Main Article Content

Abstract

Teachers play a crucial role in disseminating knowledge in educational settings, typically adhering to a credulist-testimonial approach outlined in pedagogical literature. Consequently, students often acquire knowledge through this method, potentially leading to discrepancies between their conceptual understanding and the intended educational objectives. This study investigates the phenomenon of learning obstacles encountered by junior high school students, with a particular emphasis on mathematics education. It is part of a series of Didactical Design Research (DDR) projects aimed at developing effective instructional materials. Employing an interpretive paradigm within the DDR framework, the study adopts a qualitative approach utilizing hermeneutic phenomenology design. Various research tools such as diagnostic assessments, interview guidelines, observation sheets, and audio recordings are employed. Data analysis is conducted using the Constant Comparative Method (CCM). The findings highlight ontogenic, didactic, and epistemological obstacles students face, stemming from factors such as a lack of interest in mathematics, ineffective material presentation, and misconceptions regarding set concepts. These results underscore the importance of educators employing effective teaching strategies to help students overcome these obstacles and succeed in their mathematics education.

Keywords

DDR Didactic Phenomena Hermeneutic Phenomenology Learning Obstacle Set Theory

Article Details

How to Cite
Hendriyanto, A., Suryadi, D., Juandi, D., Dahlan, J. A., Hidayat, R., Wardat, Y., Sahara, S., & Muhaimin, L. H. . (2024). The didactic phenomenon: Deciphering students’ learning obstacles in set theory. Journal on Mathematics Education, 15(2), 517–544. https://doi.org/10.22342/jme.v15i2.pp517-544

References

  1. Afriyani, D., Sa’Dijah, C., Subanji, S., & Muksar, M. (2019). Students’ construction error in translation among mathematical representations. Journal of Physics: Conference Series, 1157(3), 032098. https://doi.org/10.1088/1742-6596/1157/3/032098
  2. Akar, N., & Işıksal-Bostan, M. (2022). The didactic transposition of quadrilaterals: the case of 5th grade in Turkey. International Journal of Mathematical Education in Science and Technology, 55(3), 1–22. https://doi.org/10.1080/0020739X.2021.2022228
  3. Alves, F. R. V., Mangueira, M. C. dos S., Catarino, P. M. M. C., & Vieira, R. P. M. (2021). Didactic engineering to teach leonardo sequence: A study on a complexification process in a mathematics teaching degree course. International Electronic Journal of Mathematics Education, 16(3), em0655. https://doi.org/10.29333/iejme/11196
  4. Alwan, A. A. (2011). Misconception of heat and temperature among physics students. Procedia - Social and Behavioral Sciences, 12(1), 600–614. https://doi.org/10.1016/j.sbspro.2011.02.074
  5. Amade-Escot, C. (2006). Student learning within the didactique tradition. In D. Kirk, M. O’Sullivanx, & D. Macdonald (Eds.), Handbook of Research in Physical Education (pp. 347–365). SAGE Publication Ltd. https://doi.org/10.4135/9781848608009.n20
  6. Andini, W., & Suryadi, D. (2017). Student obstacles in solving algebraic thinking problems. Journal of Physics: Conference Series, 895(1), 2–8. https://doi.org/10.1088/1742-6596/895/1/012091
  7. As’ari, A. R., Tohir, M., Valentino, E., Imron, Z., & Taufiq, I. (2017). Matematika SMP/MTs kelas VII semester 1 [Junior high school mathematics grade VII semester 1] (A. Lukito, A. Mahmudi, T. M, N. Priatna, Y. Satria, & Widowati (eds.); Rev. 2017). Pusat Kurikulum dan Perbukuan, Balitbang, Kemendikbud.
  8. Asher, N., & Hunter, J. (2021). Interpretive blindness and the impossibility of learning from testimony. In F. Dignum, A. Lomuscio, U. Endriss, & A. Nowé (Eds.), Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS (Vol. 3, pp. 1437–1439). International Foundation for Autonomous Agents and Multiagent Systems.
