Main Article Content

Abstract

Audiovisual materials have been widely investigated in mathematics education for their capacity to improve learning outcomes and mitigate student disengagement. Therefore, this study aims to evaluate the acceptance of audiovisual materials as instructional aids among eighth-grade students. Adopting a mixed-method approach, the research first involved semi-structured interviews with mathematics teachers to identify key teaching and learning challenges. Based on the insights gained, educational videos were developed, adhering to motivational and didactic criteria. In the final phase, 78 students from a public high school in Ibarra, Ecuador, participated in a Likert-scale survey, guided by the Technology Acceptance Model (TAM), to assess their reception of the videos. The findings revealed that teachers highlighted fear of mathematics, insufficient prior knowledge, and the abstract nature of the content as major obstacles to be addressed. Most students responded positively, considering the videos effective for enhancing their understanding of mathematical concepts and boosting their motivation to learn. This study underscores the potential of audiovisual materials as effective tools to address educational challenges and foster student engagement in mathematics.

Keywords

Audiovisual Material Didactic Tools Eight-Grade Students Mathematics Education

Article Details

How to Cite
Piedra, A. B., & Reascos, I. (2024). Production and evaluation of audiovisual material to support the teaching of mathematics in eighth-grade learners. Journal on Mathematics Education, 15(3), 883–904. https://doi.org/10.22342/jme.v15i3.pp883-904

References

  1. Abdulrahaman, M. D., Faruk, N., Oloyede, A. A., Surajudeen-Bakinde, N. T., Olawoyin, L. A., Mejabi, O. V, Imam-Fulani, Y. O., Fahm, A. O., & Azeez, A. L. (2020). Multimedia tools in the teaching and learning processes: A systematic review. Heliyon, 6(11), e05312. https://doi.org/https://doi.org/10.1016/j.heliyon.2020.e05312
  2. Abuhassna, H., Yahaya, N., Zakaria, M., Zaid, N. M., Samah, N. A., Awae, F., Nee, C. K., & Alsharif, A. H. (2023). Trends on Using the Technology Acceptance Model (TAM) for Online Learning: A Bibliometric and Content Analysis. International Journal of Information and Education Technology. https://doi.org/10.18178/ijiet.2023.13.1.1788
  3. Ahmad, A., Yin, T. S., Fang, L. Y., Yen, Y. H., & How, K. W. (2010). Incorporating Multimedia as a Tool into Mathematics Education: A Case Study on Diploma Students in Multimedia University. Procedia - Social and Behavioral Sciences, 8, 594–599. https://doi.org/https://doi.org/10.1016/j.sbspro.2010.12.082
  4. Albert, M. J., Blázquez-Merino, M., López-Rey, Á., & Castro, M. (2021). Influence of Technological Resources on the Development of Mathematical Competence in High School. IT Professional, 23, 19–25. https://doi.org/10.1109/MITP.2021.3062685
  5. Al-Emran, M., Mezhuyev, V., & Kamaludin, A. (2018). Technology Acceptance Model in M-learning context: A systematic review. Comput. Educ., 125, 389–412. https://doi.org/10.1016/j.compedu.2018.06.008
  6. Al-Rahmi, W., Yahaya, N., Aldraiweesh, A., Alamri, M. M., Aljarboa, N. A., Alturki, U. T., & Aljeraiwi, A. A. (2019). Integrating Technology Acceptance Model With Innovation Diffusion Theory: An Empirical Investigation on Students’ Intention to Use E-Learning Systems. IEEE Access, 7, 26797–26809. https://doi.org/10.1109/ACCESS.2019.2899368
