Main Article Content

Abstract

Some countries, including Indonesia, have a framework for understanding how students receive and process math concepts as new knowledge through learning styles. Learning style, particularly Kolb's model, is one of the learning styles that contribute to students' success in learning. Experts have explored the characteristics of Kolb's learning style and found many effects on student learning outcomes as a starting point in learning mathematical concepts. However, the research still focuses on exploring integer operation materials in specific math abilities. The researchers hardly found any discourse to study, such as exploring number patterns in computational thinking and semiotic mathematics. Therefore, this study aims to explore mathematical semiotics and computational thinking on number patterns in terms of Kolb's learning style model. This research uses hermeneutic phenomenology to explore through written tests and interviews. An explanation of the components, characteristics, and semiotic characteristics of mathematical and computational thinking seen in students who have the Kolb model of learning in solving problems of number patterns is part of the interpretation. These findings can be used as benchmarks in developing mathematics materials. Thus, this knowledge is a concrete foundation to guide future advances in curriculum, assessment methods, and learning approaches in mathematics education, particularly in algebra.

Keywords

Computational Thinking Mathematical Semiotics Analysis Number Pattern

Article Details

How to Cite
Purwasih, R., Turmudi, & Dahlan, J. A. (2024). How do you solve number pattern problems through mathematical semiotics analysis and computational thinking?. Journal on Mathematics Education, 15(2), 403–430. https://doi.org/10.22342/jme.v15i2.pp403-430

References

  1. Akhtar, Z. (2018). Students’ misconceptions about locating integers and decimals on number line. International Journal of Innovation in Teaching and Learning, 4(1), 1–16. https://doi.org/10.35993/ijitl.v4i1.314
  2. Angeli, C., & Valanides, N. (2020). Developing young children’s computational thinking with educational robotics: An interaction effect between gender and scaffolding strategy. Computers in Human Behavior, 105. https://doi.org/10.1016/j.chb.2019.03.018
  3. Angeli, C., Voogt, J., Fluck, A., Webb, M., Cox, M., Malyn-Smith, J., & Zagami, J. (2016). A K-6 computational thinking curriculum framework: Implications for teacher knowledge. Educational Technology and Society, 19(3), 47–57. https://www.jstor.org/stable/jeductechsoci.19.3.47
  4. Anwar, A., Turmudi, T., Juandi, D., Saiman, S., & Zaki, M. (2023). Level of visual geometry skill towards learning style Kolb in junior high school. Jurnal Elemen, 9(2), 542–557. https://doi.org/10.29408/jel.v9i2.15121
  5. Anwar, M., & Susanto, E. (2020). Development of interactive learning media for linear programming using adobe flash. Journal of Physics: Conference Series, 1521(2), 022059. 1521, 22059. https://jurnal.uns.ac.id/jkc/article/view/65781
  6. Apiati, V., & Hermanto, R. (2020). Kemampuan berpikir kritis peserta didik dalam memecahkan masalah matematik berdasarkan gaya belajar. Mosharafa: Jurnal Pendidikan Matematika, 9(1). https://doi.org/10.31980/mosharafa.v9i1.630
  7. Asmana, A. T. (2021). Kemampuan pemecahan masalah matematika siswa smk dalam pembelajaran discovery learning berdasarkan gaya belajar siswa. JURNAL EDUKASI: KAJIAN ILMU PENDIDIKAN, 7(2), 25-33. https://doi.org/10.51836/je.v7i2.241
  8. Bire, A. L., Geradus, U., & Bire, J. (2014). Pengaruh gaya belajar visual, auditorial, dan kinestetik terhadap prestasi belajar siswa. Jurnal Kependidikan, 44(2). https://journal.uny.ac.id/index.php/jk/article/view/5307
  9. Bishop, J. P., Lamb, L. L., Philipp, R. A., Whitacre, I., & Schappelle, B. P. (2014). Using order to reason about negative numbers: The case of Violet. Educational Studies in Mathematics, 86(1), 39–59. https://doi.org/10.1007/s10649-013-9519-x
  10. Bofferding, L., & Wessman-Enzinger, N. (2017). Subtraction involving negative numbers: Connecting to whole number reasoning. Mathematics Enthusiast, 14(1–3), 241–262. https://doi.org/10.54870/1551-3440.1396
  11. Cartier, P., Dhombres, J., Heinzmann, G., & Villani, C. (2016). Mathematics and Reality. Freedom in Mathematics, 1–117. https://doi.org/10.1007/978-81-322-2788-5
  12. Cavas, B. (2010). A Study on Pre-service S Styles in Turkey. In Science Education International (Vol. 21, Issue 1). https://files.eric.ed.gov/fulltext/EJ890661.pdf
  13. Choi, J., Lee, Y., & Lee, E. (2017). Puzzle based algorithm learning for cultivating computational thinking. Wireless Personal Communications, 93(1), 131–145. https://doi.org/10.1007/s11277-016-3679-9
  14. Choi, K. S. (2010). Motivating students in learning mathematics with Geogebra. Annals. Annals. Computer Science Series, 8(2), 65-76. https://anale-informatica.tibiscus.ro/download/lucrari/8-2-05-Choi.pdf
  15. Creswell, J. W. (2012). Educational research: Planning, conducting and evaluating quantitative and qualitative research (Fourth ed.). Boston: Pearson Education.
