Main Article Content
Abstract
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Abouhanifa, S., & Benkenz, N. (2018). Praxéologies enseignantes à l’égard du développement de la pensée algébrique chez les élèves du collège. 32. Retrieved from https://cifem2018.sciencesconf.org/data/pages/Didactique_TIC_Innovation_pedagogique.pdf
- Arend, B. D. (2007). Course assessment practices and student learning strategies in online courses. Online Learning Journal, 11(4), 3-17. http://dx.doi.org/10.24059/olj.v11i4.1712
- Benmansour, N. (1999). Motivational orientations, self-efficacy, anxiety, and strategy use in learning high school mathematics in Morocco. Retrieved from https://www.um.edu.mt/library/oar/handle/123456789/18779
- Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606. https://doi.org/10.1037/0033-2909.88.3.588
- Bourqia, R., El Asmai, H., & Benbigua, A. (2018). Moroccan student results in mathematics and science in an international context. Retrieved from https://www.csefrs.ma/wp-content/uploads/2018/06/TIMSS-Version-Fr-26-05-2018.pdf
- Boutin, G. (2000). Le béhaviorisme et le constructivisme ou la guerre des paradigmes. 37–40. Retrieved from https://www.erudit.org/fr/revues/qf/2000-n119-qf1196762/56026ac.pdf
- Braine, M. D. S. (1988). Pinker S., Language learnability and language development. Journal of Child Language, 15(1), 189–199. https://doi.org/10.1017/S0305000900012137
- Bransford, J., Brown, A. L., & Cocking, R. (1999). How People Learn: Mind, Brain, Experience and School. Retrieved from http://www.csun.edu/~SB4310/How%20People%20Learn.pdf
- Breidenbach, D., Dubinsky, E., Hawks, J., & Devilyna, N. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23(3), 247–285. https://doi.org/10.1007/BF02309532
- Browne, M. W., & Cudeck, R. (1989). Single sample cross-validation indices for covariance structures. Multivariate Behavioral Research, 24(4), 445-455. https://doi.org/10.1207/s15327906mbr2404_4
- Bryk, A. S., Sebring, P. B., Allensworth, E., Luppescu, S., & Easton, J. Q. (2010). Organizing schools for improvement: Lessons from Chicago. University of Chicago Press. Retrieved from https://press.uchicago.edu/Misc/Chicago/078007.html
- Byrne, B. M. (1998). Structural equation modeling with Lisrel, Prelis, and Simplis: Basic concepts, applications, and programming. Psychology Press. https://doi.org/10.4324/9780203774762
- Byrnes, J. P., & Wasik, B. A. (1991). Role of conceptual knowledge in mathematical procedural learning. Developmental Psychology, 27(5), 777–786. https://doi.org/10.1037/0012-1649.27.5.777
- Cobb, P. (1988). The tension between theories of learning and instruction in mathematics education. Educational Psychologist, 23(2), 87–103. https://doi.org/10.1207/s15326985ep2302_2
- CSEFRS. (2014). Mise en œuvre de la Charte nationale d’éducation et de formation: Acquis, déficits et défis. Conseil Supérieur de l’Éducation, de la Formation et de la Recherche Scientifique. Retrieved from https://www.csefrs.ma/publications/charte-nationale-deducation-et-de-formation/?lang=fr
- CSEFRS. (2016). Programme National d’Évaluation des Acquis des élèves. Conseil Supérieur de l’Éducation, de la Formation et de la Recherche Scientifique. Retrieved from https://www.csefrs.ma/publications/programme-national-devaluation-des-acquis-des-eleves/?lang=fr
- CSEFRS. (2021). Programme national d’évaluation des Acquis des élèves de la 6ème année primaire et 3ème année secondaire collégiale – PNEA 2019. Conseil Supérieur de l’Éducation, de la Formation et de la Recherche Scientifique. Retrieved from: https://www.csefrs.ma/publications/programme-national-devaluation-des-acquis-des-eleves-de-la-6eme-annee-primaire-et-3eme-annee-secondaire-collegiale-pnea-2019/?lang=fr
- Doyle, W. (1983). Academic work. Review of Educational Research, 53(2), 159-199. https://doi.org/10.3102/00346543053002159
- Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 95–126). Springer Netherlands. https://doi.org/10.1007/0-306-47203-1_7
- Duval, R. (1993). 1993 Annales de didactique et de sciences cognitives. V. 5. P. 37-65. Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Retrieved from https://publimath.univ-irem.fr/biblio/IST93004.htm
- El Asame, M., & Wakrim, M. (2018). Towards a competency model: A review of the literature and the competency standards. Education and Information Technologies, 23(1), 225–236. https://doi.org/10.1007/s10639-017-9596-z
- El Faddouli, N., El Falaki, B., Idrissi, M. K., & Bennani, S. (2011). Adaptive assessment in learning system. Retrieved from https://www.researchgate.net/profile/Brahim-El-Falaki/publication/303376522_ADAPTIVE_ASSESSMENT_IN_LEARNING_SYSTEM/links/5aabeee3458515baa3b98895/ADAPTIVE-ASSESSMENT-IN-LEARNING-SYSTEM.pdf
- Eronen, L., & Haapasalo, L. (2010). Making Mathematics through Progressive Technology. 12. Retrieved from http://www.elisanet.fi/medusa/cas/Eronen&Haapasalo.pdf
- Gelman, R., & Williams, E. M. (1998). Enabling constraints for cognitive development and learning: Domain specificity and epigenesis. Handbook of Child Psychology: Volume 2: Cognition, Perception, and Language, 575–630. Retrieved from https://www.researchgate.net/publication/232508159_Enabling_constraints_for_cognitive_development_and_learning_Domain_specificity_and_epigenesis
- Haapasalo, L., & Kadijevich, D. (2000). Two types of mathematical knowledge and their relation. Journal Für Mathematik-Didaktik, 21(2), 139–157. https://doi.org/10.1007/BF03338914
- Hair, William C, Barry J. Babin, & Rolph E. Anderson. (2010). Multivariate Data Analysis: Global Edition, 7th Edition. Pearson. Retrieved from https://www.pearson.com/uk/educators/higher-education-educators/program/Hair-Multivariate-Data-Analysis-Global-Edition-7th-Edition/PGM916641.html
- Halford, G. S. (2014). Children’s understanding: The development of mental models. Psychology Press. https://doi.org/10.4324/9781315801803
- Hamouchi, A., Errougui, I., & Boulaassass, B. (2012). L’enseignement au Maroc, de l’approche par objectifs à l’approche par compétences: Points de vue des enseignantes et enseignants. Etudier. Retrieved from https://www.etudier.com/dissertations/l%E2%80%99Enseignement-Au-Maroc-De-l%E2%80%99Approche-Par/55516493.html
- Heibert, J., & Lefevre, P. (1986). Conceptual and Procedural Knowledge in Mathematics: An Introductory Analysis. In Conceptual and Procedural Knowledge. Routledge https://doi.org/10.4324/9780203063538
- Heibert, J., & Wearne, D. (1986). Procedures Over Concepts: The Acquisition of Decimal Number Knowledge. In Conceptual and Procedural Knowledge. Routledge. Retrieved from https://psycnet.apa.org/record/1986-98511-008
- Hiebert, J. (Ed.). (1986). Conceptual and Procedural Knowledge: The Case of Mathematics. Routledge. https://doi.org/10.4324/9780203063538
- Hirtt, P. N. (2009). L’approche par compétences: Une mystification pédagogique. Retrieved from http://sauvonsluniversite.com/IMG/pdf/APC_Mystification.pdf
- Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence: An essay on the construction of formal operational structures. Routledge. https://doi.org/10.4324/9781315009674
- Janvier, C. (1978). The interpretation of complex cartesian graphs representing situations: Studies and teaching experiments. Ph.D. Dissertation. Nottingham University. Retrieved from https://flm-journal.org/Articles/342368A19260FACE7BC364ED38AD7.pdf
- Lauritzen, P. (2012). Conceptual and Procedural Knowledge of Mathematical Functions. 172. Retrieved from https://erepo.uef.fi/bitstream/handle/123456789/11481/urn_isbn_978-952-61-0893-3.pdf?sequence=1&isAllowed=y
- Leikin, R., & Levav-Waynberg, A. (2007). Exploring mathematics teacher knowledge to explain the gap between theory-based recommendations and school practice in the use of connecting tasks. Educational Studies in Mathematics, 66(3), 349–371. https://doi.org/10.1007/s10649-006-9071-z
