Main Article Content
Abstract
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Abadi, A. M., Wutsqa, D. U., & Pamungkas, L. R. (2017). Detection of lung cancer using radiograph images enhancement and radial basis function classifier. 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 1-6. https://doi.org/10.1109/CISP-BMEI.2017.8302052.
- Abadi, A. M., Wustqa, D. U., & Nurhayadi. (2019). Diagnosis of brain cancer using radial basis function neural network with singular value decomposition method. International Journal of Machine Learning and Computing, 9(4), 527–532. https://doi.org/10.18178/ijmlc.2019.9.4.836
- Abadi, A. M., Wutsqa, D. U., & Ningsih, N. (2021). Construction of fuzzy radial basis function neural network model for diagnosing prostate cancer. Telkomnika (Telecommunication Computing Electronics and Control), 19(4), 1273–1283. https://doi.org/10.12928/TELKOMNIKA.v19i4.20398
- Agasisti, T., Avvisati, F., Borgonovi, F., & Longobardi, S. (2018). Academic resilience: What schools and countries do to help disadvantaged students succeed in PISA. https://doi.org/10.1787/e22490ac-en
- Aksu, N., Aksu, G., & Saracaloglu, S. (2022). Prediction of the factors affecting PISA mathematics literacy of students from different countries by using data mining methods. International Electronic Journal of Elementary Education, 14(5), 613-629. https://iejee.com/index.php/IEJEE/article/view/1757
- Ali, D. S., Ghoneim, A., & Saleh, M. (2017). Data clustering method based on mixed similarity measures. Proceedings of the 6th International Conference on Operations Research and Enterprise Systems (ICORES 2017), 192-199. https://doi.org/10.5220/0006245601920199
- Anggraheni, F. Y., & Kismiantini. (2022). Relationships of metacognition and learning time to mathematics achievement-PISA 2018 findings in Indonesia. AIP Conference Proceedings, 2575. https://doi.org/10.1063/5.0108028
- Areepattamannil, S. (2014). International note: What factors are associated with reading, mathematics, and science literacy of Indian adolescents? A multilevel examination. Journal of adolescence, 37(4), 367-372. https://doi.org/10.1016/j.adolescence.2014.02.007
- Aybek, H. S. Y., & Okur, M. R. (2018). Predicting achievement with artificial neural networks: The case of Anadolu University open education system. International Journal of Assessment Tools in Education, 5(3), 474-490. https://doi.org/10.21449/ijate.435507
- Cheruku, R., Edla, D. R., & Kuppili, V. (2017). Diabetes classification using radial basis function network by combining cluster validity index and BAT optimization with novel fitness function. International Journal of Computational Intelligence Systems, 10(1), 247. https://doi.org/10.2991/ijcis.2017.10.1.17
- Chrisinta, D., Sumertajaya, I. M., & Indahwati, I. (2020). Evaluasi kinerja metode cluster ensemble dan latent class clustering pada peubah campuran. Indonesian Journal of Statistics and Its Applications, 4(3), 448-461. https://doi.org/10.29244/ijsa.v4i3.630
- Demir, I., & Karaboğa, H. A. (2021). Modeling mathematics achievement with deep learning methods. Sigma Journal of Engineering and Natural Sciences, 39, 33–40. https://doi.org/10.14744/sigma.2021.00039
- Dhamodharavadhani, S., Rathipriya, R., & Chatterjee, J. M. (2020). COVID-19 mortality rate prediction for India using statistical neural network models. Frontiers in Public Health, 8(441), 1-12. https://doi.org/10.3389/fpubh.2020.00441
- Ditakristy, M. L., Saepudin, D., & Nhita, F. (2016). Analisis dan implementasi radial basis function neural network dalam prediksi harga komoditas pertanian. eProceedings of Engineering (Vol. 3(1), pp. 1130-1139). https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/3658
- Dixon, J. K. (1979). Pattern recognition with partly missing data. IEEE Transactions on Systems, Man, and Cybernetics, 9(10), 617-621. https://doi.org/10.1109/TSMC.1979.4310090
- Dubey, A. D. (2015). K-Means based radial basis function neural networks for rainfall prediction. 2015 International Conference on Trends in Automation, Communications and Computing Technology (I-TACT-15) (pp. 1-6). Bangalore, India. https://doi.org/10.1109/ITACT.2015.7492664
- Efendi, R., & Kismiantini. (2022). Analysis of PISA 2018 results in Indonesia: Perspective of socioeconomic status and school resources. AIP Conference Proceedings (Vol. 2575). https://doi.org/10.1063/5.0108065
- Fırat, T., & Koyuncu, İ. (2023). Examining metacognitive strategy preferences of students at different reading proficiency levels. International Journal of Psychology and Educational Studies, 10, 224-240. https://doi.org/10.52380/ijpes.2023.10.1.997
- Golub, G. H., Heath, M., & Wahba, G. (1979) Generalised cross-validation as a method for choosing a good ridge parameter. Technometrics, 21(2), 215-223. https://doi.org/10.1080/00401706.1979.10489751
- Govorova, E., Benítez, I., & Muñiz, J. (2020). Predicting student well-being: Network analysis based on PISA 2018. International Journal of Environmental Research and Public Health, 17(11), 1–18. https://doi.org/10.3390/ijerph17114014
- Hanke, J. E., & Wichern, D. W. (2005). Business forecasting (9th edition). London: Pearson Education.
