Main Article Content

Abstract

Recent discourse in mathematics education emphasizes the need for culturally relevant pedagogy and the integration of higher-order thinking skills, yet limited research explores the intersection of ethnomathematics and computational thinking within school curricula. This study addresses this gap by proposing a novel instructional framework that incorporates computational thinking into the ethnomathematical exploration of Rumoh Aceh—a traditional Acehnese house—within the context of junior high school geometry education in Indonesia. The research aims to enhance students’ understanding of geometric concepts such as lines, angles, shapes, and spatial structures through culturally grounded learning experiences. Using the four core components of computational thinking—decomposition, abstraction, pattern recognition, and algorithmic thinking—the geometric design of Rumoh Aceh is analyzed to reveal its mathematical significance. Data collection was conducted through ethnographic methods, including observation, interviews with local experts, and documentation analysis. The findings demonstrate that applying computational thinking to cultural artifacts fosters students’ ability to recognize geometric patterns, simplify complex problems, and develop structured problem-solving strategies. Furthermore, the integration of cultural context enriches students’ appreciation of their heritage while cultivating critical thinking and mathematical reasoning. This study provides empirical evidence supporting the pedagogical value of merging ethnomathematics with computational thinking, offering a meaningful and culturally responsive approach to mathematics education.

Keywords

Computational Thinking Ethnomathematics Geometry Junior High School Level Rumoh Aceh

Article Details

How to Cite
Azmi, N., Arif, S., Sofyan, H., & Oktavia, R. (2025). Bridging geometry and cultures for junior high school level: Rumoh Aceh design from a computational thinking perspective. Journal on Mathematics Education, 16(2), 383–406. https://doi.org/10.22342/jme.v16i2.pp383-406