  7. Arpi, Z. M. C. (2020). Causas que inciden en el bajo rendimiento académico en el en el area de matemáticas, en los estudiantes del cuarto año de educación general básica de la escuela Jesús Vásquez Ochoa , en el año lectivo 2018-2019. Tésis de Licenciatura, Universidad Politécnica Saleciana de Cuenca. https://dspace.ups.edu.ec/bitstream/123456789/19320/1/UPS-CT008837.pdf
  8. Bakkay, M., Pizenberg, M., Carlier, A., Balavoine, E., Morin, G., & Charvillat, V. (2019). Protocols and software for simplified educational video capture and editing. Journal of Computers in Education, 6, 257–276. https://doi.org/10.1007/S40692-019-00136-6
  9. Bonafini, F. C., & Lee, Y. (2021). Investigating prospective teachers’ TPACK and their use of mathematical action technologies as they create screencast video lessons on iPads. Techtrends, 65(3), 303–319. https://link.springer.com/article/10.1007/s11528-020-00578-1
  10. Brame, C. (2016). Effective Educational Videos: Principles and Guidelines for Maximizing Student Learning from Video Content. CBE Life Sciences Education, 15. https://doi.org/10.1187/cbe.16-03-0125
  11. Castillo, S., Calvitti, K., Shoup, J., Rice, M., Lubbock, H., & Oliver, K. H. (2021). Production processes for creating educational videos. CBE—Life Sciences Education, 20(2), es7. https://www.lifescied.org/doi/pdf/10.1187/cbe.20-06-0120
  12. Castro-Velásquez, M. J., & Rivadeneira-Loor, F. Y. (2022). Posibles Causas del Bajo Rendimiento en las Matemáticas: Una Revisión a la Literatura. Polo Del Conocimiento, 7(2), 1089–1098. https://polodelconocimiento.com/ojs/index.php/es/article/view/3635
  13. Cid, A. I. C., Cid, R. G., & Rodríguez-Piñero, P. T. (2018). La clase invertida en la formación inicial del profesorado: Acercando la realidad del aula de matemáticas. Bordón: Revista de Pedagogía, 70(3), 77–93. https://dialnet.unirioja.es/servlet/articulo?codigo=6537323
  14. Cook, E. (2022). Stop-motion LEGO® animations for learning linear algebra. International Journal of Mathematical Education in Science and Technology, 53(3), 594–602. https://shorturl.at/bijp2
  15. Cruse, E. (2007). Using educational video in the classroom: Theory, research and practice. Library Video Company, 12(4), 56–80.
  16. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319–340.
  17. Fitzmaurice, O., O’Meara, N., & Johnson, P. (2021). Highlighting the Relevance of Mathematics to Secondary School Students – Why and How. European Journal of STEM Education, 6, 7. https://doi.org/10.20897/EJSTEME/10895
  18. Frick, P., & Schüler, A. (2023). Extending the theoretical foundations of multimedia learning: Activation, integration, and validation occur when processing illustrated texts. Learning and Instruction, 87, 101800. https://doi.org/https://doi.org/10.1016/j.learninstruc.2023.101800
  19. Galatsopoulou, F., Kenterelidou, C., Kotsakis, R., & Matsiola, M. (2022). Examining Students’ Perceptions towards Video-Based and Video-Assisted Active Learning Scenarios in Journalism and Communication Courses. Education Sciences. https://doi.org/10.3390/educsci12020074
  20. Granić, A., & Marangunic, N. (2019). Technology acceptance model in educational context: A systematic literature review. Br. J. Educ. Technol., 50, 2572–2593. https://doi.org/10.1111/BJET.12864
  21. Guner, N. (2020). Difficulties Encountered by High School Students in Mathematics. 6, 703–713. https://doi.org/10.12973/ijem.6.4.703
  22. Haddar, G., & Novianti, E. (2019). ANALYSIS OF DIFFICULTIES IN LEARNING MATHEMATICS IN ELEMENTARY SCHOOL. Borneo Educational Journal (Borju). https://doi.org/10.24903/bej.v1i1.313
  23. Hillmayr, D., Ziernwald, L., Reinhold, F., Hofer, S., & Reiss, K. (2020). The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Comput. Educ., 153, 103897. https://doi.org/10.1016/j.compedu.2020.103897