- Haviluddin, Sunarto, A., & Yuniarti, S. (2014). A comparison between simple linear regression and Radial Basis Function Neural Network (RBFNN) models for predicting students’ achievement. International Conference on Education (pp. 299-308). Sabah, Malaysia. https://doi.org/10.13140/2.1.3878.5600
- He, Z., Xu, X., & Deng, S. (2005). Clustering mixed numeric and categorical data: A cluster ensemble approach. ArXiv Computer Science e-prints, 1-14. https://doi.org/10.48550/arXiv.cs/0509011
- Huang, J. Z. (2009). Clustering categorical data with k-Modes. In Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 246-250). IGI Global. https://doi.org/10.4018/978-1-60566-010-3.ch040
- Huang, G., Saratchandran, P., & Sundararajan, N. (2005). A generalized growing and pruning rbf neural network for function approximation. IEEE Transactions On Neural Networks, 16(1), 57–67. https://doi.org/10.1109/TNN.2004.836241.
- Huang, S., & Fang, N. (2013). Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models. Computers & Education, 61, 133-145. https://doi.org/10.1016/j.compedu.2012.08.015
- Jerrim, J. (2022). The power of positive emotions? The link between young people’s positive and negative affect and performance in high-stakes examinations. Assessment in Education: Principles, Policy and Practice, 29(3), 310–331. https://doi.org/10.1080/0969594X.2022.2054941
- Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis. Upper Saddle River, New Jersey: Prentice Hall.
- Kamble, V. V., & Kokate, R. D. (2020). Automated diabetic retinopathy detection using radial basis function. Procedia Computer Science, 167, 799–808. https://doi.org/10.1016/j.procs.2020.03.429
- Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New Jersey: John Wiley & Sons. https://doi.org/10.1002/9780470316801
- Kismiantini, Setiawan, E. P., Pierewan, A. C., & Montesinos-López, O. A. (2021). Growth mindset, school context, and mathematics achievement in Indonesia: A multilevel model. Journal on Mathematics Education, 12(2), 279–294. https://doi.org/10.22342/jme.12.2.13690.279-294
- Kodinariya, T. M., & Makwana, P. R. (2013). Review on determining number of cluster in k-means clustering. International Journal of Advance Research in Computer Science and Management Studies, 1(6). www.ijarcsms.com
- Koyuncu, İ. (2020). Investigation of mathematics-specific trend variables in pisa studies with neural networks and linear regression. Journal of Curriculum and Teaching, 9(4), 40. https://doi.org/10.5430/jct.v9n4p40
- Krisnamurti, A. W., & Kismiantini. (2022). PISA 2018: Non-cognitive factors and school characteristics towards mathematics achievement in Indonesia. AIP Conference Proceedings, (Vol. 2575). https://doi.org/10.1063/5.0107787
- Lee, J., & Stankov, L. (2013). Higher-Order structure of noncognitive constructs and prediction of PISA 2003 mathematics achievement. Learning and Individual Differences, 26, 119-130. https://doi.org/10.1016/j.lindif.2013.05.004
- Marcq, K., & Braeken, J. (2023). Gender Differences in Item Nonresponse in the PISA 2018 Student Questionnaire. https://www.oecd.org/pisa/data/2018database/.
