Main Article Content
Abstract
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Adiredja, A. P. (2021). The pancake story and the epsilon–delta definition. Primus, 31(6), 662–677. https://doi.org/10.1080/10511970.2019.1669231
- Bansilal, S., & Mkhwanazi, T. (2021). Pre-service student teachers’ conceptions of the notion of limit. International Journal of Mathematical Education in Science and Technology, 53, 2083–2101. https://doi.org/10.1080/0020739X.2020.1864488
- Berry, J. S., & Nyman, M. A. (2003). Promoting students’ graphical understanding of the calculus. The Journal of Mathematical Behavior, 22(4), 479–495. http://dx.doi.org/10.1016%2Fj.jmathb.2003.09.006
- Boester, T. (2008). A design-based case study of undergraduates’ conceptions of limits. (Doctoral dissertation). Retrieved from ProQuest Dissertations and Theses. (Accession Order No. AAT 3314378).
- Bressoud, D., Ghedamsi, I., Martinez-Luaces, V., & Törner, G. (2016). Teaching and learning of calculus. Springer Nature. https://library.oapen.org/bitstream/handle/20.500.12657/27707/1/1002299.pdf
- Brousseau, G. (2002). Theory of Didactical Situations in Mathematics. Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47211-2
- Buyukköroglu, T., Cetin, N., Deniz, A., Ali, S., Mahir, N., & Ureyin, M. (2006). The effect of computers on teaching the limit concept. International Journal for Mathematics Teaching and Learning, 1–12. https://www.cimt.org.uk/journal/buyukkoroglu.pdf
- Campbell S, Greenwood M, Prior S, et al. (2020). Purposive sampling: Complex or simple? Research case examples. Journal of Research in Nursing, 25(8), 652–661. https://doi.org/10.1177/1744987120927206
- Colson, A. R., & Cooke, R. M. (2018). Expert elicitation: Using the classical model to validate experts’ judgments. Review of Environmental Economics and Policy, 12(1), 113–132. https://doi.org/10.1093/reep/rex022
- Denbel, D. G. (2014). Students’ misconceptions of the limit concept in a first calculus course. Journal of Education and Practice, 5(34), 24–40. https://www.iiste.org/Journals/index.php/JEP/article/view/17236/17685
- Fuadiah, N. F. (2015). Epistemological obstacles on mathematics’ learning in junior high school students: A study on the operations of integer material. In Proceeding of the 2nd International Conference on Research, Implementation and Education of Mathematics and Sciences (ICRIEMS 2015) (pp. 315–322). https://eprints.uny.ac.id/23197/1/ME%20-%2043.pdf
- Grossfield, A. (2020). Understanding Calculus: Tying loose ends together. In 2020 CIEC. Proceedings of the 2020 Conference for Industry and Education Collaboration. https://peer.asee.org
- Gürbüz, M., Ağsu, M., & Özdemir, M. (2018). An analysis of how preservice math teachers construct the concept of limit in their minds. European Journal of Education Studies, 5(6), 103–126. http://dx.doi.org/10.5281/zenodo.1490240
- Hardy, N. (2009). Students’ perceptions of institutional practices: The case of limits of functions in college level Calculus courses. Educational Studies in Mathematics, 72, 341–358. https://doi.org/10.1007/s10649-009-9199-8
- Hendriyanto, A., Suryadi, D., Juandi, D., Dahlan, J. A., Hidayat, R., Wardat, Y., Sahara, S., & Muhaimin, L. H. (2024). The didactic phenomenon: Deciphering students’ learning obstacles in set theory. Journal on Mathematics Education, 15(2), 517–544. http://doi.org/10.22342/jme.v15i2.pp517-544
- Hong, D. S., & Choi, K. M. (2019). Challenges of maintaining cognitive demand during the limit lessons: understanding one mathematician’s class practices. International Journal of Mathematical Education in Science and Technology, 50(6), 856–882. https://doi.org/10.1080/0020739X.2018.1543811
- Jordaan, T. (2005). Misconceptions of the limit concept in a mathematics course for engineering students (Doctoral dissertation, University of South Africa). https://core.ac.uk/download/pdf/43165567.pdf
- Juter, K. (2007). Students' conceptions of Limits: High achievers versus low achievers. The Montana Mathematics Enthusiast, 4(1), 53–65. https://doi.org/10.54870/1551-3440.1058
- Lutfi, M. K., Juandi, D., & Jupri, A. (2021). Students' ontogenic obstacle on the topic of triangle, and quadrilateral. Journal of Physics: Conference Series, 1806(1), 012108. https://doi.org/10.1088/1742-6596/1806/1/012108
- Martono, K. (1999). Kalkulus [Calculus]. Erlangga.