- Ma, L. (2020). Knowing and Teaching Elementary Mathematics: Teachers’ Understanding of Fundamental Mathematics in China and the United States (3rd ed.). Routledge. https://doi.org/10.4324/9781003009443
- Mawfik, N., Hijazi, R., Lakramti, A., & Mensouri, L. (2003). Réformes et tendances de l’enseignement des mathématiques au Maroc. 6. Retrieved from http://emf.unige.ch/files/4814/5459/5222/EMF2003_GT4_Mawfik.pdf
- MNEPS. (2007). Programmes du secondaire qualifiant. Ministry of National Education Preschool and Sports, Morocco. https://www.men.gov.ma/Fr/Pages/Programmes-qualifiant.aspx
- Muhtadi, D., Wahyudin, Kartasasmita, B. G., & Prahmana, R. C. I. (2017). The integration of technology in teaching mathematics. Journal of Physics: Conference Series, 943(1), 012020. https://doi.org/10.1088/1742-6596/943/1/012020
- Nesher, P. (1986). Are mathematical understanding and algorithmic performance related? For the Learning of Mathematics, 6(3), 2–9. Retrieved from https://www.jstor.org/stable/pdf/40247817.pdf?acceptTC=true
- OECD. (2018). pisa for development assessment and analytical framework: reading, mathematics and science. OECD. https://doi.org/10.1787/9789264305274-en
- Ourahay, M. (2021). Effets de l’évaluation sommative sur la pratique pédagogique des enseignants cas de l’enseignement des mathématiques au baccalauréat. Revue Marocaine de l’Évaluation et de la Recherche Educative, 5, 406–419. https://doi.org/10.48423/IMIST.PRSM/rmere-v0i5.25635
- Piaget, J. (1977). The development of thought: Equilibration of cognitive structures. (Trans A. Rosin). viii, 213. https://doi.org/10.3102/0013189X007011018
- Polya, G. (1945). How to Solve It: A New Aspect of Mathematical Method. Retrieved from https://books.google.co.ma/books?id=z_hsbu9kyQQC
- Rice, M. F., & Carter, R. A. (2016). Online teacher work to support self-regulation of learning in students with disabilities at a fully online state virtual school. Online Learning, 20(4), 118–135. http://dx.doi.org/10.24059/olj.v20i4.1054
- Rico, L. (1997). Los organizadores del currículo de matemáticas (L. Rico, E. Castro, E. Castro, M. Coriat, A. Marín, L. Puig, M. Sierra, & M. M. Socas, Eds.; pp. 39–59). ice - Horsori. http://funes.uniandes.edu.co/522/
- Rittle-Johnson, B., & Koedinger, K. R. (2005). Designing knowledge scaffolds to support mathematical problem solving. Cognition and Instruction, 23(3), 313–349. https://doi.org/10.1207/s1532690xci2303_1
- Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93(2), 346–362. https://doi.org/10.1037/0022-0663.93.2.346
- Sáenz, C. (2009). The role of contextual, conceptual and procedural knowledge in activating mathematical competencies (PISA). Educational Studies in Mathematics, 71(2), 123–143. https://doi.org/10.1007/s10649-008-9167-8
- Saoudi, K., Chroqui, R., & Okar, C. (2020). Student achievement in Moroccan student achievement in Moroccan educational reforms: A significant gap between aspired outcomes and current practices. Interchange, 51(2), 117–136. https://doi.org/10.1007/s10780-019-09380-2
- Schneider, M., Rittle-Johnson, B., & Star, J. R. (2011). Relations among conceptual knowledge, procedural knowledge, and procedural flexibility in two samples differing in prior knowledge. Developmental Psychology, 47(6), 1525–1538. https://doi.org/10.1037/a0024997
- Schneider, M., & Stern, E. (2010). The developmental relations between conceptual and procedural knowledge: A multimethod approach. Developmental Psychology, 46(1), 178–192. https://doi.org/10.1037/a0016701
- Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36. https://doi.org/10.1007/BF00302715
- Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. https://doi.org/10.3102/0013189X015002004