- Ministry of Education and Culture of Indonesia. (2019). Pendidikan di Indonesia: Belajar dari hasil PISA 2018. Jakarta: Badan Penelitian dan Pendidikan, Kemdikbud. http://repositori.kemdikbud.go.id/id/eprint/16742
- OECD. (2018). What 15-year-old students in Indonesia know and can do. Paris: OECD Publishing. https://www.oecd.org/pisa/publications/PISA2018_CN_IDN.pdf
- OECD. (2019). PISA 2018 assessment and analytical framework. Paris: OECD Publishing. https://doi.org/10.1787/b25efab8-en
- Orr, M. J. L. (1996). Introduction to radial basis function networks. Edinburgh: Edinburgh University.
- Ovan, Waluya, S. B., & Nugroho, S. E. (2018). Analysis mathematical literacy skills in terms of the students’ metacognition on PISA-CPS model. Journal of Physics: Conference Series, 983(1). https://doi.org/10.1088/1742-6596/983/1/012151
- Patmaniar, P., Amin, S. M., & Sulaiman, R. (2021). Students’ growing understanding in solving mathematics problems based on gender: Elaborating folding back. Journal on Mathematics Education, 12(3), 507-530. https://doi.org/10.22342/jme.12.3.14267.507-530
- Pitsia, V., Biggart, A., & Karakolidis, A. (2017). The role of students' self-beliefs, motivation, and attitudes in predicting mathematics achievement: a multilevel analysis of the programme for international student assessment data. Learning and Individual Differences, 55, 163-173. https://doi.org/10.1016/j.lindif.2017.03.014
- Rahmawati, D., & Kismiantini. (2022). Gender differences in mathematics achievement, competitiveness, fear of failure, and resilience: Analysis of PISA 2018 in Indonesia. AIP Conference Proceedings, (Vol. 2575). https://doi.org/10.1063/5.0107819
- Samnufida, R., & Kismiantini. (2022). How school size and student teacher ratio affecting the students’ mathematics achievement. AIP Conference Proceedings, (Vol. 2575). https://doi.org/10.1063/5.0130178
- Sateesh, B. G., & Suresh, S. (2013). Parkinson’s disease prediction using gene expression- A projection-based learning meta-cognitive neural classifier approach. Expert Systems with Applications, 40(5), 1519–1529. https://doi.org/10.1016/j.eswa.2012.08.070
- Shen, W., Guo, X., Wu, C., & Wu, D. (2011). Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowledge-Based Systems, 24(3), 378–385. https://doi.org/10.1016/j.knosys.2010.11.001
- Sing, J. K., Basu, D. K., Nasipuri, M., & Kundu, M. (2003). Improved k-means algorithm in the design of rbf neural networks. Conference on Convergent Technologies for Asia-Pacific Region (Vol. 2, pp. 841-845). Bangalore, India. https://doi.org/10.1109/TENCON.2003.1273297
- Sowjanya, A. H. M., & Mrudula, M. O. (2015). Cluster ensemble approach for clustering mixed data. International Journal of Computer Techniques, 2(5), 43–51. http://www.ijctjournal.org/Volume2/Issue5/IJCT-V2I5P9.pdf
- Tran, L. T., & Nguyen, T. S. (2021). Motivation and mathematics achievement: a Vietnamese case study. Journal on Mathematics Education, 12(3), 449-468. http://doi.org/10.22342/jme.12.3.14274.449-468
- Vaitsis, C., Hervatis, V., & Zary, N. (2016). Introduction to big data in education and its contribution to the quality improvement processes. Big Data on Real-World Applications, 113, 58. http://dx.doi.org/10.5772/63896
- Wutsqa, D. U., & Farhan, A. (2020). Lung cancer detection using the SOM-GRR based radial basis function neural network. Journal of Physics: Conference Series, 1581(1). https://doi.org/10.1088/1742-6596/1581/1/012007
- Wutsqa, D. U., & Fauzan, M. (2022). The hybrid model of radial basis function neural network and principal component analysis for classification problems. Industrial Engineering and Management Systems, 21(3), 409–418. https://doi.org/10.7232/iems.2022.21.3.409
References
Abadi, A. M., Wutsqa, D. U., & Pamungkas, L. R. (2017). Detection of lung cancer using radiograph images enhancement and radial basis function classifier. 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 1-6. https://doi.org/10.1109/CISP-BMEI.2017.8302052.
