Main Article Content

Abstract

In the era of the 21st century and Industrial Revolution 4.0, prospective mathematics teachers (PMTs) are expected not only to possess strong mathematical content knowledge but also to develop pedagogical approaches that promote students’ numeracy skills in meaningful and contextually relevant ways. However, despite growing global attention to numeracy, there remains a gap in instructional models that effectively integrate local cultural contexts and technological tools in the preparation of PMTs. Addressing this gap, this study introduces a novel learning trajectory that embeds technology, Javanese ethnomathematics, and Realistic Mathematics Education into a coherent instructional design framework, namely TE-RME aimed at enhancing PMTs' numeracy competencies. The research employed a design research methodology encompassing three iterative stages: preliminary design, design experiments consisting of a pilot and teaching experiment, and retrospective analysis. The participants were 25 fifth-semester PMTs enrolled at a private university in Semarang, Indonesia. The resulting trajectory comprises five learning activities, such as orientation to cultural contexts, exploration and problem-solving of numeracy tasks, task design involving numeracy elements, communication and interpretation of mathematical solutions, and instructional design involving the integration of numeracy tasks. Findings revealed that the TE-RME approach effectively supported PMTs in making meaningful connections between culturally embedded practices and everyday mathematical reasoning. By engaging with authentic local contexts, students demonstrated increased fluency in solving numeracy problems and designing contextually relevant learning activities. This research contributes a culturally responsive instructional model for mathematics teacher education and underscores the pedagogical potential of integrating local wisdom with contemporary mathematics education approaches. Implications point to further research exploring other ethnomathematical contexts to enrich mathematics instruction and promote equitable and culturally grounded mathematics learning.

Keywords

Design Research Instructional Design Numeracy Prospective Mathematics Teacher Techno-Ethno-Realistic Mathematics Education

Article Details

How to Cite
Nursyahidah, F., Wardono, Mariani, S., & Wijayanti, K. (2025). Integrating technology, Javanese ethnomathematics, and realistic mathematics education in supporting prospective mathematics teachers’ numeracy skills: A learning trajectory. Journal on Mathematics Education, 16(2), 671–688. https://doi.org/10.22342/jme.v16i2.pp671-688

