Main Article Content
Abstract
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Adams, N. E. (2015). Bloom’s taxonomy of cognitive learning objectives. Journal of the Medical Library Association, 103(3), 152–153. https://doi.org/10.3163/1536-5050.103.3.010
- Ahern, T. C. (2016). A Waterfall Design Strategy for Using Social Media for Instruction. Journal of Educational Technology Systems, 44(3), 332–345. https://doi.org/10.1177/0047239515615853
- Ahmad, S., Prahmana, R. C. I., Kenedi, A. K., Helsa, Y., Arianil, Y., & Zainil, M. (2018). The instruments of higher order thinking skills. Journal of Physics: Conference Series, 943(1). https://doi.org/10.1088/1742-6596/943/1/012053
- Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. Longman.
- Ariyana, Y., Pudjiastuti, A., Bestary, R., & Zamroni. (2018). The Learning Handbook Oriented Higher- Order Thinking Skills [in Bahasa]. Direktorat Jenderal Guru dan Tenaga Kependidikan Kementrian Pendidikan dan Kebudayaan.
- Bakker, A. (2019). Design Research in Education: A Practical Guide for Early Career Researchers. Routledge.
- Barana, A. (2021). From formulas to functions through geometry: A path to understanding algebraic computations. European Journal of Investigation in Health, Psychology and Education, 11(4), 1485–1502. https://doi.org/10.3390/ejihpe11040106
- Bokhove, C., & Drijvers, P. (2010). Symbol sense behavior in digital activities. For the Learning of Mathematics, 30(3), 43–49.
- Brookhart, S. M. (2010). How to assess higher-order thinking skills in your classroom. ASCD.
- Collins, R. (2014). Skills for the 21st Century: teaching higher-order thinking. Curriculum & Leadership Journal, 12(14).
- Darmawan, E. W., & Suparman, S. (2019). Design of Mathematics Learning Media based on Discovery Learning to Improve Problem Solving Ability. Indonesian Journal on Learning and Advanced Education (IJOLAE), 1(2), 20–28. https://doi.org/10.23917/ijolae.v1i2.7564
- Fachrudin, A. D., Putri, R. I. I., & Darmawijoyo, D. (2014). Building Students’ Understanding Of Quadratic Equation Concept Using Naïve Geometry. Journal on Mtahematics Education, 5(2), 191–202. https://doi.org/https://doi.org/10.22342/jme.5.2.1502.191-202
- Fitri, N. L., & Prahmana, R. C. I. (2020). Designing learning trajectory of circle using the context of Ferris wheel. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 5(3), 247–261. https://doi.org/10.23917/jramathedu.v5i3.10961
- Guo, P. J., Kim, J., & Rubin, R. (2014). How video production affects student engagement: An empirical study of MOOC videos. L@S 2014 - Proceedings of the 1st ACM Conference on Learning at Scale, 41–50. https://doi.org/10.1145/2556325.2566239
- Harsa, F. S. (2016). Integrasi Ict Dalam Pembelajaran Matematika [In Bahasa]. Jurnal Paedagogi, 8(2), 2016–2158. https://doi.org/https://doi.org/10.1234/paedagogi.v8i2.8165
- Hoogland, K. (2016). Images of Numeracy Investigating the effect of visual representations of problem situation in contextual mathematical problem solving.
- Jones, S. R. (2015). The prevalence of area-under-a-curve and anti-derivative conceptions over Riemann sum-based conceptions in students’ explanations of definite integrals. International Journal of Mathematical Education in Science and Technology, 46(5), 721–736. https://doi.org/10.1080/0020739X.2014.1001454
- Jupri, A. (2015). The Use of Applets to Improve Indonesian Student Performance in Algebra.
- Kolovou, A., van den Heuvel-Panhuizen, M., Bakker, A., & Elia, I. (2011). An ICT environment to assess and support students’ mathematical problem-solving performance in non-routine puzzle-like word problems. In Mathematical problem solving in primary school (pp. 77–92).