  16. Curzon, P., Selby, C., & Woollard, J. (2014). Developing computational thinking in the classroom: a framework !http://www.digitalschoolhouse.org.ukhttps://eprints.soton.ac.uk/369594/1/DevelopingComputationalThinkingInTheClassroomaFramework.pdf
  17. Czerkawski, B. C., & Lyman, E. W. (2015). Exploring issues about computational thinking in higher education. TechTrends, 59(2), 57–65. https://doi.org/10.1007/s11528-015-0840-3
  18. Daimaturrohmatin, D., & Rufiana, I. S. (2019). Analisis kemampuan komunikasi matematis siswa ditinjau dari gaya belajar Kolb. EDUPEDIA, 3(1). https://doi.org/10.24269/ed.v3i1.232
  19. Eco, U. (1978). A Theory of semiotics. Bloomington: Indiana: Indiana University, 22(1), 117. https://doi.org/10.2307/843633
  20. Eko, B., Riau, S., & Junaedi, I. (2016). Analisis kemampuan pemecahan masalah matematik siswa kelas vii berdasarkan gaya belajar pada pembelajaran PBL. Unnes Journal of Mathematics Education Research, 5(2). https://journal.unnes.ac.id/sju/index.php/ujmer/article/view/12933/7062.
  21. Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1–4. https://doi.org/10.11648/j.ajtas.20160501.11
  22. Fadiana, M., Amin, S., & Lukito, A. (2018). Profil generalisasi berdasarkan perspektif semiotik siswa operasional konkret dan operasional formal. JIPMat, 3(2), 99–106. https://doi.org/10.26877/jipmat.v3i2.2517
  23. Fatkhiyyah, I., Winarso, W., & Manfaat, B. (2019). Kemampuan komunikasi matematika siswa ditinjau dari perbedaan gaya belajar menurut David Kolb. Jurnal Elemen, 5(2). https://doi.org/10.29408/jel.v5i2.928
  24. Fitriyah, I. M., Arrifadah, Y., & Lailiyah, S. (2021). Semiotics of mathematics problem-solving in Mason’s generalization. Jurnal Riset Pendidikan Matematika, 8(1), 1–21. https://doi.org/10.21831/jrpm.v8i1.39621
  25. Font, V., Godino, J. D., & Contreras, A. (2008). From representation to onto-semiotic configurations in analysing mathematics teaching and learning processes. Semiotics in Mathematics Education: Epistemology, History, Classroom, and Culture, 1(1/2), 201–210. https://doi.org/10.1163/9789087905972_010
  26. Fuadiah, N. F., Suryadi, D., & Turmudi, T. (2016). Some difficulties in understanding negative numbers faced by students: a qualitative study applied at secondary schools in Indonesia. International Education Studies, 10(1), 24. https://doi.org/10.5539/ies.v10n1p24
  27. Ghufron, M. N., & Risnawita, R. S. (2012). Gaya belajar kajian teoretik. In gaya belajar kajian teoretik (Vol.66).http://repository.iainkediri.ac.id/583/1/GAYA%20BELAJAR%20KAJIAN%20TEORITIK.pdf
  28. Godino, J. D., Font, V., Wilhelmi, M. R., & Lurduy, O. (2011). Why is the learning of elementary arithmetic concepts difficult ? Semiotic tools for understanding the nature of mathematical objects. Wilhelmi and Orlando Lurduy Source: Educational Studies in Math. Educational Studies in Mathematics, 77(2). https://doi.org/10.1007/s10649-010-9278-x
  29. Gooden, D. J., Preziosi, R. C., & Barnes, F. B. (2009). An Examination of Kolb’s learning style inventory. American Journal of Business Education, 2(3). https://doi.org/10.19030/ajbe.v2i3.4049
  30. Gooding, S. (2009). Children’s difficulties with mathematical word problems. Sara Gooding. 29 (November), 31–36. https://www.bsrlm.org.uk/wp-content/uploads/2016/02/BSRLM-IP-29-3-06.pdf