  9. Banks, F., Leach, J., & Moon, B. (2005). Extract from new understandings of teachers’ pedagogic knowledge. Curriculum Journal, 16(3), 331–340. https://doi.org/10.1080/09585170500256446
  10. Bardini, C., Pierce, R. U., & Stacey, K. (2004). Teaching linear functions in context with graphics calculators: Students’ responses and the impact of the approach on their use of algebraic symbols. International Journal of Science and Mathematics Education, 2(3), 353–376. https://doi.org/10.1007/s10763-004-8075-3
  11. Bingolbali, E., Demir, G., & Monaghan, J. D. (2021). Knowledge of sets: A didactic phenomenon. International Journal of Science and Mathematics Education, 19(6), 1187–1208. https://doi.org/10.1007/s10763-020-10106-5
  12. Bolden, D. S., & Newton, L. D. (2008). Primary teachers’ epistemological beliefs: some perceived barriers to investigative teaching in primary mathematics. Educational Studies, 34(5), 419–432. https://doi.org/10.1080/03055690802287595
  13. Bray, W. S. (2011). A collective case study of the influence of teachers’ beliefs and knowledge on error-handling practices during class discussion of mathematics. Journal for Research in Mathematics Education, 42(1), 2–38. https://doi.org/10.5951/jresematheduc.42.1.0002
  14. Brousseau, G. (1976). Les obstacles épistémologiques et les problèmes en mathématiques. In W. Vanhamme & J. Vanhamme (Eds.), La problématique et l’enseignement des mathématiques. Comptes rendus de la XXVIIIe rencontre organisée par la Commission Internationale pour l’Etude et l’Amélioration de l’Enseignement des Mathématiques (Vol. 4, pp. 101–117). HAL Open Science. https://hal.science/hal-00516569
  15. Brousseau, G. (2002). The didactical contract: The teacher, the student and the milieu. In N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield (Eds.), Theory of Didactical Situations in Mathematics (Vol. 19, pp. 226--249). Springer Netherlands. https://doi.org/10.1007/0-306-47211-2_13
  16. Brousseau, G., & Warfield, V. (2020). Didactic transposition in mathematics education. In Encyclopedia of Mathematics Education. Springer. https://doi.org/10.1007/978-94-007-4978-8_89
  17. Brown, S. A. (2008). Exploring epistemological obstacles to the development of mathematics induction. In K. A. Keene, S. Larsen, K. Marrongelle, V. Mesa, C. Rasmussen, N. Speer, K. Weber, & M. Zandieh (Eds.), Proceedings of the 11th Conference for Research on Undergraduate Mathematics Education (pp. 1–19). San Diego State University. http://sigmaa.maa.org/rume/crume2008/Proceedings/Proceedings.html
  18. Buford, C., & Cloos, C. M. (2018). A dilemma for the knowledge despite falsehood strategy. Episteme, 15(2), 166–182. https://doi.org/10.1017/epi.2016.53
  19. Carpenter, T. P., Fennema, E., Franke, M. L., Levi, L., & Empson, S. B. (2015). Children’s mathematics: Cognitively guided instruction (2nd ed.). Heinemann. http://www.amazon.com/dp/0325001375
  20. Catrambone, R. (1994). Improving examples to improve transfer to novel problems. Memory & Cognition, 22(5), 606–615. https://doi.org/10.3758/BF03198399
  21. Chevallard, Y. (1989). On didatic transposition theory: some introductory notes. International Symposium on Selected Domains of Research and Development in Mathematics Education, 51–62. http://yves.chevallard.free.fr/spip/spip/article.php3?id_article=122
  22. Chevallard, Y., & Bosch, M. (2020). Didactic transposition in mathematics education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 214--218). Springer International Publishing. https://doi.org/10.1007/978-3-030-15789-0_48
  23. Creswell, J., & Guetterman, T. (2018). Educational Research: Planning, conducting, and evaluating quantitative and qualitative research (6th Edition). Pearson Education, Inc.