References

  1. Ayalon, M., & Even, R. (2016). Factors shaping students’ opportunities to engage in argumentative activity. International Journal of Science and Mathematics Education, 14(3), 575-601. https://doi.org/10.1007/s10763-014-9584-3
  2. Bakker, A. (2018). Design research in education: A practical guide for early career researchers. Routledge.
  3. Cervantes-Barraza, J. A., & Araujo, A. A. (2023). Design of interactive mathematical tasks that make up the reasoning and the Ethnomathematics program. Journal on Mathematics Education, 14(3), 469–482. https://doi.org/10.22342/jme.v14i3.pp469-482
  4. Dalim, S. F., Syed Aris, S. R., Hoon, T. S., Nadzri, F. A., Deni, S. M., Yahya, N., & Si, E. M. (2023). Framework for numeracy and digital skills attributes in higher education. Research in Social Sciences and Technology, 8(3), 16–35. https://doi.org/10.46303/ressat.2023.18
  5. D’Ambrosio, U. (1999). Literacy, matheracy, and technocracy: A trivium for today. Mathematical Thinking and Learning, 1(2), 131–153. https://doi.org/10.1207/s15327833mtl0102_3
  6. D’Ambrosio, U. (2018). Etnomatemática, justiça social e sustentabilidade. Estudos Avancados, 32(94), 189–204. https://doi.org/10.1590/s0103-40142018.3294.0014
  7. Duckworth, E. (2009). Helping students get to where ideas can find them. The New Educator, 5(3), 185–188. https://doi.org/10.1080/1547688X.2009.10399573
  8. Ekawati, R. (2017). Experts’ notion and students’ responses on context-based mathematics problem. Journal of Engineering Science and Technology (JESTEC), 12(10), 53-64. https://jestec.taylors.edu.my/Special%20Issue%20on%20AASEC%202016/AASEC%202017_paper%206.pdf
  9. Er, S., Toker, Z., & Yücelyi̇Ği̇T, S. (2022). In-service teachers’ opinions about the use of video-based self-reflection for pedagogical development. Kuramsal Eğitimbilim, 15(3), 639–660. https://doi.org/10.30831/akukeg.1039752
  10. Fauzan, A., Harisman, Y., Yerizon, Y., Suherman, S., Tasman, F., Nisa, S., Sumarwati, S., Hafizatunnisa, H., & Syaputra, H. (2024). Realistic mathematics education (RME) to improve literacy and numeracy skills of elementary school students based on teachers’ experience. Infinity Journal, 13(2), 301–316. https://doi.org/10.22460/infinity.v13i2.p301-316
  11. Feeley, T. H., Keller, M., & Kayler, L. (2023). Using animated videos to increase patient knowledge: A meta-analytic review. Health Education & Behavior, 50(2), 240–249. https://doi.org/10.1177/10901981221116791
  12. Gal, I., Grotlüschen, A., Tout, D., & Kaiser, G. (2020). Numeracy, adult education, and vulnerable adults: A critical view of a neglected field. ZDM, 52(3), 377–394. https://doi.org/10.1007/s11858-020-01155-9
  13. Gravemeijer, K., & Doorman, M. (1999). Context problems in Realistic Mathematics Education: A calculus course as an example. Educational Studies in Mathematics, 39(1/3), 111–129. https://doi.org/10.1023/A:1003749919816
  14. Graven, M., & Jorgensen, R. (2024). Early numeracy opportunities through number stories with marginalised families. ZDM – Mathematics Education, 56(3), 319–333. https://doi.org/10.1007/s11858-023-01537-9
  15. Groenwald, C. L., & Llinares, S. (2019). Competencia docente de observar con sentido situaciones de enseñanza. Revista Paradigma, 40(1), 29-46. https://doi.org/10.37618/PARADIGMA.1011- 2251.2019.p29-46.id740
  16. Grotlüschen, A., Buddeberg, K., Redmer, A., Ansen, H., & Dannath, J. (2019). Vulnerable subgroups and numeracy practices: How poverty, debt, and unemployment relate to everyday numeracy practices. Adult Education Quarterly, 69(4), 251–270. https://doi.org/10.1177/0741713619841132
  17. Hardiyanto, D., Asokawati, I., Majid, P. M., Maesaroh, A. T., & Nursyahidah, F. (2024). Learning reflection using realistic mathematics education assisted by GeoGebra software. Jurnal Pendidikan Matematika, 18(1), 15-26. https://doi.org/10.22342/jpm.v18i1.pp15-26
  18. Heilmann, L. (2020). Health and numeracy: The role of numeracy skills in health satisfaction and health-related behaviour. ZDM, 52(3), 407–418. https://doi.org/10.1007/s11858-019-01106-z
  19. Ivars, P., Fernández, C., & Llinares, S. (2020). A learning trajectory as a scaffold for pre-service teachers’ noticing of students’ mathematical understanding. International Journal of Science and Mathematics Education, 18(3), 529-548. https://doi.org/10.1007/s10763-019-09973-4
  20. Kohar, A. W., Rahaju, E. B., & Rohim, A. (2022). Prospective teachers’ design of numeracy tasks using a physical distancing context. Journal on Mathematics Education, 13(2), 191–210. https://doi.org/10.22342/jme.v13i2.pp191-210
  21. Liljedahl, P. (2015). Numeracy task design: A case of changing mathematics teaching practice. ZDM, 47(4), 625–637. https://doi.org/10.1007/s11858-015-0703-6