- Komarudin, K., Suherman, S., Puspıta, L., Arrafıansyah, R., & Nur Hasanah, U. (2020). Program course lab 2.4 mathematics learning media for increasing of creativity domain at Higher Order Thinking Skills (HOTS). Journal of Gifted Education and Creativity.
- Laurens, T., Batlolona, F. A., Batlolona, J. R., & Leasa, M. (2018). How does realistic mathematics education (RME) improve students’ mathematics cognitive achievement? Eurasia Journal of Mathematics, Science and Technology Education, 14(2), 569–578. https://doi.org/10.12973/ejmste/76959
- Meryansumayeka, M., Zulkardi, Putri, R. I. I., & Hiltrimartin, C. (2020). The prototype of PISA-like digital mathematical tasks. Journal of Physics: Conference Series, 1470(1). https://doi.org/10.1088/1742-6596/1470/1/012024
- Meryansumayeka, M., Zulkardi, Z., Putri, R. I. I., & Hiltrimartin, C. (2021). Kesulitan Siswa dalam Menyelesaikan Permasalahan Geometri Level Higher Order Thinking Skills. SJME (Supremum Journal of Mathematics Education), 5(2). https://doi.org/10.35706/sjme.v5i2.5162
- Neumann, J. W. (2013). Developing a New Framework for Conceptualizing “Student-Centered Learning.” Educational Forum, 77(2), 161–175. https://doi.org/10.1080/00131725.2012.761313
- OECD. (2018). “PISA for Development Mathematics Framework.” OECD Publishing.
- OECD. (2019). “PISA 2018 Assessment and Analytical Framework”. OECD Publishing.
- Pereira, J., Tan, S., Li, L., & Purnama, A. (2020). Developing A Mathematics Learning Media To Explain Formula Of Area Of Kite Using Hawgent. Indonesian Journal of Science and Mathematics Education, 3(3), 272–281. https://doi.org/10.24042/ijsme.v3i2.7391
- Prahmana, R. C. I., Zulkardi, Z., & Hartono, Y. (2012). Learning Multiplication Using Indonesian Traditional game in Third Grade. Journal on Mathematics Education, 3(2), 115–132. https://doi.org/https://doi.org/10.22342/jme.3.2.1931.115-132
- Pratama, G. S., & Retnawati, H. (2018). Urgency of Higher Order Thinking Skills (HOTS) Content Analysis in Mathematics Textbook. Journal of Physics: Conference Series, 1097(1). https://doi.org/10.1088/1742-6596/1097/1/012147
- Raiyn, J. (2016). The Role of Visual Learning in Improving Students’ High-Order Thinking Skills. Journal of Education and Practice, 7(24), 115–121. www.iiste.org
- Revina, S., Zulkardi, Z., Darmawijoyo, D., & van Galen, F. (2011). Spatial Visualization Tasks To Support Students’ Spatial Structuring In Learning Volume Measurement. Journal on Mathematics Education, 2(2), 127–146. https://doi.org/https://doi.org/10.22342/jme.2.2.745.127-146
- Schindler, M., Schovenberg, V., & Schabmann, A. (2020). Enumeration Processes of Children With Mathematical Difficulties: An Explorative Eye-Tracking Study on Subitizing, Groupitizing, Counting, and Pattern Recognition. In Learning Disabilities: A Contemporary Journal (Vol. 18, Issue 2).