References

  1. Abid. (2017). Ethnography: Linking theory and practices. Philosophy Study, 7(11), 601–605. https://doi.org/10.17265/2159-5313/2017.11.003
  2. Anwar, V. N., Darhim, D., Suhendra, S., & Nurlaelah, E. (2024). Exploring the characteristics of digital pedagogy model for developing computational thinking in mathematical problem solving. JTAM (Jurnal Teori Dan Aplikasi Matematika), 8(1), 137-149. https://doi.org/10.31764/jtam.v8i1.17419
  3. Barton, B. (1996). Ethnomathematics: Exploring cultural diversity in mathematics. American Ethnologist, 21(4), 922–923. http://doi.wiley.com/10.1525/ae.1994.21.4.02a00380
  4. Björklund, C. (2008). Toddlers’ opportunities to learn mathematics. International Journal of Early Childhood, 40(1), 81–95. https://doi.org/10.1007/BF03168365
  5. Brackmann, C., Barone, D., Casali, A., Boucinha, R., & Muñoz-hernandez, S. (2016). CT panorama of the Americas. International Symposium on Computers in Education, SIIE 2016: Learning Analytics Technologies, 1–6.
  6. Brackmann, C. P., Moreno-León, J., Román-González, M., Casali, A., Robles, G., & Barone, D. (2017). Development of computational thinking skills through unplugged activities in primary school. ACM International Conference Proceeding Series, 65–72. https://doi.org/10.1145/3137065.3137069
  7. Brenner, M. E. (1998). Adding cognition to the formula for culturally relevant instruction in mathematics. Anthropology Education Quarterly, 29(2), 214–244. https://doi.org/10.1525/aeq.1998.29.2.214
  8. Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers and Education, 109, 162–175. https://doi.org/10.1016/j.compedu.2017.03.001
  9. Cheng, C. (2024). Integration of mathematics history into junior middle school education: A pedagogical approach to enhance mathematical literacy. Journal of Contemporary Educational Research, 8(3), 69–72. https://doi.org/10.26689/jcer.v8i3.6419
  10. D’Ambrosio, U. (2016). Change in space, urban culture and ethnomathematics. Human Rights in Language and STEM Education: Science, Technology, Engineering and Mathematics, 207–219. https://doi.org/10.1007/978-94-6300-405-3_12
  11. Dagienė, V., & Sentence, S. (2016). It’s computational thinking! bebras tasks in the curriculum. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9973 LNCS(Bebras), 28–39. https://doi.org/10.1007/978-3-319-46747-4_3
  12. Dhuhri, S. (2018). Islamic arts and the expression of theology: Acehnese traditional house, its ornamentation and figurative motifs. Wacana Seni Journal of Arts Discourse, 17, 1-39.
  13. Disnawati, H., & Nahak, S. (2019). Pengembangan lembar kerja siswa berbasis etnomatematika tenun Timor pada materi pola bilangan [Developing student worksheets based on Timor weaving ethnomathematics on number pattern material]. Jurnal Elemen, 5(1), 64-79. https://doi.org/10.29408/jel.v5i1.1022
  14. Eguíluz, A., Guenaga, M., Garaizar, P., & Olivares-Rodríguez, C. (2020). Exploring the progression of early programmers in a set of computational thinking challenges via clickstream analysis. IEEE Transactions on Emerging Topics in Computing, 8(1), 256–261. https://doi.org/10.1109/TETC.2017.2768550
  15. Ernest, P. (2016). Mathematics and values. Trends in the History of Science, 189–214. https://doi.org/10.1007/978-3-319-28582-5_12
  16. Faiziyah, N., Sutama, Sholihah, I., Wulandari, S., & Yudha, D. A. (2020). Enhancing creativity through ethnomathematics. Universal Journal of Educational Research, 8(8), 3704–3710. https://doi.org/10.13189/ujer.2020.080850
  17. Figueiredo, J., & García-Peñalvo, F. J. (2017). Improving computational thinking using follow and give instructions. ACM International Conference Proceeding Series, Part F1322. https://doi.org/10.1145/3144826.3145351
  18. Freudenthal, H. (2002). Revisiting mathematics education. Kluwer Academic Publishers. http://www.ebooks.kluweronline.com
  19. Greer, B. (2009). Culturally responsive mathematics education. Routledge.
  20. Gutstein, E. (2003). Teaching and learning mathematics for social justice in an urban, Latino school. Journal for Research in Mathematics Education, 34(1), 37–73. https://doi.org/10.2307/30034699
  21. Hanid, M. F. A., Mohamad Said, M. N. H., Yahaya, N., & Abdullah, Z. (2022). The elements of computational thinking in learning geometry by using augmented reality application. International Journal of Interactive Mobile Technologies, 16(2), 28–41. https://doi.org/10.3991/ijim.v16i02.27295
  22. Helsa, Y., Turmudi, & Juandi, D. (2023). TPACK-based hybrid learning model design for computational thinking skills achievement in mathematics. Journal on Mathematics Education, 14(2), 225–252. https://doi.org/10.22342/jme.v14i2.pp225-252
  23. Hendriyanto, A., Kusmayadi, T. A., & Fitriana, L. (2021). Geometric thinking ability for prospective mathematics teachers in solving ethnomathematics problem. IOP Conference Series: Earth and Environmental Science, 1808(1), 012040. https://doi.org/10.1088/1742-6596/1808/1/012040
  24. Kyeremeh, P., Awuah, F. K., & Dorwu, E. (2023). Integration of ethnomathematics in teaching geometry: A systematic review and bibliometric report. Journal of Urban Mathematics Education, 16(2), 68–89. https://doi.org/10.21423/JUME-V16I2A519
  25. Kyeremeh, P., Awuah, F., & Orey, D. (2024). Challenges regarding the integration of ethnomathematical perspectives into geometry teaching: The faculty reflection patrick. 2(Agustus), 94–100. https://doi.org/10.31235/osf.io/4q9m8
  26. Lee, I., Grover, S., Martin, F., Pillai, S., & Malyn-Smith, J. (2020). Computational thinking from a disciplinary perspective: Integrating computational thinking in K-12 science, technology, engineering, and mathematics education. Journal of Science Education and Technology, 29(1), 1–8. https://doi.org/10.1007/s10956-019-09803-w