- Siegler, R. S., & Stern, E. (1998). Conscious and unconscious strategy discoveries: A microgenetic analysis. Journal of Experimental Psychology: General, 127(4), 377–397. https://doi.org/10.1037/0096-3445.127.4.377
- Skemp, R. R. (1978). Relational understanding and instrumental understanding. The Arithmetic Teacher, 26(3), 9–15. https://doi.org/10.5951/AT.26.3.0009
- Skinner, B. F. 1904-1990 (Burrhus F. (1968). La Révolution scientifique de l’enseignement /. https://eduq.info/xmlui/handle/11515/12202
- Star, J. R., & Rittle-Johnson, B. (2008). Flexibility in problem solving: The case of equation solving. Learning and Instruction, 18(6), 565–579. https://doi.org/10.1016/j.learninstruc.2007.09.018
- Tamani, S., Amad, Z., Abouhanifa, S., El-Khouzai, E., & Radid, M. (2021). Analysis on the actions of a continuous distance training session for teachers and its impact on their actual practices. International Journal of Interactive Mobile Technologies (IJIM), 15, 119. https://doi.org/10.3991/ijim.v15i17.22411
- Tambwe, M. A. (2019). Challenges facing the implementation of a Competency-Based Education and Training (CBET) system in Tanzanian technical institutions. In J. L. P. Lugalla & J. M. Ngwaru (Eds.), Education in Tanzania in the Era of Globalisation: Challenges and Opportunities (pp. 242–255). Mkuki na Nyota Publishers. https://doi.org/10.2307/j.ctvh8r02h.24
- Vandenberg, R. J. (2006). Introduction: Statistical and methodological myths and urban legends: Where, pray tell, did they get this idea? Organizational Research Methods, 9(2), 194–201. https://doi.org/10.1177/1094428105285506
- Velde, C. (1999). An alternative conception of competence: Implications for vocational education. Journal of Vocational Education & Training, 51(3), 437–447. https://doi.org/10.1080/13636829900200087
- Zucker, B. (1984). The relation between understanding and algorithmic knowledge in decimals. Unpublished Master Thesis. The University of Haifa.
References
Abouhanifa, S., & Benkenz, N. (2018). Praxéologies enseignantes à l’égard du développement de la pensée algébrique chez les élèves du collège. 32. Retrieved from https://cifem2018.sciencesconf.org/data/pages/Didactique_TIC_Innovation_pedagogique.pdf
Arend, B. D. (2007). Course assessment practices and student learning strategies in online courses. Online Learning Journal, 11(4), 3-17. http://dx.doi.org/10.24059/olj.v11i4.1712
Benmansour, N. (1999). Motivational orientations, self-efficacy, anxiety, and strategy use in learning high school mathematics in Morocco. Retrieved from https://www.um.edu.mt/library/oar/handle/123456789/18779
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606. https://doi.org/10.1037/0033-2909.88.3.588
Bourqia, R., El Asmai, H., & Benbigua, A. (2018). Moroccan student results in mathematics and science in an international context. Retrieved from https://www.csefrs.ma/wp-content/uploads/2018/06/TIMSS-Version-Fr-26-05-2018.pdf
Boutin, G. (2000). Le béhaviorisme et le constructivisme ou la guerre des paradigmes. 37–40. Retrieved from https://www.erudit.org/fr/revues/qf/2000-n119-qf1196762/56026ac.pdf
Braine, M. D. S. (1988). Pinker S., Language learnability and language development. Journal of Child Language, 15(1), 189–199. https://doi.org/10.1017/S0305000900012137
Bransford, J., Brown, A. L., & Cocking, R. (1999). How People Learn: Mind, Brain, Experience and School. Retrieved from http://www.csun.edu/~SB4310/How%20People%20Learn.pdf
Breidenbach, D., Dubinsky, E., Hawks, J., & Devilyna, N. (1992). Development of the process conception of function. Educational Studies in Mathematics, 23(3), 247–285. https://doi.org/10.1007/BF02309532
Browne, M. W., & Cudeck, R. (1989). Single sample cross-validation indices for covariance structures. Multivariate Behavioral Research, 24(4), 445-455. https://doi.org/10.1207/s15327906mbr2404_4