  31. Grbich, C. (2007). Qualitative data analysis: An introduction. London: Sage Publication Inc. https://methods.sagepub.com/book/qualitative-data-analysis-an-introduction-2e/i1084.xml
  32. Grover, S., & Pea, R. (2021). Computational Thinking: A Competency Whose Time Has Come. Computer Science Education, December. https://doi.org/10.5040/9781350057142.ch-003
  33. Handayani, E., & Ratnaningsih, N. (2019). Kemampuan penalaran matematik peserta didik ditinjau dari gaya belajar Kolb. Prosiding Seminar Nasional & Call For Papers Program Studi Magister Pendidikan Matematika. Tasikmalaya: Universitas Siliwangi. https://jurnal.unsil.ac.id/index.php/sncp/article/view/1038
  34. Inganah, S., & Subanji, S. (2013). Semiotik dalam proses generalisasi pola [Semiotics in the process of generalizing patterns. KNPM V, Himpunan Matematika Indonesia. https://docplayer.info/38722000-Semiotik-dalam-proses-generalisasi-pola.html
  35. Jalinus, N., Ganefri, G., Syahril, S., Wulansari, R. E., Nabawi, R. A., Yunos, J. M., & Kiong, T. T. (2020). Comparison of learning style between engineering and non-engineering students in vocational education. International Journal of Innovation, Creativity and Change, 13(12). https://www.ijicc.net/images/vol_13/Iss_12/131226_Jalinus_2020_E_R.pdf
  36. Khalid, M., & Embong, Z. (2020). Sources and possible causes of errors and misconceptions in operations of integers. International Electronic Journal of Mathematics Education, 15(2). https://doi.org/10.29333/iejme/6265
  37. Knisley, J. (2003). A Four-stage model of mathematical learning. a four-stage model of mathematical learning., 12(1). https://faculty.etsu.edu/knisleyj/mathematicseducatorarticle.pdf
  38. Kolb, A. Y., & Kolb, D. A. (2005). Learning styles and learning spaces: Enhancing experiential learning in higher education. Academy of Management Learning and Education, 4(2). https://doi.org/10.5465/AMLE.2005.17268566
  39. Kolb, D. A. (2014). Experiential learning: Experience as the source of learning and development .[Kindle version]. Retrieved from Amazon. Com.(Original Work Published. https://www.researchgate.net/publication/235701029_Experiential_Learning_Experience_As_The_Source_Of_Learning_And_Development
  40. Kralemann, B., & Lattmann, C. (2013). Models as icons: Modeling models in the semiotic framework of Peirce’s theory of signs. Synthese, 190(16), 3397–3420. https://doi.org/10.1007/s11229-012-0176-x
  41. Kusaeri, Sadieda, L. U., Indayati, T., & Faizien, M. I. (2018). Developing an assessment instrument of higher order thinking skills in mathematics with in islamic context. Journal of Physics: Conference Series, 1097(1). https://doi.org/10.1088/1742-6596/1097/1/012151
  42. Langdridge, D. (2008). Phenomenology and critical social psychology: directions and debates in theory and research. Social and Personality Psychology Compass, 2(3), 1126–1142. https://doi.org/10.1111/j.1751-9004.2008.00114.x
  43. Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically, second edition. www.pearsoned.co.uk.
  44. Magaldi, D., & Berler, M. (2020). Semi-structured Interviews. In: Zeigler-Hill, V., Shackelford, T.K. (eds) Encyclopedia of Personality and Individual Differences. Springer, Cham. https://doi.org/10.1007/978-3-319-24612-3_857
  45. Miles, M. B., Huberman, A. M., & Saldana, J. (2014). Qualitative data analysis: A methods sourcebook. SAGE Publications.