- Moskal, B. M. (2000). Scoring rubrics: What, when and how?. Practical Assessment, Research, and Evaluation, 7(1), 3. https://doi.org/10.7275/a5vq-7q66
- Nagle, C. (2013). Transitioning from introductory calculus to formal limit conceptions. For the Learning of Mathematics, 33(2), 2–10. http://www.jstor.org/stable/43894843
- Nagle, C., Tracy, T., Adams, G., & Scutella, D. (2017). The notion of motion: Covariational reasoning and the limit concept. International Journal of Mathematical Education in Science and Technology, 48(4), 573–586. https://doi.org/10.1080/0020739X.2016.1262469
- Nurhayati, L., Suryadi, D., Dasari, D., & Herman, T. (2023). Integral (antiderivative) learning with APOS perspective: A case study. Journal on Mathematics Education, 14(1), 129–148. http://doi.org/10.22342/jme.v14i1.pp129-148
- Oehrtman, M. (2008). Layers of abstraction: Theory and design for the instruction of limit concepts. Making the Connection: Research and Teaching in Undergraduate Mathematics Education, 73, 65–80. https://doi.org/10.5948/UPO9780883859759.007
- Prabowo, A., Suryadi, D., Dasari, D., Juandi, D., & Junaedi, I. (2022). Learning obstacles in the making of lesson plans by prospective mathematics teacher students. Education Research International, 2022(1), 2896860. https://doi.org/10.1155/2022/2896860
- Perbowo, K.S., & Anjarwati, R. (2017). Analysis of students’ learning obstacles on learning invers function material. Infinity Journal, 6(2), 169–176. https://doi.org/10.22460/infinity.v6i2.p169-176
- Purnomo, D., Nusantara, T., & Rahardjo, S. (2017). The characteristic of the process of students' metacognition in solving Calculus problems. International Education Studies, 10(5), 13–25. https://doi.org/10.5539/ies.v10n5p13
- Puspita, E., Suryadi, D., & Rosjanuardi, R. (2023). Learning obstacles of prospective mathematics teachers: A case study on the topic of implicit derivatives. Jurnal Matematika Kreatif-Inovatif, 14(1), 174–189. https://journal.unnes.ac.id/nju/kreano/article/view/42805/14367
- Rasmussen, C., Marrongelle, K., & Borba, M. C. (2014). Research on calculus: What do we know and where do we need to go?. ZDM Mathematics Education, 46, 507–515. https://doi.org/10.1007/s11858-014-0615-x
- Sari, R. N., Rosjanuardi, R., Isharyadi, R., & Nurhayati, A. (2024). Level of students' proportional reasoning in solving mathematical problems. Journal on Mathematics Education, 15(4), 1095-1114. http://doi.org/10.22342/jme.v15i4.pp1095-1114
- Stewart, J. (1999). Kalkulus [Calculus]. Erlangga.
- Sukarma, I. K., Isnawan, M. G., & Alsulami, N. M. (2023). Understanding learning barriers in fractional multiplication: An investigation using hermeneutics phenomenology. International Journal of Social Science and Education Research Studies, 03(08), 1563–1569. https://doi.org/10.55677/ijssers/v03i8y2023-07
- Supriadi, N., Diana, N., Muhassin, M., & Lestari, B. D. (2020). Guided discovery approach in the development of calculus modules on derivative material with Islamic nuance and environmental insight. Journal of Physics: Conference Series, 1467(1), 012057. https://doi:10.1088/1742-6596/1467/1/012057
- Suryadi, D. (2019). Landasan filosofis penelitian desain didaktis (DDR) [Philosophical foundation of didactical design research (DDR)]. Gapura Press.