  22. Mahmudin, M., Herman, T., Prabawanto, S., Supriyadi, E., & Susilawati, A. (2024). Game design application of trigonometry integrating numeration in daily life using augmented reality. Journal of Engineering Science and Technology. Special Issue on ISCoE2023, 19(5), 103-110.
  23. McKenney, S., & Reeves, T. C. (2014). Educational design research. In J. M. Spector, M. D. Merrill, J. Elen, & M. J. Bishop (Eds.), Handbook of Research on Educational Communications and Technology (pp. 131–140). Springer New York. https://doi.org/10.1007/978-1-4614-3185-5_11
  24. Meryansumayeka, Zulkardi, Putri, R. I. I., & Hiltrimartin, C. (2022). Designing geometrical learning activities assisted with ICT media for supporting students’ higher order thinking skills. Journal on Mathematics Education, 13(1), 135–148. https://doi.org/10.22342/jme.v13i1.pp135-148
  25. Michael, M., & Lupton, D. (2016). Toward a manifesto for the ‘public understanding of big data.’ Public Understanding of Science, 25(1), 104–116. https://doi.org/10.1177/0963662515609005
  26. Nursyahidah, F. (2020). Learning reflection through the context of Central Java historical building. Journal of Physics: Conference Series, 1567(2), 022095. https://doi.org/10.1088/1742-6596/1567/2/022095
  27. Nursyahidah, F., & Albab, I. U. (2021). Learning design on surface area and volume of cylinder using Indonesian ethno-mathematics of traditional cookie maker assisted by GeoGebra. Mathematics Teacher Research Journal. 13(4), 79-98. https://files.eric.ed.gov/fulltext/EJ1332350.pdf
  28. Nursyahidah, F., Albab, I. U., & Mulyaningrum, E. R. (2023). Learning design of quadrilateral STEM-based through lesson study. Eurasia Journal of Mathematics, Science and Technology Education, 19(11), em2352. https://doi.org/10.29333/ejmste/13747
  29. Nursyahidah, F., Albab, I. U., & Rubowo, M. R. (2023). Learning design of sphere using realistic mathematics education assisted by interactive video. Jurnal Pendidikan Matematika, 17(3), 297-312. https://doi.org/10.22342/jpm.v17i3.pp297-312
  30. Nursyahidah, F., Anindya, F. M., Yulianti, M. A., Prisanto, Z. I., & Rosario, M. A. R. (2025). Integrating local wisdom with technology: Designing learning trajectory of cylinder through realistic mathematics education approach. Jurnal Pendidikan Matematika, 19(1), 81-98. https://doi.org/10.22342/jpm.v19i1.pp81-98
  31. Nursyahidah, F., Wardono, W., Mariani, S., & Wijayanti, K. (2025). Integrating technology, ethnomathematics, and realistic mathematics education in learning statistics: A learning trajectory. Infinity Journal, 14(3), 633–654. https://doi.org/10.22460/infinity.v14i3.p633-654
  32. OECD. (2016). PISA 2015 Results (Volume I): Excellence and Equity in Education. OECD. https://doi.org/10.1787/9789264266490-en
  33. OECD. (2019). Skills Matter: Additional Results from the Survey of Adult Skills. OECD. https://doi.org/10.1787/1f029d8f-en
  34. Pathuddin, H. (2021). Buginese ethnomathematics: Barongko cake explorations as mathematics learning resources. Journal on Mathematics Education, 12(2), 295–312. https://doi.org/10.22342/jme.12.2.12695.295-312
  35. Plomp, T., & Nieveen, N. (2007). An Introduction to Educational Design Research. SLO.
  36. Prahmana, R. C. I. (2022). Ethno-Realistic Mathematics Education: The promising learning approach in the city of culture. SN Social Sciences, 2(12), 257. https://doi.org/10.1007/s43545-022-00571-w
  37. Prahmana, R. C. I., & D’Ambrosio, U. (2020). Learning geometry and values from patterns: Ethnomathematics on the batik patterns of Yogyakarta, Indonesia. Journal on Mathematics Education, 11(3), 439–456. https://doi.org/10.22342/jme.11.3.12949.439-456
  38. Prahmana, R. C. I., & Istiandaru, A. (2021). Learning sets theory using shadow puppet: A study of javanese ethnomathematics. Mathematics, 9(22), 2938. https://doi.org/10.3390/math9222938
  39. Prahmana, R. C. I., Arnal-Palacián, M., Risdiyanti, I., & Ramadhani, R. (2023). Trivium curriculum in Ethno-RME approach: An impactful insight from ethnomathematics and realistic mathematics education. Jurnal Elemen, 9(1), 298–316. https://doi.org/10.29408/jel.v9i1.7262
  40. Prahmana, R. C. I., Yunianto, W., Rosa, M., & Orey, D. C. (2021). Ethnomathematics: Pranatamangsa system and the birth-death ceremonial in Yogyakarta. Journal on Mathematics Education, 12(1), 93–112. https://doi.org/10.22342/jme.12.1.11745.93-112
  41. Putri, R. I. I., & Zulkardi. (2018). Learning fraction through the context of Asian Games 2018. Journal of Physics: Conference Series, 1088(1), 012023. https://doi.org/10.1088/1742-6596/1088/1/012023
  42. Putri, R. I. I., Dolk, M., & Zulkardi. (2015). Professional development of PMRI teachers for introducing social norms. Journal on Mathematics Education, 6(1), 11–19. https://doi.org/10.22342/jme.6.1.1900.11-19
  43. Putri, R. I. I., Zulkardi, Setyorini, N. P., Meitrilova, A., Permatasari, R., Saskiyah, S. A., & Nusantara, D. S. (2021). Designing a healthy menu project for Indonesian junior high school students. Journal on Mathematics Education, 12(1), 133–146. https://doi.org/10.22342/jme.12.1.13239.133-146