  46. Moleong, J. L. (2020). metodologi penelitian kualitatif J lexy Moleong. Jurnal Ilmiah. https://lib.unnes.ac.id/40372/1/Metode%20Penelitian%20Kualitatif.pdf
  47. Mudaly, V. (2014). A visualisation-based semiotic analysis of learners’ conceptual understanding of graphical functional relationships. African Journal of Research in Mathematics, Science and Technology Education, 18(1), 3–13. https://doi.org/10.1080/10288457.2014.889789
  48. Nezami, A., Kimura, T., Hidaka, K., Kiso, A., Liu, J., Kiso, Y., Goldberg, D. E., & Freire, E. (2003). High-affinity inhibition of a family of Plasmodium falciparum proteases by a designed adaptive inhibitor. Biochemistry, 42(28). https://doi.org/10.1021/bi034131z
  49. Nurmalia, I., Yuhana, Y., & Fatah, A. (2019). Analisis kemampuan komunikasi matematis ditinjau dari gaya kognitif pada siswa SMK. Journal of Authentic Research on Mathematics Edication, 1(2). https://doi.org/10.37640/jim.v1i2.364
  50. Orton, K., Weintrop, D., Beheshti, E., Horn, M., Jona, K., & Wilensky, U. (2016). Bringing computational thinking into high school mathematics and science classrooms. Proceedings of International Conference of the Learning Sciences, ICLS, 2. https://terpconnect.umd.edu/~weintrop/papers/Orton_et_al_ICLS_2016.pdf
  51. Ostler, E. (2011). Semiotics, teaching adaptive and strategic reasoning through formula derivation: Beyond formal. International Journal of Mathematics Science Education.Dari Https://Docplayer.Net/40341983-Teachiing-Adaptive-and-Strategic-Reasoning-through-Formula- Derivation-beyond-Formal-Semiotics.Html, 4(2), 16–24.
  52. Palayukan, H. (2022). Semiotics in Integers : How can the semiosis connections occur in problem solving ? Webology, 19(2), 98–111. https://www.webology.org/abstract.php?id=1165
  53. Palayukan, H., Purwanto, Subanji, & Sisworo. (2020). Student’s semiotics in solving problems geometric diagram viewed from peirce perspective. AIP Conference Proceedings, 2215 (April). https://doi.org/10.1063/5.0000719
  54. Pei, C. (Yu), Weintrop, D., & Wilensky, U. (2018). Cultivating computational thinking practices and mathematical habits of mind in lattice land. Mathematical Thinking and Learning, 20(1), 75–89. https://doi.org/10.1080/10986065.2018.1403543
  55. Peker, M. (2009). Pre-service teachers’ teaching anxiety about mathematics and their learning styles. Eurasia Journal of Mathematics, Science and Technology Education, 5(4). https://doi.org/10.12973/ejmste/75284
  56. Radford, L., & Schubring, G. (2008). Semiotics in mathematics education and culture. Semiotic Perspectives in the Teaching and Learning of Mathematics Series, 1(1/2), 201–210. https://doi.org/10.1007/978-3-319-31370-2
  57. Ricoeur. (1991). From text to action: Essays in hermeneutic, II. Illionis: Nortwestern. https://books.google.co.id/books?id=yx0 cMqymYcC&printsec=frontcover&hl=id#v=onepage&q&f=false
  58. Rijal, S., & Bachtiar, S. (2015). Hubungan antara sikap, kemandirian belajar, dan gaya belajar dengan hasil belajar kognitif siswa. Jurnal Bioedukatika, 3(2). https://doi.org/10.26555/bioedukatika.v3i2.4149
  59. Rivera, F. D. (2010). Visual templates in pattern generalization activity. Educational Studies in Mathematics, 73(3). https://doi.org/10.1007/s10649-009-9222-0
  60. Rokhima, W. A., Kusmayadi, T. A., & Fitriana, L. (2019). Mathematical reasoning of student in senior high school based on gender differences. Journal of Physics: Conference Series, 1318(1). https://doi.org/10.1088/1742-6596/1318/1/012092
  61. Santi, G. (2011). Objectification and semiotic function. Educational Studies in Mathematics, 77(2–3), 285–311. https://doi.org/10.1007/s10649-010-9296-8
  62. Schindler, M., Hußmann, S., Nilsson, P., & Bakker, A. (2017). Sixth-grade students’ reasoning on the order relation of integers as influenced by prior experience: an inferentialist analysis. Mathematics Education Research Journal, 29(4), 471–492. https://doi.org/10.1007/s13394-017-0202-x
  63. Sercenia, J. C., Ibañez, E. D., & Pentang, J. T. (2023). Thinking beyond thinking: Junior high school students’ metacognitive awareness and conceptual understanding of integers. Mathematics Teaching-Research Journal, 15(1), 4-24. https://commons.hostos.cuny.edu/mtrj/wp-content/uploads/sites/30/2023/04/entire_issue_45vol15no1_early_spring.pdf#page=4 https://philpapers.org/archive/SERTBT.pdf.