  24. Daher, W., Baya’a, N., & Jaber, O. (2022). Understanding prospective teachers’ task design considerations through the lens of the theory of didactical situations. Mathematics, 10(3), 417. https://doi.org/10.3390/math10030417
  25. de Mello, L. A. (2017). A propose of rules defining as a didactic transposition should occur or be achieved - The generalized didactic transposition theory. OSF Preprints, June. https://doi.org/https://doi.org/10.31219/osf.io/uzfhb
  26. De Sousa, R. T., & Alves, F. R. V. (2022). Didactic engineering and learning objects: A proposal for teaching parabolas in analytical geometry. Indonesian Journal of Science and Mathematics Education, 5(1), 1–16. https://doi.org/10.24042/ijsme.v5i1.11108
  27. Diana, N., Suryadi, D., & Dahlan, J. A. (2020). Analysis of students’ mathematical connection abilities in solving problem of circle material: Transposition study. Journal for the Education of Gifted Young Scientists, 8(2), 829–842. https://doi.org/10.17478/JEGYS.689673
  28. Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1–2), 103–131. https://doi.org/10.1007/s10649-006-0400-z
  29. Ellis, G. W., & Turner, W. A. (2003). Helping students organize and retrieve their understanding of dynamics. ASEE Annual Conference Proceedings, 7535–7547. https://doi.org/10.18260/1-2--11592
  30. Enderton, H. B. (1977). Elements of set theory. Academic Press.
  31. Fauzi, I., & Suryadi, D. (2020). Learning obstacle the addition and subtraction of fraction in grade 5 elementary schools. MUDARRISA: Jurnal Kajian Pendidikan Islam, 12(1), 51–68. https://doi.org/10.18326/mdr.v12i1.51-68
  32. Ferdianto, F., & Hartinah, S. (2020). Analysis of the difficulty of students on visualization ability mathematics based on learning obstacles. In Y. R. Hidayat, T. Suciaty, U. Syaripudin, A. Sustikarini, G. S. Brajadenta, I. Saleh, I. Indrayanti, I. S. W. Atmaja, F. Ferdiyanto, & K. A. Rohman (Eds.), Proceedings of the International Conference on Agriculture, Social Sciences, Education, Technology and Health (ICASSETH 2019) (Vol. 429, Issue Icasseth 2019, pp. 227–231). Atlantis Press. https://doi.org/10.2991/assehr.k.200402.053
  33. Fischbein, E., & Baltsan, M. (1999). The mathematical concept of set and the “collection” model. Educational Studies in Mathematics, 37, 1–22. https://doi.org/https://doi.org/10.1023/A:1003421206945
  34. Furner, J. M., Yahya, N., & Duffy, M. Lou. (2005). Teach mathematics: Strategies to reach all students. Intervention in School and Clinic, 41(1), 16–23. https://doi.org/10.1177/10534512050410010501
  35. Ganal, N., & Guiab, M. (2014). Problems and difficulties encountered by students towards mastering learning competencies in mathematics. International Refereed Research Journal, 5(4), 25–37.
  36. Giunchiglia, F. (1993). Contextual reasoning. Epistemologia, Special Issue on I Linguaggi e Le Macchine, XVI, 345–364.
  37. Glaser, B. G., & Anselm, S. (2017). The discovery of grounded theory: Strategies for qualitative research (1st Edition). Routledge. https://doi.org/https://doi.org/10.4324/9780203793206
  38. Goldin, G., & Shteingold, N. (2001). Systems of representations and the development of mathematical concepts. In A. Cuoco & F. Curcio (Eds.), The Roles of Representation in School Mathematics (Issue 2001 Yearbook, pp. 1–23). National Council of Teachers of Mathematics
  39. Grandgirard, J., Poinsot, D., Krespi, L., Nénon, J. P., & Cortesero, A. M. (2003). Costs of secondary parasitism in the facultative hyperparasitoid Pachycrepoideus dubius: Does host size matter? Entomologia Experimentalis et Applicata, 103(3), 239–248. https://doi.org/https://doi.org/10.1046/j.1570-7458.2002.00982.x
  40. Guazzini, J. (2018). An epistemological approach to the symbol grounding problem. In V. C. Müller (Ed.), Philosophy and Theory of Artificial Intelligence 2017 (pp. 36–39). Springer International Publishing.
  41. Gunderson, E. A., Ramirez, G., Levine, S. C., & Beilock, S. L. (2012). The role of parents and teachers in the development of gender-related math attitudes. Sex Roles, 66(3–4), 153–166. https://doi.org/10.1007/s11199-011-9996-2
  42. Hendriyanto, A., Suryadi, D., Dahlan, J. A., & Juandi, D. (2023). Praxeology review: Comparing Singaporean and Indonesian textbooks in introducing the concept of sets. Eurasia Journal of Mathematics, Science and Technology Education, 19(2), 1–13. https://doi.org/https://doi.org/10.29333/ejmste/12953