  44. Rosa, M. (2021). An ethnomathematical perspective of stem education in a glocalized world. Bolema—Mathematics Education Bulletin. 35(70), 840–876. https://doi.org/10.1590/1980-4415v35n70a14
  45. Rosa, M., D’Ambrosio, U., Orey, D. C., Shirley, L., Alangui, W. V., Palhares, P., & Gavarrete, M. E. (2016). Current and Future Perspectives of Ethnomathematics As a Program. Springer.
  46. Rosa, M., & Orey, D. C. (2023). Considerations about Ethnomathematics, the culturally relevant Pedagogy and social justice in Mathematical Education. Educação Matemática Pesquisa Revista Do Programa de Estudos Pós-Graduados Em Educação Matemática, 25(2), 145-165. https://doi.org/10.23925/1983-3156.2023v25i2p145-165
  47. Rosnelli, R., & Ristiana, P. A. (2023). Independent curriculum learning management to improve students’ literacy and numerical competence in schools. International Journal of Education in Mathematics, Science and Technology, 11(4), 946–963. https://doi.org/10.46328/ijemst.3513
  48. Rusiyanti, R. H., Zulkardi, Putri, R. I. I., & Somakim. (2022). Developing RME-based lesson study for learning community in the learning environment of high school mathematics teachers. Journal on Mathematics Education, 13(3), 499–514. https://doi.org/10.22342/jme.v13i3.pp499-514
  49. Sari, Y. M., Kohar, A. W., El Milla, Y. I., Fiangga, S., & Rahayu, D. S. (2023). Aligning numeracy task design with SDG goals: Nutrition facts as a context for prospective mathematics teachers’ problem posing. Journal on Mathematics Education, 15(1), 191–206. https://doi.org/10.22342/jme.v15i1.pp191-206
  50. Singh, D., Chand, S. P., Kumar, K. K., & Ali, R. (2023). Effectiveness of literacy and numeracy in commerce subjects among secondary schools in Fiji. Journal of Education and Learning (EduLearn), 17(3), 447–454. https://doi.org/10.11591/edulearn.v17i3.20873
  51. Solar, H. S., & Deulofeu, J. (2016). Conditions to promote the development of argumentation competence in the mathematics classroom. Bolema: Boletim de Educação Matemática, 30, 1092-1112. https://doi.org/10.1590/1980-4415v30n56a13
  52. Songkhro, J., Dequiña, Jr., L. S., Dominguez, R. R., & Phanlapa Khathayut, P. (2022). Effectiveness of using animated videos via google sites in enhancing socio-culture of native english-speaking countries. Education Quarterly Reviews, 5(2), 371-380. https://doi.org/10.31014/aior.1993.05.02.497
  53. Stacey, K. (2011). The PISA view of mathematical literacy in Indonesia. Journal on Mathematics Education, 2(2), 95–126. https://doi.org/10.22342/jme.2.2.746.95-126
  54. Straesser, R. (2015). “Numeracy at work”: A discussion of terms and results from empirical studies. ZDM, 47(4), 665–674. https://doi.org/10.1007/s11858-015-0689-0
  55. Suryadi, D., Itoh, T., & Isnarto. (2023). A prospective mathematics teacher’s lesson planning: An in-depth analysis from the anthropological theory of the didactic. Journal on Mathematics Education, 14(4), 723–740. https://doi.org/10.22342/jme.v14i4.pp723-740
  56. Susanta, A., Sumardi, H., Susanto, E., & Retnawati, H. (2023). Mathematics literacy task on number pattern using Bengkulu context for junior high school students. Journal on Mathematics Education, 14(1), 85–102. https://doi.org/10.22342/jme.v14i1.pp85-102
  57. Sutarni, S., Sutama, S., Prayitno, H. J., Sutopo, A., & Laksmiwati, P. A. (2024). The development of realistic mathematics education-based student worksheets to enhance higher-order thinking skills and mathematical ability. Infinity Journal, 13(2), 285–300. https://doi.org/10.22460/infinity.v13i2.p285-300
  58. Umbara, U., Prabawanto, S., & Jatisunda, M. G. (2023). Combination of mathematical literacy with ethnomathematics: How to perspective sundanese culture. Infinity Journal, 12(2), 393–414. https://doi.org/10.22460/infinity.v12i2.p393-414
  59. Vale, E., & Falloon, G. (2024). Using Learning analytics to understand K–12 learner behavior in online video-based learning. Online Learning Journal, 28(1), 44-68. https://doi.org/10.24059/olj.v28i1.3675
  60. Vásquez-Morales, G. R., Martinez-Monterrubio, S. M., Moreno-Ger, P., & Recio-Garcia, J. A. (2019). Explainable prediction of chronic renal disease in the colombian population using neural networks and case-based reasoning. IEEE Access, 7, 152900-152910. https://doi.org/10.1109/ACCESS.2019.2948430
  61. Wijaya, A., Van Den Heuvel-Panhuizen, M., Doorman, M., & Robitzsch, A. (2014). Difficulties in solving context-based PISA mathematics tasks: An analysis of students’ errors. The Mathematics Enthusiast, 11(3), 555–584. https://doi.org/10.54870/1551-3440.1317
  62. Zulkardi, & Setiawan, M. B. T. (2020). Javanese calendar as context to learn number pattern and least common multiple. Journal of Physics: Conference Series, 1470(1), 012094. https://doi.org/10.1088/1742-6596/1470/1/012094