  24. Huang, M. C., Chou, C., Wu, Y., Shih, J.-L., Yeh, C. Y. C., Lao, A., Fong, H., Lin, Y., & Chan, T. (2020). Interest-driven video creation for learning mathematics. Journal of Computers in Education, 1–39. https://doi.org/10.1007/s40692-020-00161-w
  25. Huda, M. (2018). Investigating factors influencing mathematics teaching performance: an empirical study. International Journal of Instruction, 11(3), 391–402. https://e-iji.net/dosyalar/iji_2018_3_27.pdf
  26. Hussein, M. H., Ow, S. H., Elaish, M. M., & Jensen, E. (2021). Digital game-based learning in K-12 mathematics education: a systematic literature review. Education and Information Technologies, 27, 2859–2891. https://doi.org/10.1007/s10639-021-10721-x
  27. Imania, K. A. N., Purwanti, Y., Bariah, S. H., Nasrulloh, I., & Nurazizah, N. (2021). The development of interactive learning multimedia in teaching mathematics (integer number) to junior high school students. Journal of Physics: Conference Series, 1987(1), 12013. https://iopscience.iop.org/article/10.1088/1742-6596/1987/1/012013/meta
  28. Ineval. (2018). Resultados de PISA para el Desarrollo. In Ineval. https://shorturl.at/djpCX
  29. Jupri, A., & Drijvers, P. (2016). Student difficulties in mathematizing word problems in algebra. Eurasia Journal of Mathematics, Science and Technology Education, 12, 2481–2502. https://doi.org/10.12973/EURASIA.2016.1299A
  30. Koumi, J. (2015). Learning outcomes afforded by self-assessed, segmented video–print combinations. Cogent Education, 2(1), 1045218. https://www.tandfonline.com/doi/full/10.1080/2331186X.2015.1045218
  31. Küçükalkan, K., Beyazsaçli, M., & Öz, A. S. (2019). Examination of the effects of computer-based mathematics instruction methods in children with mathematical learning difficulties: a meta-analysis. Behaviour & Information Technology, 38, 913–923. https://doi.org/10.1080/0144929X.2019.1597166
  32. Kuhlmann, S. L., Bernacki, M. L., Greene, J. A., Hogan, K. A., Evans, M., Plumley, R., Gates, K., & Panter, A. (2023). How do students’ achievement goals relate to learning from well-designed instructional videos and subsequent exam performance? Contemporary Educational Psychology, 73, 102162. https://doi.org/https://doi.org/10.1016/j.cedpsych.2023.102162
  33. Lavidas, K., Apostolou, Z., & Papadakis, S. (2022). Challenges and opportunities of mathematics in digital times: Preschool teachers’ views. Education Sciences, 12(7), 459. https://www.mdpi.com/2227-7102/12/7/459
  34. Lesmes, C. Z., Acosta-Solano, J., Benavides, L. B., & Umaña Ibáñez, S. F. (2022). Design and Production of Educational Video Games for the Inclusion of Deaf Children. Procedia Computer Science, 198, 626–631. https://doi.org/https://doi.org/10.1016/j.procs.2021.12.297
  35. Li, X., & Bus, A. G. (2023). Efficacy of digital picture book enhancements grounded in multimedia learning principles: Dependent on age? Learning and Instruction, 85, 101749. https://doi.org/10.1016/j.learninstruc.2023.101749
  36. Lima, P. da S. N., Silva, L. A., Félix, I. M., & Brandão, L. O. (2019). Difficulties in Basic Concepts of Mathematics in Higher Education: A Systematic Review. 2019 IEEE Frontiers in Education Conference (FIE), 1–7. https://doi.org/10.1109/FIE43999.2019.9028658
  37. López, A. (2014). ¿Por qué del rechazo a las Matemáticas? 2014. http://dspace.ups.edu.ec/handle/123456789/10968
  38. Manasia, L., Ianos, M. gratiela, & Chicioreanu, T. (2019). Pre-Service Teacher Preparedness for Fostering Education for Sustainable Development: An Empirical Analysis of Central Dimensions of Teaching Readiness. Sustainability. https://doi.org/10.3390/su12010166