Abadi, A. M., Wustqa, D. U., & Nurhayadi. (2019). Diagnosis of brain cancer using radial basis function neural network with singular value decomposition method. International Journal of Machine Learning and Computing, 9(4), 527–532. https://doi.org/10.18178/ijmlc.2019.9.4.836
Abadi, A. M., Wutsqa, D. U., & Ningsih, N. (2021). Construction of fuzzy radial basis function neural network model for diagnosing prostate cancer. Telkomnika (Telecommunication Computing Electronics and Control), 19(4), 1273–1283. https://doi.org/10.12928/TELKOMNIKA.v19i4.20398
Agasisti, T., Avvisati, F., Borgonovi, F., & Longobardi, S. (2018). Academic resilience: What schools and countries do to help disadvantaged students succeed in PISA. https://doi.org/10.1787/e22490ac-en
Aksu, N., Aksu, G., & Saracaloglu, S. (2022). Prediction of the factors affecting PISA mathematics literacy of students from different countries by using data mining methods. International Electronic Journal of Elementary Education, 14(5), 613-629. https://iejee.com/index.php/IEJEE/article/view/1757
Ali, D. S., Ghoneim, A., & Saleh, M. (2017). Data clustering method based on mixed similarity measures. Proceedings of the 6th International Conference on Operations Research and Enterprise Systems (ICORES 2017), 192-199. https://doi.org/10.5220/0006245601920199
Anggraheni, F. Y., & Kismiantini. (2022). Relationships of metacognition and learning time to mathematics achievement-PISA 2018 findings in Indonesia. AIP Conference Proceedings, 2575. https://doi.org/10.1063/5.0108028
Areepattamannil, S. (2014). International note: What factors are associated with reading, mathematics, and science literacy of Indian adolescents? A multilevel examination. Journal of adolescence, 37(4), 367-372. https://doi.org/10.1016/j.adolescence.2014.02.007
Aybek, H. S. Y., & Okur, M. R. (2018). Predicting achievement with artificial neural networks: The case of Anadolu University open education system. International Journal of Assessment Tools in Education, 5(3), 474-490. https://doi.org/10.21449/ijate.435507
Cheruku, R., Edla, D. R., & Kuppili, V. (2017). Diabetes classification using radial basis function network by combining cluster validity index and BAT optimization with novel fitness function. International Journal of Computational Intelligence Systems, 10(1), 247. https://doi.org/10.2991/ijcis.2017.10.1.17
Chrisinta, D., Sumertajaya, I. M., & Indahwati, I. (2020). Evaluasi kinerja metode cluster ensemble dan latent class clustering pada peubah campuran. Indonesian Journal of Statistics and Its Applications, 4(3), 448-461. https://doi.org/10.29244/ijsa.v4i3.630
Demir, I., & Karaboğa, H. A. (2021). Modeling mathematics achievement with deep learning methods. Sigma Journal of Engineering and Natural Sciences, 39, 33–40. https://doi.org/10.14744/sigma.2021.00039
Dhamodharavadhani, S., Rathipriya, R., & Chatterjee, J. M. (2020). COVID-19 mortality rate prediction for India using statistical neural network models. Frontiers in Public Health, 8(441), 1-12. https://doi.org/10.3389/fpubh.2020.00441
Ditakristy, M. L., Saepudin, D., & Nhita, F. (2016). Analisis dan implementasi radial basis function neural network dalam prediksi harga komoditas pertanian. eProceedings of Engineering (Vol. 3(1), pp. 1130-1139). https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/3658
Dixon, J. K. (1979). Pattern recognition with partly missing data. IEEE Transactions on Systems, Man, and Cybernetics, 9(10), 617-621. https://doi.org/10.1109/TSMC.1979.4310090
Dubey, A. D. (2015). K-Means based radial basis function neural networks for rainfall prediction. 2015 International Conference on Trends in Automation, Communications and Computing Technology (I-TACT-15) (pp. 1-6). Bangalore, India. https://doi.org/10.1109/ITACT.2015.7492664
Efendi, R., & Kismiantini. (2022). Analysis of PISA 2018 results in Indonesia: Perspective of socioeconomic status and school resources. AIP Conference Proceedings (Vol. 2575). https://doi.org/10.1063/5.0108065
Fırat, T., & Koyuncu, İ. (2023). Examining metacognitive strategy preferences of students at different reading proficiency levels. International Journal of Psychology and Educational Studies, 10, 224-240. https://doi.org/10.52380/ijpes.2023.10.1.997
Golub, G. H., Heath, M., & Wahba, G. (1979) Generalised cross-validation as a method for choosing a good ridge parameter. Technometrics, 21(2), 215-223. https://doi.org/10.1080/00401706.1979.10489751
Govorova, E., Benítez, I., & Muñiz, J. (2020). Predicting student well-being: Network analysis based on PISA 2018. International Journal of Environmental Research and Public Health, 17(11), 1–18. https://doi.org/10.3390/ijerph17114014
Hanke, J. E., & Wichern, D. W. (2005). Business forecasting (9th edition). London: Pearson Education.