Bryk, A. S., Sebring, P. B., Allensworth, E., Luppescu, S., & Easton, J. Q. (2010). Organizing schools for improvement: Lessons from Chicago. University of Chicago Press. Retrieved from https://press.uchicago.edu/Misc/Chicago/078007.html
Byrne, B. M. (1998). Structural equation modeling with Lisrel, Prelis, and Simplis: Basic concepts, applications, and programming. Psychology Press. https://doi.org/10.4324/9780203774762
Byrnes, J. P., & Wasik, B. A. (1991). Role of conceptual knowledge in mathematical procedural learning. Developmental Psychology, 27(5), 777–786. https://doi.org/10.1037/0012-1649.27.5.777
Cobb, P. (1988). The tension between theories of learning and instruction in mathematics education. Educational Psychologist, 23(2), 87–103. https://doi.org/10.1207/s15326985ep2302_2
CSEFRS. (2014). Mise en œuvre de la Charte nationale d’éducation et de formation: Acquis, déficits et défis. Conseil Supérieur de l’Éducation, de la Formation et de la Recherche Scientifique. Retrieved from https://www.csefrs.ma/publications/charte-nationale-deducation-et-de-formation/?lang=fr
CSEFRS. (2016). Programme National d’Évaluation des Acquis des élèves. Conseil Supérieur de l’Éducation, de la Formation et de la Recherche Scientifique. Retrieved from https://www.csefrs.ma/publications/programme-national-devaluation-des-acquis-des-eleves/?lang=fr
CSEFRS. (2021). Programme national d’évaluation des Acquis des élèves de la 6ème année primaire et 3ème année secondaire collégiale – PNEA 2019. Conseil Supérieur de l’Éducation, de la Formation et de la Recherche Scientifique. Retrieved from: https://www.csefrs.ma/publications/programme-national-devaluation-des-acquis-des-eleves-de-la-6eme-annee-primaire-et-3eme-annee-secondaire-collegiale-pnea-2019/?lang=fr
Doyle, W. (1983). Academic work. Review of Educational Research, 53(2), 159-199. https://doi.org/10.3102/00346543053002159
Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced Mathematical Thinking (pp. 95–126). Springer Netherlands. https://doi.org/10.1007/0-306-47203-1_7
Duval, R. (1993). 1993 Annales de didactique et de sciences cognitives. V. 5. P. 37-65. Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Retrieved from https://publimath.univ-irem.fr/biblio/IST93004.htm
El Asame, M., & Wakrim, M. (2018). Towards a competency model: A review of the literature and the competency standards. Education and Information Technologies, 23(1), 225–236. https://doi.org/10.1007/s10639-017-9596-z
El Faddouli, N., El Falaki, B., Idrissi, M. K., & Bennani, S. (2011). Adaptive assessment in learning system. Retrieved from https://www.researchgate.net/profile/Brahim-El-Falaki/publication/303376522_ADAPTIVE_ASSESSMENT_IN_LEARNING_SYSTEM/links/5aabeee3458515baa3b98895/ADAPTIVE-ASSESSMENT-IN-LEARNING-SYSTEM.pdf
Eronen, L., & Haapasalo, L. (2010). Making Mathematics through Progressive Technology. 12. Retrieved from http://www.elisanet.fi/medusa/cas/Eronen&Haapasalo.pdf
Gelman, R., & Williams, E. M. (1998). Enabling constraints for cognitive development and learning: Domain specificity and epigenesis. Handbook of Child Psychology: Volume 2: Cognition, Perception, and Language, 575–630. Retrieved from https://www.researchgate.net/publication/232508159_Enabling_constraints_for_cognitive_development_and_learning_Domain_specificity_and_epigenesis
Haapasalo, L., & Kadijevich, D. (2000). Two types of mathematical knowledge and their relation. Journal Für Mathematik-Didaktik, 21(2), 139–157. https://doi.org/10.1007/BF03338914
Hair, William C, Barry J. Babin, & Rolph E. Anderson. (2010). Multivariate Data Analysis: Global Edition, 7th Edition. Pearson. Retrieved from https://www.pearson.com/uk/educators/higher-education-educators/program/Hair-Multivariate-Data-Analysis-Global-Edition-7th-Edition/PGM916641.html
Halford, G. S. (2014). Children’s understanding: The development of mental models. Psychology Press. https://doi.org/10.4324/9781315801803