- Setiawan, A., Malik, A., Suhandi, A., & Permanasari, A. (2018). Effect of Higher Order Thinking Laboratory on the Improvement of Critical and Creative Thinking Skills. IOP Conference Series: Materials Science and Engineering, 306(1). https://doi.org/10.1088/1757-899X/306/1/012008
- Sofiyan, S., Amalia, R., & Suwardi, A. B. (2020). Development of mathematical teaching materials based on project-based learning to improve students’ HOTS and character. Journal of Physics: Conference Series, 1460(1). https://doi.org/10.1088/1742-6596/1460/1/012006
- Sumirattana, S., Makanong, A., & Thipkong, S. (2017). Using realistic mathematics education and the DAPIC problem-solving process to enhance secondary school students’ mathematical literacy. Kasetsart Journal of Social Sciences, 38(3), 307–315. https://doi.org/10.1016/j.kjss.2016.06.001
- Tambunan, H., & Naibaho, T. (2019). Performance of mathematics teachers to build students’ high order thinking skills (HOTS). Journal of Education and Learning (EduLearn), 13(1), 111–117. https://doi.org/10.11591/edulearn.v13i1.11218
- Tanudjaya, C. P., & Doorman, M. (2020). Examining higher order thinking in Indonesian lower secondary mathematics classrooms. In Journal on Mathematics Education (Vol. 11, Issue 2, pp. 277–300). Sriwijaya University. https://doi.org/10.22342/jme.11.2.11000.277-300
- Tanujaya, B., Mumu, J., & Margono, G. (2017). The Relationship between Higher Order Thinking Skills and Academic Performance of Student in Mathematics Instruction. International Education Studies, 10(11), 78. https://doi.org/10.5539/ies.v10n11p78
- van den Heuvel-Panhuizen, M. (2003). The Didactical Use Of Models In Realistic Mathematics Education: An Example From A Longitudinal Trajectory On Percentage 1. Educational Studies in Mathematics.
- van den Heuvel-Panhuizen, M. (2020). Didactical Phenomenology (Freudenthal). In S. Lerman (Ed.), Encyclopedia of mathematics education (2nd ed., pp. 218–220). Springer.
- Wang, J., & Antonenko, P. D. (2017). Instructor presence in instructional video: Effects on visual attention, recall, and perceived learning. Computers in Human Behavior, 71, 79–89. https://doi.org/10.1016/j.chb.2017.01.049
- Zainil, M., Prahmana, R. C. I., Helsa, Y., & Hendri, S. (2018). ICT media design for higher grade of elementary school mathematics learning using CS6 program. Journal of Physics: Conference Series, 943(1). https://doi.org/10.1088/1742-6596/943/1/012046
- Zengin, Y. (2021). Construction of proof of the Fundamental Theorem of Calculus using dynamic mathematics software in the calculus classroom. Education and Information Technologies. https://doi.org/10.1007/s10639-021-10666-1
References
Adams, N. E. (2015). Bloom’s taxonomy of cognitive learning objectives. Journal of the Medical Library Association, 103(3), 152–153. https://doi.org/10.3163/1536-5050.103.3.010
Ahern, T. C. (2016). A Waterfall Design Strategy for Using Social Media for Instruction. Journal of Educational Technology Systems, 44(3), 332–345. https://doi.org/10.1177/0047239515615853
Ahmad, S., Prahmana, R. C. I., Kenedi, A. K., Helsa, Y., Arianil, Y., & Zainil, M. (2018). The instruments of higher order thinking skills. Journal of Physics: Conference Series, 943(1). https://doi.org/10.1088/1742-6596/943/1/012053
Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom’s taxonomy of educational objectives. Longman.
Ariyana, Y., Pudjiastuti, A., Bestary, R., & Zamroni. (2018). The Learning Handbook Oriented Higher- Order Thinking Skills [in Bahasa]. Direktorat Jenderal Guru dan Tenaga Kependidikan Kementrian Pendidikan dan Kebudayaan.
Bakker, A. (2019). Design Research in Education: A Practical Guide for Early Career Researchers. Routledge.
Barana, A. (2021). From formulas to functions through geometry: A path to understanding algebraic computations. European Journal of Investigation in Health, Psychology and Education, 11(4), 1485–1502. https://doi.org/10.3390/ejihpe11040106
Bokhove, C., & Drijvers, P. (2010). Symbol sense behavior in digital activities. For the Learning of Mathematics, 30(3), 43–49.
Brookhart, S. M. (2010). How to assess higher-order thinking skills in your classroom. ASCD.
Collins, R. (2014). Skills for the 21st Century: teaching higher-order thinking. Curriculum & Leadership Journal, 12(14).