Haviluddin, Sunarto, A., & Yuniarti, S. (2014). A comparison between simple linear regression and Radial Basis Function Neural Network (RBFNN) models for predicting students’ achievement. International Conference on Education (pp. 299-308). Sabah, Malaysia. https://doi.org/10.13140/2.1.3878.5600
He, Z., Xu, X., & Deng, S. (2005). Clustering mixed numeric and categorical data: A cluster ensemble approach. ArXiv Computer Science e-prints, 1-14. https://doi.org/10.48550/arXiv.cs/0509011
Huang, J. Z. (2009). Clustering categorical data with k-Modes. In Encyclopedia of Data Warehousing and Mining, Second Edition (pp. 246-250). IGI Global. https://doi.org/10.4018/978-1-60566-010-3.ch040
Huang, G., Saratchandran, P., & Sundararajan, N. (2005). A generalized growing and pruning rbf neural network for function approximation. IEEE Transactions On Neural Networks, 16(1), 57–67. https://doi.org/10.1109/TNN.2004.836241.
Huang, S., & Fang, N. (2013). Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models. Computers & Education, 61, 133-145. https://doi.org/10.1016/j.compedu.2012.08.015
Jerrim, J. (2022). The power of positive emotions? The link between young people’s positive and negative affect and performance in high-stakes examinations. Assessment in Education: Principles, Policy and Practice, 29(3), 310–331. https://doi.org/10.1080/0969594X.2022.2054941
Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis. Upper Saddle River, New Jersey: Prentice Hall.
Kamble, V. V., & Kokate, R. D. (2020). Automated diabetic retinopathy detection using radial basis function. Procedia Computer Science, 167, 799–808. https://doi.org/10.1016/j.procs.2020.03.429
Kaufman, L., & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. New Jersey: John Wiley & Sons. https://doi.org/10.1002/9780470316801
Kismiantini, Setiawan, E. P., Pierewan, A. C., & Montesinos-López, O. A. (2021). Growth mindset, school context, and mathematics achievement in Indonesia: A multilevel model. Journal on Mathematics Education, 12(2), 279–294. https://doi.org/10.22342/jme.12.2.13690.279-294
Kodinariya, T. M., & Makwana, P. R. (2013). Review on determining number of cluster in k-means clustering. International Journal of Advance Research in Computer Science and Management Studies, 1(6). www.ijarcsms.com
Koyuncu, İ. (2020). Investigation of mathematics-specific trend variables in pisa studies with neural networks and linear regression. Journal of Curriculum and Teaching, 9(4), 40. https://doi.org/10.5430/jct.v9n4p40
Krisnamurti, A. W., & Kismiantini. (2022). PISA 2018: Non-cognitive factors and school characteristics towards mathematics achievement in Indonesia. AIP Conference Proceedings, (Vol. 2575). https://doi.org/10.1063/5.0107787
Lee, J., & Stankov, L. (2013). Higher-Order structure of noncognitive constructs and prediction of PISA 2003 mathematics achievement. Learning and Individual Differences, 26, 119-130. https://doi.org/10.1016/j.lindif.2013.05.004
Marcq, K., & Braeken, J. (2023). Gender Differences in Item Nonresponse in the PISA 2018 Student Questionnaire. https://www.oecd.org/pisa/data/2018database/.
