, 10(2), 167–182. https://doi.org/10.1080/14794800802233696
Manfreda Kolar, V., & Čadež, T. H. (2012). Analysis of factors influencing the understanding of the concept of infinity. Educational Studies in Mathematics, 80(3), 389–412. https://doi.org/10.1007/s10649-011-9357-7
Medina Ibarra, L., Romo-Vázquez, A., & Sánchez Aguilar, M. (2019). Using the work of Jorge Luis Borges to identify and confront students’ misconceptions about infinity. Journal of Mathematics and the Arts, 13(1–2), 48–59. https://doi.org/10.1080/17513472.2018.1504270
Mena-Lorca, A., Mena-Lorca, J., Montoya-Delgadillo, E., Morales, A., & Parraguez, M. (2015). El obstáculo epistemológico del infinito actual: persistencia, resistencia y categorías de análisis. Revista Latinoamericana de Investigación en Matemática Educativa, 18(3), 329–358. https://doi.org/10.12802/relime.13.1832
Monaghan, J. (2001). Young peoples’ ideas of infinity. Educational Studies in Mathematics, 48(2–3), 239–257. https://doi.org/10.1023/A:1016090925967
Montes, M. A., Carrillo, J., & Ribeiro, C. M. (2014). Teachers knowledge of infinity, and its role in classroom practice. In P. Liljedahl, S. Oesterle, C. Nicol, & D. Allan (Eds.), Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education (Vol. 4, pp. 233–239). North American Chapter of the International Group for the Psychology of Mathematics Education. https://eric.ed.gov/?id=ED599915
Moreno Armella, L. E., & Waldegg, G. (1991). The conceptual evolution of actual mathematical infinity. Educational Studies in Mathematics, 22(3), 211–231. https://doi.org/10.1007/BF00368339
Roa-Fuentes, S., & Oktaç, A. (2014). El infinito potencial y actual : descripción de caminos cognitivos para su construcción en un contexto de paradojas. Educación Matemática, 26(1), 73–102. http://www.revista-educacion-matematica.com/revista/2016/05/15/vol26-1-3/
Schwarzenberger, R. L. E., & Tall, D. (1978). Conflicts in the learning of real numbers and limits. Mathematics Teaching, 82, 44–49. https://wrap.warwick.ac.uk/494/1/WRAP_Tall_dot1978c-with-rolph.pdf
Singer, M., & Voica, C. (2003). Perception of infinity: does it really help in problem solving? In A. Rogerson (Ed.), Proceedings of the International Conference The Decidable and the Undecidable in Mathematics Education (pp. 1–7). http://dipmat.math.unipa.it/~grim/21_project/21_brno_03.htm
Smith III, J. P., DiSessa, A. A., & Roschelle, J. (1994). Misconceptions reconceived: a constructivist analysis of knowledge in transition. Journal of the Learning Sciences, 3(2), 115–163. https://doi.org/10.1207/s15327809jls0302_1
Tall, D. (1980). The notion of infinite measuring number and its relevance in the intuition of infinity. Educational Studies in Mathematics, 11(3), 271–284. https://doi.org/10.1007/BF00697740
Tall, D. (2001). Natural and formal infinities. Educational Studies in Mathematics, 48(2–3), 199–238. https://doi.org/10.1023/A:1016000710038
Tall, D., & Tirosh, D. (2001). The never-ending struggle. Educational Studies in Mathematics, 48(2–3), 129–136. https://doi.org/10.1023/A:1016019128773
Tsamir, P. (1999). The transition from comparison of finite to the comparison of infinite sets: Teaching prospective teachers. Educational Studies in Mathematics, 38, 209–234. https://doi.org/10.1023/A:1003514208428
Villabona Millán, D., Roa Fuentes, S., & Oktaç, A. (2022). Concepciones dinámicas y estáticas del infinito: procesos continuos y sus totalidades. Enseñanza de Las Ciencias. Revista de Investigación y Experiencias Didácticas, 40(1), 179–197. https://doi.org/10.5565/rev/ensciencias.3277
Vinner, S., & Kidron, I. (1985). The concept of repeating and non-repeating decimals at the senior high level. In L. Streefland (Ed.), Proceedings of the 9th Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 357–361). https://eric.ed.gov/?id=ED411130
von Aufschnaiter, C., & Rogge, C. (2010). Misconceptions or Missing Conceptions? EURASIA Journal of Mathematics, Science and Technology Education, 6(1), 3–18. https://doi.org/10.12973/ejmste/75223
Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to the problem of conceptual change. In S. Vosniadou (Ed.), International Handbook of Research on Conceptual Change (pp. 3–34). Routledge, Taylor & Francis Group. https://www.researchgate.net/profile/Stella-Vosniadou/publication/284495667_The_framework_theory_approach_to_the_problem_of_conceptual_change/links/5c57fd05a6fdccd6b5e1128d/The-framework-theory-approach-to-the-problem-of-conceptual-change.pdf
Waldegg, G. (2005). Bolzano’s approach to the paradoxes of infinity: Implications for teaching. Science & Education, 14(6), 559–577. https://doi.org/10.1007/s11191-004-2014-0
Wijeratne, C., & Zazkis, R. (2015). On painter’s paradox: Contextual and mathematical approaches to infinity. International Journal of Research in Undergraduate Mathematics Education, 1(2), 163–186. https://doi.org/10.1007/s40753-015-0004-z
Wistedt, I., & Martinsson, M. (1996). Orchestrating a mathematical theme: Eleven-year olds discuss the problem of infinity. Learning and Instruction, 6(2), 173–185. https://doi.org/10.1016/0959-4752(96)00001-1
Yopp, D. A., Burroughs, E. A., & Lindaman, B. J. (2011). Why it is important for in-service elementary mathematics teachers to understand the equality .999...=1. Journal of Mathematical Behavior, 30(4), 304–318. https://doi.org/10.1016/j.jmathb.2011.07.007
Zippin, L. (1962). Uses of infinity. The Mathematical Association of America. https://www.ams.org/books/nml/007/nml007-endmatter.pdf