  43. Holmes, M. R. (1998). Elementary Set Theory with a Universal Set. Bruylant-Academia.
  44. Indonesia, G. of. (2018). Peraturan Menteri Pendidikan dan Kebudayaan Republik Indonesia Nomor 37 Tahun 2018.
  45. Jackson, E. (2008). Mathematics anxiety in student teachers. Practitioner Research in Higher Education, 2(1), 36–42. https://doi.org/10.4324/9781315643137-8
  46. Jamilah, J., Suryadi, D., & Priatna, N. (2020). Didactic transposition from scholarly knowledge of mathematics to school mathematics on sets theory. Journal of Physics: Conference Series, 1521(3), 032093. https://doi.org/10.1088/1742-6596/1521/3/032093
  47. Just, W., & Weese, M. (1996). Discovering Modern Set Theory. I. American Mathematical Society.
  48. Kunen, K. (1980). Set theory: An introduction to independence proofs. North—Holland.
  49. Laborde, C. (2014). Didactical situation. In R. Gunstone (Ed.), Encyclopedia of Science Education (pp. 1–5). Springer Netherlands. https://doi.org/10.1007/978-94-007-6165-0_404-1
  50. Lanigan, M. (2021). Impediments to adult learner engagement in higher education mathematics learning: Obstacles to creating a classroom culture of enquiry. In M. Kingston & P. Grimes (Eds.), Proceedings of the Eighth Conference on Research in Mathematics Education in Ireland (pp. 252–259). Dublin City University. https://doi.org/10.5281/zenodo.5573968
  51. Laurens, T., Batlolona, F. A., Batlolona, J. R., & Leasa, M. (2017). How does realistic mathematics education (RME) improve students’ mathematics cognitive achievement? Eurasia Journal of Mathematics, Science and Technology Education, 14(2), 569–578. https://doi.org/10.12973/ejmste/76959
  52. Linchevski, L., & Vinner, S. (1988). The naive concept of sets in elementary teachers. In A. Borbas (Ed.), Proceedings of the 12th International Conference for the Psychology of Mathematics Education (Vol. 1, pp. 471–478). Veprem OOK Print House.
  53. Lipschutz, S. (1986). Set theory and related topics (Asian Stud). Scaum’s Outline Series, McGraw-Hill Book Company.
  54. Loewenberg Ball, D., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407. https://doi.org/10.1177/0022487108324554
  55. Lutfi, M. K., Juandi, D., & Jupri, A. (2021). Students’ ontogenic obstacle on the topic of triangle and quadrilateral. Journal of Physics: Conference Series, 1806(1), 012108. https://doi.org/10.1088/1742-6596/1806/1/012108
  56. Maarif, S., Perbowo, K. S., & Kusharyadi, R. (2021). Depicting epistemological obstacles in understanding the concept of sequence and series. IndoMath: Indonesia Mathematics Education, 4(1), 66–80. https://doi.org/10.30738/indomath.v4i1.9339
  57. Maddy, P. (2003). Realism in Mathematics. Oxford University Press.
  58. Marasabessy, R. (2021). Study of mathematical reasoning ability for mathematics learning in schools: A literature review. Indonesian Journal of Teaching in Science, 1(1), 79–90. https://doi.org/10.17509/ijotis.v1i2.37950
  59. Marquet, P. (2011). Obstacles to the use of ICTs in training and consequences for the development of e-learning and m-learning. Education, Knowledge and Economy, 4(3), 183–192. https://doi.org/10.1080/17496896.2010.556483
  60. Miller, S. P., & Hudson, P. J. (2007). Using evidence-based practices to build mathematics competence related to conceptual, procedural, and declarative knowledge. Learning Disabilities Research & Practice, 22(1), 47–57. https://doi.org/10.1111/j.1540-5826.2007.00230.x
  61. Modestou, M., & Gagatsis, A. (2007). Students’ Improper Proportional Reasoning: A result of the epistemological obstacle of “linearity.” Educational Psychology, 27(1), 75–92. https://doi.org/10.1080/01443410601061462
  62. Moru, E. K. (2009). Epistemological obstacles in coming to understand the limit of a function at undergraduate level: A case from the national university of lesotho. International Journal of Science and Mathematics Education, 7(3), 431–454. https://doi.org/10.1007/s10763-008-9143-x