Hamouchi, A., Errougui, I., & Boulaassass, B. (2012). L’enseignement au Maroc, de l’approche par objectifs à l’approche par compétences: Points de vue des enseignantes et enseignants. Etudier. Retrieved from https://www.etudier.com/dissertations/l%E2%80%99Enseignement-Au-Maroc-De-l%E2%80%99Approche-Par/55516493.html
Heibert, J., & Lefevre, P. (1986). Conceptual and Procedural Knowledge in Mathematics: An Introductory Analysis. In Conceptual and Procedural Knowledge. Routledge https://doi.org/10.4324/9780203063538
Heibert, J., & Wearne, D. (1986). Procedures Over Concepts: The Acquisition of Decimal Number Knowledge. In Conceptual and Procedural Knowledge. Routledge. Retrieved from https://psycnet.apa.org/record/1986-98511-008
Hiebert, J. (Ed.). (1986). Conceptual and Procedural Knowledge: The Case of Mathematics. Routledge. https://doi.org/10.4324/9780203063538
Hirtt, P. N. (2009). L’approche par compétences: Une mystification pédagogique. Retrieved from http://sauvonsluniversite.com/IMG/pdf/APC_Mystification.pdf
Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence: An essay on the construction of formal operational structures. Routledge. https://doi.org/10.4324/9781315009674
Janvier, C. (1978). The interpretation of complex cartesian graphs representing situations: Studies and teaching experiments. Ph.D. Dissertation. Nottingham University. Retrieved from https://flm-journal.org/Articles/342368A19260FACE7BC364ED38AD7.pdf
Lauritzen, P. (2012). Conceptual and Procedural Knowledge of Mathematical Functions. 172. Retrieved from https://erepo.uef.fi/bitstream/handle/123456789/11481/urn_isbn_978-952-61-0893-3.pdf?sequence=1&isAllowed=y
Leikin, R., & Levav-Waynberg, A. (2007). Exploring mathematics teacher knowledge to explain the gap between theory-based recommendations and school practice in the use of connecting tasks. Educational Studies in Mathematics, 66(3), 349–371. https://doi.org/10.1007/s10649-006-9071-z
Ma, L. (2020). Knowing and Teaching Elementary Mathematics: Teachers’ Understanding of Fundamental Mathematics in China and the United States (3rd ed.). Routledge. https://doi.org/10.4324/9781003009443
Mawfik, N., Hijazi, R., Lakramti, A., & Mensouri, L. (2003). Réformes et tendances de l’enseignement des mathématiques au Maroc. 6. Retrieved from http://emf.unige.ch/files/4814/5459/5222/EMF2003_GT4_Mawfik.pdf
MNEPS. (2007). Programmes du secondaire qualifiant. Ministry of National Education Preschool and Sports, Morocco. https://www.men.gov.ma/Fr/Pages/Programmes-qualifiant.aspx
Muhtadi, D., Wahyudin, Kartasasmita, B. G., & Prahmana, R. C. I. (2017). The integration of technology in teaching mathematics. Journal of Physics: Conference Series, 943(1), 012020. https://doi.org/10.1088/1742-6596/943/1/012020
Nesher, P. (1986). Are mathematical understanding and algorithmic performance related? For the Learning of Mathematics, 6(3), 2–9. Retrieved from https://www.jstor.org/stable/pdf/40247817.pdf?acceptTC=true
OECD. (2018). pisa for development assessment and analytical framework: reading, mathematics and science. OECD. https://doi.org/10.1787/9789264305274-en
Ourahay, M. (2021). Effets de l’évaluation sommative sur la pratique pédagogique des enseignants cas de l’enseignement des mathématiques au baccalauréat. Revue Marocaine de l’Évaluation et de la Recherche Educative, 5, 406–419. https://doi.org/10.48423/IMIST.PRSM/rmere-v0i5.25635
Piaget, J. (1977). The development of thought: Equilibration of cognitive structures. (Trans A. Rosin). viii, 213. https://doi.org/10.3102/0013189X007011018
Polya, G. (1945). How to Solve It: A New Aspect of Mathematical Method. Retrieved from https://books.google.co.ma/books?id=z_hsbu9kyQQC
Rice, M. F., & Carter, R. A. (2016). Online teacher work to support self-regulation of learning in students with disabilities at a fully online state virtual school. Online Learning, 20(4), 118–135. http://dx.doi.org/10.24059/olj.v20i4.1054