  39. Mayer, R. E. (2002). Multimedia learning. In Psychology of learning and motivation (Vol. 41, pp. 85–139). Elsevier. https://www.jstage.jst.go.jp/article/arepj1962/41/0/41_27/_pdf
  40. Mazana, Y. M., Suero Montero, C., & Olifage, C. R. (2019). Investigating students’ attitude towards learning mathematics. International Electronic Journal of Mathematics Education, 14(1), 207–231. https://doi.org/10.29333/iejme/3997
  41. Ministerio de Educación del Ecuador. (2018). Matemàtica 8, Educación General Básica - Subnivel Superior (Vol. 1, Issue 5). https://drive.google.com/file/d/1hlOWAnI7nAHquAdkfhIpebRhYCdqStQB/view
  42. Molina-Toro, J. F., Rendón-Mesa, P. A., & Villa-Ochoa, J. (2019). Research Trends in Digital Technologies and Modeling in Mathematics Education. EURASIA Journal of Mathematics, Science and Technology Education. https://doi.org/10.29333/EJMSTE/108438
  43. Moreno, D., Palacios, A., Barreras, Á., & Pascual, V. (2020). An assessment of the impact of teachers’ digital competence on the quality of videos developed for the flipped math classroom. Mathematics, 8(2), 148. https://www.mdpi.com/2227-7390/8/2/148
  44. Mou, T.-Y. (2023). Science learning with designed animation: Investigation of primary school children’s attitudes toward science learning, animation integration, and understanding level. International Journal of Educational Research Open, 4, 100246. https://doi.org/https://doi.org/10.1016/j.ijedro.2023.100246
  45. Moussiades, L., Kazanidis, I., & Iliopoulou, A. (2019). A framework for the development of educational video: An empirical approach. Innovations in Education and Teaching International, 56, 217–228. https://doi.org/10.1080/14703297.2017.1399809
  46. Namkung, J. M., Peng, P., & Lin, X. (2019). The relation between mathematics anxiety and mathematics performance among school-aged students: A meta-analysis. Review of Educational Research, 89(3), 459–496. https://doi.org/10.3102/0034654319843494
  47. Nelson, G., & Powell, S. R. (2018). A Systematic Review of Longitudinal Studies of Mathematics Difficulty. Journal of Learning Disabilities, 51, 523–539. https://doi.org/10.1177/0022219417714773
  48. Papadakis, S. (2020). Apps to promote computational thinking concepts and coding skills in children of preschool and pre-primary school age. In Mobile learning applications in early childhood education (pp. 101–121). IGI Global. https://www.igi-global.com/gateway/chapter/242575
  49. Papadakis, S. (2021). Tools for evaluating educational apps for young children: a systematic review of the literature. Interactive Technology and Smart Education, 18(1), 18–49. https://www.emerald.com/insight/content/doi/10.1108/ITSE-08-2020-0127/full/html
  50. Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2021). Teaching mathematics with mobile devices and the Realistic Mathematical Education (RME) approach in kindergarten. Advances in Mobile Learning Educational Research, 1(1), 5–18. https://www.syncsci.com/journal/AMLER/article/view/AMLER.2021.01.002
  51. Pierce, R., Stacey, K., & Ball, L. (2005). Mathematics from still and moving images. Australian Mathematics Teacher, 61, 26+. https://shorturl.at/fhIPS
  52. Pradana, L. N., Sholikhah, O. H., Maharani, S., & Kholid, M. (2020). Virtual Mathematics Kits (VMK): Connecting Digital Media to Mathematical Literacy. Int. J. Emerg. Technol. Learn., 15, 234–241. https://doi.org/10.3991/ijet.v15i03.11674
  53. Rif’at, M. (2018). The Exploring of Visual Imagery: In Their Relation to the Students’ Mathematical Identity. Herpetologica, 3, 75. https://doi.org/10.11648/J.HER.20180305.11