  63. Muilenburg, L. Y., & Berge, Z. L. (2005). Students barriers to online learning: A factor analytic study. Distance Education, 26(1), 29–48. https://doi.org/10.1080/01587910500081269
  64. Mutambara, L. H. N., & Tsakeni, M. (2022). Cognitive obstacles in the learning of complex number concepts: A case study of in-service undergraduate physics student-teachers in Zimbabwe. Eurasia Journal of Mathematics, Science and Technology Education, 18(10), 1–15. https://doi.org/10.29333/ejmste/12418
  65. Naderifar, M., Goli, H., & Ghaljaie, F. (2017). Snowball sampling: A purposeful method of sampling in qualitative research. Studies in Development of Medical Education, 14(3). https://doi.org/10.5812/sdme.67670
  66. Nicol, D. (2010). From monologue to dialogue: Improving written feedback processes in mass higher education. Assessment and Evaluation in Higher Education, 35(5), 501–517. https://doi.org/10.1080/02602931003786559
  67. Nokes, T. J., & Ross, B. H. (2007). Facilitating conceptual learning through analogy and explanation. AIP Conference Proceedings, 951(1), 7–10. https://doi.org/10.1063/1.2820952
  68. Noto, M. S., Pramuditya, S. A., & Handayani, V. D. (2020). Exploration of learning obstacle based on mathematical understanding of algebra in junior high school. Eduma: Mathematics Education Learning and Teaching, 9(1), 14–20. https://doi.org/10.24235/eduma.v9i1.5946
  69. Peet, A. (2016). Testimony and the epistemic uncertainty of interpretation. Philosophical Studies, 173(2), 395–416. https://doi.org/10.1007/s11098-015-0498-x
  70. Perrine, T. (2014). In defense of non-reductionism in the epistemology of testimony. Synthese, 191(14), 3227–3237. https://doi.org/10.1007/s11229-014-0443-0
  71. Pinheiro, A. L. V., Rachelli, J., & Porta, L. D. (2022). Study of round bodies: Conceptions and praxis of a didactic sequence in light of Guy Brousseau’s theory. Acta Scientiae, 24(6), 634–665. https://doi.org/10.17648/acta.scientiae.7402
  72. Prabowo, A., Suryadi, D., Dasari, D., Juandi, D., & Junaedi, I. (2022). Learning obstacles in the making of lesson plans by prospective mathematics teacher students. Education Research International, 2022, 1–15. https://doi.org/10.1155/2022/2896860
  73. Pratiwi, V., Herman, T., & Suryadi, D. (2019). Algebraic thinking obstacles of elementary school students: A Hermeneutics-phenomenology study. Journal of Physics: Conference Series, 1157(3), 032115. https://doi.org/10.1088/1742-6596/1157/3/032115
  74. Prediger, S. (2008). The relevance of didactic categories for analysing obstacles in conceptual change: Revisiting the case of multiplication of fractions. Learning and Instruction, 18(1), 3–17. https://doi.org/https://doi.org/10.1016/j.learninstruc.2006.08.001
  75. Quintero, A. H. (1983). Conceptual understanding in solving two-step word problems with a ratio. Journal for Research in Mathematics Education, 14(2), 102–112. https://doi.org/10.5951/jresematheduc.14.2.0102
  76. Ramos-Rodríguez, E., Fernández-Ahumada, E., & Morales-Soto, A. (2022). Effective teacher professional development programs. A case study focusing on the development of mathematical modeling skills. Education Sciences, 12(1), 2. https://doi.org/10.3390/educsci12010002
  77. Rønning, F. (2021). Opportunities for language enhancement in a learning environment designed on the basis of the theory of didactical situations. ZDM - Mathematics Education, 53(2), 305–316. https://doi.org/10.1007/s11858-020-01199-x
  78. Schneuwly, B. (2021). “Didactiques” is not (entirely) “Didaktik”: The origin and atmosphere of a recent academic field. In Didaktik and Curriculum in Ongoing Dialogue. Routledge. https://doi.org/10.4324/9781003099390-9
  79. Scotland, J. (2012). Exploring the philosophical underpinnings of research: Relating ontology and epistemology to the methodology and methods of the scientific, interpretive, and critical research paradigms. English Language Teaching, 5(9), 9–16. https://doi.org/10.5539/elt.v5n9p9