Darmawan, E. W., & Suparman, S. (2019). Design of Mathematics Learning Media based on Discovery Learning to Improve Problem Solving Ability. Indonesian Journal on Learning and Advanced Education (IJOLAE), 1(2), 20–28. https://doi.org/10.23917/ijolae.v1i2.7564
Fachrudin, A. D., Putri, R. I. I., & Darmawijoyo, D. (2014). Building Students’ Understanding Of Quadratic Equation Concept Using Naïve Geometry. Journal on Mtahematics Education, 5(2), 191–202. https://doi.org/https://doi.org/10.22342/jme.5.2.1502.191-202
Fitri, N. L., & Prahmana, R. C. I. (2020). Designing learning trajectory of circle using the context of Ferris wheel. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 5(3), 247–261. https://doi.org/10.23917/jramathedu.v5i3.10961
Guo, P. J., Kim, J., & Rubin, R. (2014). How video production affects student engagement: An empirical study of MOOC videos. L@S 2014 - Proceedings of the 1st ACM Conference on Learning at Scale, 41–50. https://doi.org/10.1145/2556325.2566239
Harsa, F. S. (2016). Integrasi Ict Dalam Pembelajaran Matematika [In Bahasa]. Jurnal Paedagogi, 8(2), 2016–2158. https://doi.org/https://doi.org/10.1234/paedagogi.v8i2.8165
Hoogland, K. (2016). Images of Numeracy Investigating the effect of visual representations of problem situation in contextual mathematical problem solving.
Jones, S. R. (2015). The prevalence of area-under-a-curve and anti-derivative conceptions over Riemann sum-based conceptions in students’ explanations of definite integrals. International Journal of Mathematical Education in Science and Technology, 46(5), 721–736. https://doi.org/10.1080/0020739X.2014.1001454
Jupri, A. (2015). The Use of Applets to Improve Indonesian Student Performance in Algebra.
Kolovou, A., van den Heuvel-Panhuizen, M., Bakker, A., & Elia, I. (2011). An ICT environment to assess and support students’ mathematical problem-solving performance in non-routine puzzle-like word problems. In Mathematical problem solving in primary school (pp. 77–92).
Komarudin, K., Suherman, S., Puspıta, L., Arrafıansyah, R., & Nur Hasanah, U. (2020). Program course lab 2.4 mathematics learning media for increasing of creativity domain at Higher Order Thinking Skills (HOTS). Journal of Gifted Education and Creativity.
Laurens, T., Batlolona, F. A., Batlolona, J. R., & Leasa, M. (2018). How does realistic mathematics education (RME) improve students’ mathematics cognitive achievement? Eurasia Journal of Mathematics, Science and Technology Education, 14(2), 569–578. https://doi.org/10.12973/ejmste/76959
Meryansumayeka, M., Zulkardi, Putri, R. I. I., & Hiltrimartin, C. (2020). The prototype of PISA-like digital mathematical tasks. Journal of Physics: Conference Series, 1470(1). https://doi.org/10.1088/1742-6596/1470/1/012024
Meryansumayeka, M., Zulkardi, Z., Putri, R. I. I., & Hiltrimartin, C. (2021). Kesulitan Siswa dalam Menyelesaikan Permasalahan Geometri Level Higher Order Thinking Skills. SJME (Supremum Journal of Mathematics Education), 5(2). https://doi.org/10.35706/sjme.v5i2.5162
Neumann, J. W. (2013). Developing a New Framework for Conceptualizing “Student-Centered Learning.” Educational Forum, 77(2), 161–175. https://doi.org/10.1080/00131725.2012.761313
OECD. (2018). “PISA for Development Mathematics Framework.” OECD Publishing.
OECD. (2019). “PISA 2018 Assessment and Analytical Framework”. OECD Publishing.