- Swinyard, C. (2011). Reinventing the formal definition of limit: The case of Amy and Mike. The Journal of Mathematical Behavior, 30(2), 93–114. https://doi.org/10.1016/j.jmathb.2011.01.001
- Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151–169. https://doi.org/10.1007/BF00305619
- Varberg, D., Purcell, E., & Rigdon, S. (2013). Calculus: Pearson New International Edition. Pearson Higher Ed. https://archive.org/details/matematika-a-purcell-calculus-9th-ed
References
Adiredja, A. P. (2021). The pancake story and the epsilon–delta definition. Primus, 31(6), 662–677. https://doi.org/10.1080/10511970.2019.1669231
Bansilal, S., & Mkhwanazi, T. (2021). Pre-service student teachers’ conceptions of the notion of limit. International Journal of Mathematical Education in Science and Technology, 53, 2083–2101. https://doi.org/10.1080/0020739X.2020.1864488
Berry, J. S., & Nyman, M. A. (2003). Promoting students’ graphical understanding of the calculus. The Journal of Mathematical Behavior, 22(4), 479–495. http://dx.doi.org/10.1016%2Fj.jmathb.2003.09.006
Boester, T. (2008). A design-based case study of undergraduates’ conceptions of limits. (Doctoral dissertation). Retrieved from ProQuest Dissertations and Theses. (Accession Order No. AAT 3314378).
Bressoud, D., Ghedamsi, I., Martinez-Luaces, V., & Törner, G. (2016). Teaching and learning of calculus. Springer Nature. https://library.oapen.org/bitstream/handle/20.500.12657/27707/1/1002299.pdf
Brousseau, G. (2002). Theory of Didactical Situations in Mathematics. Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47211-2
Buyukköroglu, T., Cetin, N., Deniz, A., Ali, S., Mahir, N., & Ureyin, M. (2006). The effect of computers on teaching the limit concept. International Journal for Mathematics Teaching and Learning, 1–12. https://www.cimt.org.uk/journal/buyukkoroglu.pdf
Campbell S, Greenwood M, Prior S, et al. (2020). Purposive sampling: Complex or simple? Research case examples. Journal of Research in Nursing, 25(8), 652–661. https://doi.org/10.1177/1744987120927206
Colson, A. R., & Cooke, R. M. (2018). Expert elicitation: Using the classical model to validate experts’ judgments. Review of Environmental Economics and Policy, 12(1), 113–132. https://doi.org/10.1093/reep/rex022
Denbel, D. G. (2014). Students’ misconceptions of the limit concept in a first calculus course. Journal of Education and Practice, 5(34), 24–40. https://www.iiste.org/Journals/index.php/JEP/article/view/17236/17685
Fuadiah, N. F. (2015). Epistemological obstacles on mathematics’ learning in junior high school students: A study on the operations of integer material. In Proceeding of the 2nd International Conference on Research, Implementation and Education of Mathematics and Sciences (ICRIEMS 2015) (pp. 315–322). https://eprints.uny.ac.id/23197/1/ME%20-%2043.pdf
Grossfield, A. (2020). Understanding Calculus: Tying loose ends together. In 2020 CIEC. Proceedings of the 2020 Conference for Industry and Education Collaboration. https://peer.asee.org
Gürbüz, M., Ağsu, M., & Özdemir, M. (2018). An analysis of how preservice math teachers construct the concept of limit in their minds. European Journal of Education Studies, 5(6), 103–126. http://dx.doi.org/10.5281/zenodo.1490240
Hardy, N. (2009). Students’ perceptions of institutional practices: The case of limits of functions in college level Calculus courses. Educational Studies in Mathematics, 72, 341–358. https://doi.org/10.1007/s10649-009-9199-8
Hendriyanto, A., Suryadi, D., Juandi, D., Dahlan, J. A., Hidayat, R., Wardat, Y., Sahara, S., & Muhaimin, L. H. (2024). The didactic phenomenon: Deciphering students’ learning obstacles in set theory. Journal on Mathematics Education, 15(2), 517–544. http://doi.org/10.22342/jme.v15i2.pp517-544
Hong, D. S., & Choi, K. M. (2019). Challenges of maintaining cognitive demand during the limit lessons: understanding one mathematician’s class practices. International Journal of Mathematical Education in Science and Technology, 50(6), 856–882. https://doi.org/10.1080/0020739X.2018.1543811
Jordaan, T. (2005). Misconceptions of the limit concept in a mathematics course for engineering students (Doctoral dissertation, University of South Africa). https://core.ac.uk/download/pdf/43165567.pdf
Juter, K. (2007). Students' conceptions of Limits: High achievers versus low achievers. The Montana Mathematics Enthusiast, 4(1), 53–65. https://doi.org/10.54870/1551-3440.1058
Lutfi, M. K., Juandi, D., & Jupri, A. (2021). Students' ontogenic obstacle on the topic of triangle, and quadrilateral. Journal of Physics: Conference Series, 1806(1), 012108. https://doi.org/10.1088/1742-6596/1806/1/012108
Martono, K. (1999). Kalkulus [Calculus]. Erlangga.