  54. Rosli, M., Saleh, N. S., Ali, A. Md., Bakar, S. A., & Tahir, L. M. (2022). A Systematic Review of the Technology Acceptance Model for the Sustainability of Higher Education during the COVID-19 Pandemic and Identified Research Gaps. Sustainability. https://doi.org/10.3390/su141811389
  55. Russo, J., Russo, T., & Roche, A. (2021). Using rich narratives to engage students in worthwhile mathematics: Children’s literature, movies and short films. Education Sciences, 11(10), 588. https://doi.org/10.3390/educsci11100588
  56. Salloum, S., Alhamad, A. Q. M., Al-Emran, M., Monem, A. R. A., & Shaalan, K. (2019). Exploring Students’ Acceptance of E-Learning Through the Development of a Comprehensive Technology Acceptance Model. IEEE Access, 7, 128445–128462. https://doi.org/10.1109/ACCESS.2019.2939467
  57. Saunders, A. F., Spooner, F., & Davis, L. L. (2018). Using Video Prompting to Teach Mathematical Problem Solving of Real-World Video-Simulation Problems. Remedial and Special Education, 39, 53–64. https://doi.org/10.1177/0741932517717042
  58. Schulz, J., & Iskru, V. V. (2021). Video in Education From ‘Sage on the Stage’’ to “TV Talk Show Host’’: Where to Next?”’ Eurasia Journal of Mathematics, Science and Technology Education, 17(9), em2005. https://doi.org/10.29333/ejmste/11154
  59. Snelson, C. (2018). Video production in content-area pedagogy: a scoping study of the research literature. Learning, Media and Technology, 43, 294–306. https://doi.org/10.1080/17439884.2018.1504788
  60. Stoehr, K. (2017). Mathematics Anxiety. Journal of Teacher Education, 68, 69–84. https://doi.org/10.1177/0022487116676316
  61. Tan, S., Zou, L., & Wijaya, T. (2021). USING VIDEO LEARNING TO IMPROVE STUDENTS’ MATHEMATICAL ABILITY. Journal of Database Management, 1, 117–126. https://doi.org/10.34007/JDM.V1I3.364
  62. Tomasetto, C., Morsanyi, K., Guardabassi, V., & O’Connor, P. A. (2020). Math anxiety interferes with learning novel mathematics contents in early elementary school. Journal of Educational Psychology. https://doi.org/10.1037/edu0000602.supp
  63. UTN. (2012). Código de Ética de la Universidad Técnica del Norte. https://bit.ly/3MW14AV
  64. VERBI Software. (2021). MAXQDA Guía de Introducción. Consult. Sozialforschung. https://www.maxqda.com/download/GettingStarted-MAXQDA2022-esp.pdf
  65. Vos, P. (2018). “How Real People Really Need Mathematics in the Real World”—Authenticity in Mathematics Education. Education Sciences. https://doi.org/10.3390/EDUCSCI8040195
  66. Wampash Antuash, D. V. (2018). El bajo rendimiento académico en matemáticas, con los estudiantes del sexto C de Educación General Básica de la Unidad Educativa Tres de Noviembre de la ciudad de Cuenca, año lectivo 2017-2018. http://dspace.ups.edu.ec/handle/123456789/16100
  67. Wijnker, W., Bakker, A., van Gog, T., & Drijvers, P. (2019). Educational videos from a film theory perspective: Relating teacher aims to video characteristics. British Journal of Educational Technology, 50(6), 3175–3197. https://bera-journals.onlinelibrary.wiley.com/doi/epdf/10.1111/bjet.12725
  68. Wilkie, K. J., Ayalon, M., & Kanj, S. Z. (2023). Exploring ways to engage disaffected mathematics students through formative assessment processes with rich tasks. Teaching and Teacher Education, 132, 104256. https://doi.org/10.1016/j.tate.2023.104256
  69. Žakelj, A., & Klancar, A. (2022). The Role of Visual Representations in Geometry Learning. European Journal of Educational Research, 11(3), 1393–1411. https://eric.ed.gov/?id=EJ1353249
  70. Zourmpakis, A.-I., Papadakis, S., & Kalogiannakis, M. (2022). Education of preschool and elementary teachers on the use of adaptive gamification in science education. International Journal of Technology Enhanced Learning, 14(1), 1–16.