Ministry of Education and Culture of Indonesia. (2019). Pendidikan di Indonesia: Belajar dari hasil PISA 2018. Jakarta: Badan Penelitian dan Pendidikan, Kemdikbud. http://repositori.kemdikbud.go.id/id/eprint/16742
OECD. (2018). What 15-year-old students in Indonesia know and can do. Paris: OECD Publishing. https://www.oecd.org/pisa/publications/PISA2018_CN_IDN.pdf
OECD. (2019). PISA 2018 assessment and analytical framework. Paris: OECD Publishing. https://doi.org/10.1787/b25efab8-en
Orr, M. J. L. (1996). Introduction to radial basis function networks. Edinburgh: Edinburgh University.
Ovan, Waluya, S. B., & Nugroho, S. E. (2018). Analysis mathematical literacy skills in terms of the students’ metacognition on PISA-CPS model. Journal of Physics: Conference Series, 983(1). https://doi.org/10.1088/1742-6596/983/1/012151
Patmaniar, P., Amin, S. M., & Sulaiman, R. (2021). Students’ growing understanding in solving mathematics problems based on gender: Elaborating folding back. Journal on Mathematics Education, 12(3), 507-530. https://doi.org/10.22342/jme.12.3.14267.507-530
Pitsia, V., Biggart, A., & Karakolidis, A. (2017). The role of students' self-beliefs, motivation, and attitudes in predicting mathematics achievement: a multilevel analysis of the programme for international student assessment data. Learning and Individual Differences, 55, 163-173. https://doi.org/10.1016/j.lindif.2017.03.014
Rahmawati, D., & Kismiantini. (2022). Gender differences in mathematics achievement, competitiveness, fear of failure, and resilience: Analysis of PISA 2018 in Indonesia. AIP Conference Proceedings, (Vol. 2575). https://doi.org/10.1063/5.0107819
Samnufida, R., & Kismiantini. (2022). How school size and student teacher ratio affecting the students’ mathematics achievement. AIP Conference Proceedings, (Vol. 2575). https://doi.org/10.1063/5.0130178
Sateesh, B. G., & Suresh, S. (2013). Parkinson’s disease prediction using gene expression- A projection-based learning meta-cognitive neural classifier approach. Expert Systems with Applications, 40(5), 1519–1529. https://doi.org/10.1016/j.eswa.2012.08.070
Shen, W., Guo, X., Wu, C., & Wu, D. (2011). Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm. Knowledge-Based Systems, 24(3), 378–385. https://doi.org/10.1016/j.knosys.2010.11.001
Sing, J. K., Basu, D. K., Nasipuri, M., & Kundu, M. (2003). Improved k-means algorithm in the design of rbf neural networks. Conference on Convergent Technologies for Asia-Pacific Region (Vol. 2, pp. 841-845). Bangalore, India. https://doi.org/10.1109/TENCON.2003.1273297
Sowjanya, A. H. M., & Mrudula, M. O. (2015). Cluster ensemble approach for clustering mixed data. International Journal of Computer Techniques, 2(5), 43–51. http://www.ijctjournal.org/Volume2/Issue5/IJCT-V2I5P9.pdf
Tran, L. T., & Nguyen, T. S. (2021). Motivation and mathematics achievement: a Vietnamese case study. Journal on Mathematics Education, 12(3), 449-468. http://doi.org/10.22342/jme.12.3.14274.449-468
Vaitsis, C., Hervatis, V., & Zary, N. (2016). Introduction to big data in education and its contribution to the quality improvement processes. Big Data on Real-World Applications, 113, 58. http://dx.doi.org/10.5772/63896
Wutsqa, D. U., & Farhan, A. (2020). Lung cancer detection using the SOM-GRR based radial basis function neural network. Journal of Physics: Conference Series, 1581(1). https://doi.org/10.1088/1742-6596/1581/1/012007
Wutsqa, D. U., & Fauzan, M. (2022). The hybrid model of radial basis function neural network and principal component analysis for classification problems. Industrial Engineering and Management Systems, 21(3), 409–418. https://doi.org/10.7232/iems.2022.21.3.409