Moskal, B. M. (2000). Scoring rubrics: What, when and how?. Practical Assessment, Research, and Evaluation, 7(1), 3. https://doi.org/10.7275/a5vq-7q66
Nagle, C. (2013). Transitioning from introductory calculus to formal limit conceptions. For the Learning of Mathematics, 33(2), 2–10. http://www.jstor.org/stable/43894843
Nagle, C., Tracy, T., Adams, G., & Scutella, D. (2017). The notion of motion: Covariational reasoning and the limit concept. International Journal of Mathematical Education in Science and Technology, 48(4), 573–586. https://doi.org/10.1080/0020739X.2016.1262469
Nurhayati, L., Suryadi, D., Dasari, D., & Herman, T. (2023). Integral (antiderivative) learning with APOS perspective: A case study. Journal on Mathematics Education, 14(1), 129–148. http://doi.org/10.22342/jme.v14i1.pp129-148
Oehrtman, M. (2008). Layers of abstraction: Theory and design for the instruction of limit concepts. Making the Connection: Research and Teaching in Undergraduate Mathematics Education, 73, 65–80. https://doi.org/10.5948/UPO9780883859759.007
Prabowo, A., Suryadi, D., Dasari, D., Juandi, D., & Junaedi, I. (2022). Learning obstacles in the making of lesson plans by prospective mathematics teacher students. Education Research International, 2022(1), 2896860. https://doi.org/10.1155/2022/2896860
Perbowo, K.S., & Anjarwati, R. (2017). Analysis of students’ learning obstacles on learning invers function material. Infinity Journal, 6(2), 169–176. https://doi.org/10.22460/infinity.v6i2.p169-176
Purnomo, D., Nusantara, T., & Rahardjo, S. (2017). The characteristic of the process of students' metacognition in solving Calculus problems. International Education Studies, 10(5), 13–25. https://doi.org/10.5539/ies.v10n5p13
Puspita, E., Suryadi, D., & Rosjanuardi, R. (2023). Learning obstacles of prospective mathematics teachers: A case study on the topic of implicit derivatives. Jurnal Matematika Kreatif-Inovatif, 14(1), 174–189. https://journal.unnes.ac.id/nju/kreano/article/view/42805/14367
Rasmussen, C., Marrongelle, K., & Borba, M. C. (2014). Research on calculus: What do we know and where do we need to go?. ZDM Mathematics Education, 46, 507–515. https://doi.org/10.1007/s11858-014-0615-x
Sari, R. N., Rosjanuardi, R., Isharyadi, R., & Nurhayati, A. (2024). Level of students' proportional reasoning in solving mathematical problems. Journal on Mathematics Education, 15(4), 1095-1114. http://doi.org/10.22342/jme.v15i4.pp1095-1114
Stewart, J. (1999). Kalkulus [Calculus]. Erlangga.
Sukarma, I. K., Isnawan, M. G., & Alsulami, N. M. (2023). Understanding learning barriers in fractional multiplication: An investigation using hermeneutics phenomenology. International Journal of Social Science and Education Research Studies, 03(08), 1563–1569. https://doi.org/10.55677/ijssers/v03i8y2023-07
Supriadi, N., Diana, N., Muhassin, M., & Lestari, B. D. (2020). Guided discovery approach in the development of calculus modules on derivative material with Islamic nuance and environmental insight. Journal of Physics: Conference Series, 1467(1), 012057. https://doi:10.1088/1742-6596/1467/1/012057
Suryadi, D. (2019). Landasan filosofis penelitian desain didaktis (DDR) [Philosophical foundation of didactical design research (DDR)]. Gapura Press.
Swinyard, C. (2011). Reinventing the formal definition of limit: The case of Amy and Mike. The Journal of Mathematical Behavior, 30(2), 93–114. https://doi.org/10.1016/j.jmathb.2011.01.001
Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151–169. https://doi.org/10.1007/BF00305619
Varberg, D., Purcell, E., & Rigdon, S. (2013). Calculus: Pearson New International Edition. Pearson Higher Ed. https://archive.org/details/matematika-a-purcell-calculus-9th-ed