Pereira, J., Tan, S., Li, L., & Purnama, A. (2020). Developing A Mathematics Learning Media To Explain Formula Of Area Of Kite Using Hawgent. Indonesian Journal of Science and Mathematics Education, 3(3), 272–281. https://doi.org/10.24042/ijsme.v3i2.7391
Prahmana, R. C. I., Zulkardi, Z., & Hartono, Y. (2012). Learning Multiplication Using Indonesian Traditional game in Third Grade. Journal on Mathematics Education, 3(2), 115–132. https://doi.org/https://doi.org/10.22342/jme.3.2.1931.115-132
Pratama, G. S., & Retnawati, H. (2018). Urgency of Higher Order Thinking Skills (HOTS) Content Analysis in Mathematics Textbook. Journal of Physics: Conference Series, 1097(1). https://doi.org/10.1088/1742-6596/1097/1/012147
Raiyn, J. (2016). The Role of Visual Learning in Improving Students’ High-Order Thinking Skills. Journal of Education and Practice, 7(24), 115–121. www.iiste.org
Revina, S., Zulkardi, Z., Darmawijoyo, D., & van Galen, F. (2011). Spatial Visualization Tasks To Support Students’ Spatial Structuring In Learning Volume Measurement. Journal on Mathematics Education, 2(2), 127–146. https://doi.org/https://doi.org/10.22342/jme.2.2.745.127-146
Schindler, M., Schovenberg, V., & Schabmann, A. (2020). Enumeration Processes of Children With Mathematical Difficulties: An Explorative Eye-Tracking Study on Subitizing, Groupitizing, Counting, and Pattern Recognition. In Learning Disabilities: A Contemporary Journal (Vol. 18, Issue 2).
Setiawan, A., Malik, A., Suhandi, A., & Permanasari, A. (2018). Effect of Higher Order Thinking Laboratory on the Improvement of Critical and Creative Thinking Skills. IOP Conference Series: Materials Science and Engineering, 306(1). https://doi.org/10.1088/1757-899X/306/1/012008
Sofiyan, S., Amalia, R., & Suwardi, A. B. (2020). Development of mathematical teaching materials based on project-based learning to improve students’ HOTS and character. Journal of Physics: Conference Series, 1460(1). https://doi.org/10.1088/1742-6596/1460/1/012006
Sumirattana, S., Makanong, A., & Thipkong, S. (2017). Using realistic mathematics education and the DAPIC problem-solving process to enhance secondary school students’ mathematical literacy. Kasetsart Journal of Social Sciences, 38(3), 307–315. https://doi.org/10.1016/j.kjss.2016.06.001
Tambunan, H., & Naibaho, T. (2019). Performance of mathematics teachers to build students’ high order thinking skills (HOTS). Journal of Education and Learning (EduLearn), 13(1), 111–117. https://doi.org/10.11591/edulearn.v13i1.11218
Tanudjaya, C. P., & Doorman, M. (2020). Examining higher order thinking in Indonesian lower secondary mathematics classrooms. In Journal on Mathematics Education (Vol. 11, Issue 2, pp. 277–300). Sriwijaya University. https://doi.org/10.22342/jme.11.2.11000.277-300
Tanujaya, B., Mumu, J., & Margono, G. (2017). The Relationship between Higher Order Thinking Skills and Academic Performance of Student in Mathematics Instruction. International Education Studies, 10(11), 78. https://doi.org/10.5539/ies.v10n11p78
van den Heuvel-Panhuizen, M. (2003). The Didactical Use Of Models In Realistic Mathematics Education: An Example From A Longitudinal Trajectory On Percentage 1. Educational Studies in Mathematics.
van den Heuvel-Panhuizen, M. (2020). Didactical Phenomenology (Freudenthal). In S. Lerman (Ed.), Encyclopedia of mathematics education (2nd ed., pp. 218–220). Springer.
Wang, J., & Antonenko, P. D. (2017). Instructor presence in instructional video: Effects on visual attention, recall, and perceived learning. Computers in Human Behavior, 71, 79–89. https://doi.org/10.1016/j.chb.2017.01.049
Zainil, M., Prahmana, R. C. I., Helsa, Y., & Hendri, S. (2018). ICT media design for higher grade of elementary school mathematics learning using CS6 program. Journal of Physics: Conference Series, 943(1). https://doi.org/10.1088/1742-6596/943/1/012046
Zengin, Y. (2021). Construction of proof of the Fundamental Theorem of Calculus using dynamic mathematics software in the calculus classroom. Education and Information Technologies. https://doi.org/10.1007/s10639-021-10666-1