  64. Stjernfelt, F. (2015). Dicisigns: Peirce’s semiotic doctrine of propositions. Synthese: An International Journal for Epistemology, Methodology and Philosophy of Science, 1, 192(4), 1019–1054. https://doi.org/10.1007/s11229-014-0406-5
  65. Sung, W., & Black, J. B. (2020). Factors to consider when designing effective learning: Infusing computational thinking in mathematics to support thinking-doing. Journal of Research on Technology in Education, 53(4), 404–426. https://doi.org/10.1080/15391523.2020.1784066
  66. Suryaningrum, C. W., & Ningtyas, Y. D. W. K. (2019). Multiple representations in semiotic reasoning. Journal of Physics: Conference Series, 1315(1). https://doi.org/10.1088/1742-6596/1315/1/012064
  67. Suryaningrum, C. W., Purwanto, P., Subanji, S., & Susanto, H. (2019). Semiotic reasoning in solving plane figure area. International Journal of Recent Technology and Engineering, 8(1C2), 706–711. https://doi.org/10.35940/ijrte.b1141.0782s419
  68. Syaputra, D. A., Mulyono, M., & Hasratuddin, H. (2022). Analisis kemampuan pemecahan masalah matematis siswa dalam pembelajaran berbasis lesson study for learning community berdasarkan gaya belajar Kolb. Jurnal Cendekia : Jurnal Pendidikan Matematika, 6(1). https://doi.org/10.31004/cendekia.v6i1.1225
  69. Tarasenkova, N., & Kovalenko, O. (2015). Content and semiotic features of mathematical problems used as a means of training the primary school education students. American Journal of Educational Research, 3(12B), 31–35. https://doi.org/10.12691/education-3-12B-7
  70. Vlassis. (2008). The role of mathematical symbols in the development of number conceptualization: the case of the minus sign. Philosophical. Philosophical Psychology, 2(4), 555–570. https://doi.org/10.1080/09515080802285552
  71. Whitacre, I., Bishop, J. P., Lamb, L. L. C., Philipp, R. A., Schappelle, B. P., & Lewis, M. L. (2012). Happy and sad thoughts: An exploration of children’s integer reasoning. Journal of Mathematical Behavior, 31(3), 356–365. https://doi.org/10.1016/j.jmathb.2012.03.001
  72. Wicaksono, A. B., Chasanah, A. N., & Sukoco, H. (2021). Kemampuan pemecahan masalah geometri berbasis budaya ditinjau dari gender dan gaya belajar. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 10(1). https://doi.org/10.24127/ajpm.v10i1.3256
  73. Widjaja, W., Stacey, K., & Steinle, V. (2011). Locating negative decimals on the number line: Insights into the thinking of pre-service primary teachers. Journal of Mathematical Behavior, 30(1), 80–91. https://doi.org/10.1016/j.jmathb.2010.11.004
  74. Winarti, D., Jamiah, Y., & Suratman, D. (2017). Kemampuan pemecahan masalah siswa dalam menyelesaikan soal cerita berdasarkan gaya belajar pada materi pecahan di SMP. Jurnal Pendidikan Dan Pembelajaran Khatulistiwa, 6(6). https://jurnal.untan.ac.id/index.php/jpdpb/article/view/20462/16773
  75. Wing, J. M. (2006). Explanation-based learning. Computational Thinking, 49(3), 33–35. https://doi.org/10.1201/b16812-43
  76. Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional integrated assessment for computational thinking. In Journal of Educational Computing Research (Vol. 53, Issue 4, pp. 562–590). Baywood Publishing Co. Inc. https://doi.org/10.1177/0735633115608444