  27. Lee, T. Y., Mauriello, M. L., Ahn, J., & Bederson, B. B. (2014). CTArcade: Computational thinking with games in school age children. International Journal of Child-Computer Interaction, 2(1), 26–33. https://doi.org/10.1016/j.ijcci.2014.06.003
  28. Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012
  29. Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of computational thinking, digital competence and 21st century skills when learning programming in K-9. Education Inquiry, 11(1), 1–17. https://doi.org/10.1080/20004508.2019.1627844
  30. Novianti, Y., Amalia, L., & Deni. (2022). Ornamen rumah adat Aceh utara dalam terminologi arsitektur [The north Aceh traditional houses ornaments in an architecture terminology]. Jurnal Ilmiah Mahasiswa Program Studi Arsitektur Fakultas Teknik Universitas Malikussaleh, 6(2), 136–152.
  31. Pathuddin, H., Kamariah, & Mariani, A. (2023). Ethnomathematics of Pananrang: A guidance of traditional farming system of the Buginese community. Journal on Mathematics Education, 14(2), 205-224. http://doi.org/10.22342/jme.v14i2.pp205-224
  32. Pathuddin, H., & Nawawi, M. I. (2021). Buginese ethnomathematics: Barongko cake explorations as mathematics learning resources. Journal on Mathematics Education, 12(2), 295–312. http://doi.org/10.22342/jme.12.2.12695.295-312
  33. Prahmana, R. C. I., & D’Ambrosio, U. (2020). Learning geometry and values from patterns: Ethnomathematics on the batik patterns of Yogyakarta, Indonesia. Journal on Mathematics Education, 11(3), 439–456. https://doi.org/10.22342/jme.11.3.12949.439-456
  34. Prahmana, R. C. I., & Istiandaru, A. (2021). Learning sets theory using shadow puppet: A study of javanese ethnomathematics. Mathematics, 9(22), 2938. https://doi.org/10.3390/math9222938
  35. Prahmana, R. C. I., Yunianto, W., Rosa, M., & Orey, D. C. (2021). Ethnomathematics: Pranatamangsa system and the birth-death ceremonial in Yogyakarta. Journal on Mathematics Education, 12(1), 93–112. https://doi.org/10.22342/jme.12.1.11745.93-112
  36. Purniati, T., Turmudi, & Suhaedi, D. (2020). Ethnomathematics: Exploration of a mosque building and its ornaments. Journal of Physics: Conference Series, 1521(3), 032042. https://doi.org/10.1088/1742-6596/1521/3/032042
  37. Putra, R. A., & Ekomadyo, A. S. (2023). Transformation of architecture of Rumoh Aceh: An encoding process through semiotic. Local Wisdom: Jurnal Ilmiah Kajian Kearifan Lokal, 15(1), 1–11. https://doi.org/10.26905/lw.v15i1.7632
  38. Rojas López, A., & García Peñalvo, F. J. (2018). Learning scenarios for the subject methodology of programming from evaluating the computational thinking of new students. Revista Iberoamericana de Tecnologias Del Aprendizaje, 13(1), 30–36. https://doi.org/10.1109/RITA.2018.2809941
  39. Sahputra, Z., Meutia, E., Izziah, I., & Edytia, M. H. A. (2020). Teknologi Konstruksi Arsitektur Rumoh Aceh Studi Kasus: Rumoh Aceh di Desa Meugit, Kabupaten Pidie, Aceh [Aceh House Architectural Construction Technology Case Study: Aceh House in Meugit Village, Pidie Regency, Aceh]. 041–048. https://doi.org/10.32315/sem.4.041
  40. Setiawan, H., Fauzan, A., & Arnawa, I. M. (2021). The development of geometrical learning devices based on Rumah Gadang ethnomathematics for grade VII junior high school. Journal of Physics: Conference Series, 1742(1), 012003. https://doi.org/10.1088/1742-6596/1742/1/012003
  41. Sfard, A. (2006). Anna Sfard Participationist Discourse on Mathematics. 153–154.
  42. Shahbari, J. A., & Daher, W. (2020). Learning congruent triangles through ethnomathematics: The case of students with difficulties in mathematics. Applied Sciences (Switzerland), 10(14), 4950. https://doi.org/10.3390/app10144950
  43. Sidek, S. F., Mohamad Yatim, M. H., & Said, C. S. (2020). Characterizing computational thinking for tertiary education learning. Journal of Contemporary Issues and Thought, 10(2), 58–69. https://doi.org/10.37134/jcit.vol10.sp.6.2020
  44. Spradley, J. P., & McCurdy, D. W. (2012). Conformity and Conflict: Readings in Cultural Anthropology. 411. https://books.google.com/books?id=B-OkPvuPzg0C&pgis=1
  45. Sukestiyarno, Y. L., Nugroho, K. U. Z., Sugiman, & Waluya, B. (2023). Learning trajectory of non-Euclidean geometry through ethnomathematics learning approaches to improve spatial ability. EURASIA Journal of Mathematics, Science and Technology Education, 19(6), em2285. https://doi.org/10.29333/ejmste/13269
  46. Sunzuma, G., & Maharaj, A. (2021a). In-service mathematics teachers’ knowledge and awareness of ethnomathematics approaches. International Journal of Mathematical Education in Science and Technology, 52(7), 1063–1078. https://doi.org/10.1080/0020739X.2020.1736351
  47. Sunzuma, G., & Maharaj, A. (2021b). In-service Zimbabwean teachers’ obstacles in integrating ethnomathematics approaches into the teaching and learning of geometry. Journal of Curriculum Studies, 53(5), 601–620. https://doi.org/10.1080/00220272.2020.1825820
  48. Utami, N. W., Sayuti, S. A., & Jailani. (2019). Math and mate in javanese primbon: Ethnomathematics study. Journal on Mathematics Education, 10(3), 341–356. https://doi.org/10.22342/jme.10.3.7611.341-356
  49. Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215
  50. Yilmaz Ince, E., & Koc, M. (2021). The consequences of robotics programming education on computational thinking skills: An intervention of the Young Engineer’s Workshop (YEW). Computer Applications in Engineering Education, 29(1), 191–208. https://doi.org/10.1002/cae.22321