Rico, L. (1997). Los organizadores del currículo de matemáticas (L. Rico, E. Castro, E. Castro, M. Coriat, A. Marín, L. Puig, M. Sierra, & M. M. Socas, Eds.; pp. 39–59). ice - Horsori. http://funes.uniandes.edu.co/522/
Rittle-Johnson, B., & Koedinger, K. R. (2005). Designing knowledge scaffolds to support mathematical problem solving. Cognition and Instruction, 23(3), 313–349. https://doi.org/10.1207/s1532690xci2303_1
Rittle-Johnson, B., Siegler, R. S., & Alibali, M. W. (2001). Developing conceptual understanding and procedural skill in mathematics: An iterative process. Journal of Educational Psychology, 93(2), 346–362. https://doi.org/10.1037/0022-0663.93.2.346
Sáenz, C. (2009). The role of contextual, conceptual and procedural knowledge in activating mathematical competencies (PISA). Educational Studies in Mathematics, 71(2), 123–143. https://doi.org/10.1007/s10649-008-9167-8
Saoudi, K., Chroqui, R., & Okar, C. (2020). Student achievement in Moroccan student achievement in Moroccan educational reforms: A significant gap between aspired outcomes and current practices. Interchange, 51(2), 117–136. https://doi.org/10.1007/s10780-019-09380-2
Schneider, M., Rittle-Johnson, B., & Star, J. R. (2011). Relations among conceptual knowledge, procedural knowledge, and procedural flexibility in two samples differing in prior knowledge. Developmental Psychology, 47(6), 1525–1538. https://doi.org/10.1037/a0024997
Schneider, M., & Stern, E. (2010). The developmental relations between conceptual and procedural knowledge: A multimethod approach. Developmental Psychology, 46(1), 178–192. https://doi.org/10.1037/a0016701
Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36. https://doi.org/10.1007/BF00302715
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. https://doi.org/10.3102/0013189X015002004
Siegler, R. S., & Stern, E. (1998). Conscious and unconscious strategy discoveries: A microgenetic analysis. Journal of Experimental Psychology: General, 127(4), 377–397. https://doi.org/10.1037/0096-3445.127.4.377
Skemp, R. R. (1978). Relational understanding and instrumental understanding. The Arithmetic Teacher, 26(3), 9–15. https://doi.org/10.5951/AT.26.3.0009
Skinner, B. F. 1904-1990 (Burrhus F. (1968). La Révolution scientifique de l’enseignement /. https://eduq.info/xmlui/handle/11515/12202
Star, J. R., & Rittle-Johnson, B. (2008). Flexibility in problem solving: The case of equation solving. Learning and Instruction, 18(6), 565–579. https://doi.org/10.1016/j.learninstruc.2007.09.018
Tamani, S., Amad, Z., Abouhanifa, S., El-Khouzai, E., & Radid, M. (2021). Analysis on the actions of a continuous distance training session for teachers and its impact on their actual practices. International Journal of Interactive Mobile Technologies (IJIM), 15, 119. https://doi.org/10.3991/ijim.v15i17.22411
Tambwe, M. A. (2019). Challenges facing the implementation of a Competency-Based Education and Training (CBET) system in Tanzanian technical institutions. In J. L. P. Lugalla & J. M. Ngwaru (Eds.), Education in Tanzania in the Era of Globalisation: Challenges and Opportunities (pp. 242–255). Mkuki na Nyota Publishers. https://doi.org/10.2307/j.ctvh8r02h.24
Vandenberg, R. J. (2006). Introduction: Statistical and methodological myths and urban legends: Where, pray tell, did they get this idea? Organizational Research Methods, 9(2), 194–201. https://doi.org/10.1177/1094428105285506
Velde, C. (1999). An alternative conception of competence: Implications for vocational education. Journal of Vocational Education & Training, 51(3), 437–447. https://doi.org/10.1080/13636829900200087
Zucker, B. (1984). The relation between understanding and algorithmic knowledge in decimals. Unpublished Master Thesis. The University of Haifa.