  80. Serradó, A., Cardeñoso, J. M., & Azcárate, P. (2005). Obstacles in the learning of probabilistic knowledge: Influence from the textbooks. Statistics Education Research Journal, 4(2), 59–81. https://doi.org/10.52041/serj.v4i2.515
  81. Sierpińska, A. (1987). Humanities students and epistemological obstacles related to limits. Educational Studies in Mathematics, 18(4), 371–397. https://doi.org/10.1007/BF00240986
  82. Sievert, H., van den Ham, A. K., Niedermeyer, I., & Heinze, A. (2019). Effects of mathematics textbooks on the development of primary school children’s adaptive expertise in arithmetic. Learning and Individual Differences, 74(January), 101716. https://doi.org/10.1016/j.lindif.2019.02.006
  83. Simamora, R. E., Saragih, S., & Hasratuddin, H. (2018). Improving students’ mathematical problem-solving ability and self-efficacy through guided discovery learning in local culture context. International Electronic Journal of Mathematics Education, 14(1), 61–72. https://doi.org/10.12973/iejme/3966
  84. Šipuš, Ž. M., Bašić, M., Doorman, M., Špalj, E., & Antoliš, S. (2022). MERIA – Conflict lines: Experience with two innovative teaching materials. Center for Educational Policy Studies Journal, 12(1), 103–124. https://doi.org/10.26529/cepsj.987
  85. Sitorus, J., & Masrayati. (2016). Students’ creative thinking process stages: Implementation of realistic mathematics education. Thinking Skills and Creativity, 22, 111–120. https://doi.org/10.1016/j.tsc.2016.09.007
  86. Skilling, K., Bobis, J., & Martin, A. J. (2021). The “ins and outs” of student engagement in mathematics: shifts in engagement factors among high and low achievers. Mathematics Education Research Journal, 33(3), 469–493. https://doi.org/10.1007/s13394-020-00313-2
  87. Smith, C., & Morgan, C. (2016). Curricular orientations to real-world contexts in mathematics. Curriculum Journal, 27(1), 24–45. https://doi.org/10.1080/09585176.2016.1139498
  88. Sterenberg, G. (2008). Investigating teachers’ images of mathematics. Journal of Mathematics Teacher Education, 11(2), 89–105. https://doi.org/10.1007/s10857-007-9062-8
  89. Sullivan, P., Tobias, S., & McDonough, A. (2006). Perhaps the decision of some students not to engage in learning mathematics in school is deliberate. Educational Studies in Mathematics, 62(1), 81–99. https://doi.org/10.1007/s10649-006-1348-8
  90. Supandi, S., Suyitno, H., Sukestiyarno, Y. L., & Dwijanto, D. (2021). Learning barriers and student creativity in solving math problems. Journal of Physics: Conference Series, 1918(4), 042088. https://doi.org/10.1088/1742-6596/1918/4/042088
  91. Suryadi, D. (2019a). Landasan filosofis penelitian desain didaktis (DDR) [Philosophical foundation of didactical design research (DDR)]. Gapura Press.
  92. Suryadi, D. (2019b). Penelitian desain didaktis (DDR) dan implementasinya [Didactic design research (DDR) and its implementation]. Gapura Press.
  93. Tutticci, N., Coyer, F., Lewis, P. A., & Ryan, M. (2017). Validation of a reflective thinking instrument for third-year undergraduate nursing students participating in high-fidelity simulation. Reflective Practice, 18(2), 219–231. https://doi.org/10.1080/14623943.2016.1268115
  94. Vassallo, N. (2001). Contexts and philosophical problems of knowledge. In V. Akman, P. Bouquet, R. Thomason, & R. Young (Eds.), Modeling and Using Context. CONTEXT 2001 (pp. 353–366). Springer Berlin Heidelberg.
  95. Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52(2), 83–94. https://doi.org/10.1159/000202727
  96. Wang, Z., Hart, S. A., Kovas, Y., Lukowski, S., Soden, B., Thompson, L. A., Plomin, R., McLoughlin, G., Bartlett, C. W., Lyons, I. M., & Petrill, S. A. (2014). Who is afraid of math? Two sources of genetic variance for mathematical anxiety. Journal of Child Psychology and Psychiatry, 55(9), 1056–1064. https://doi.org/https://doi.org/10.1111/jcpp.12224
  97. Wilhelmi, M. R., Godino, J. D., & Lacasta, E. (2021). Didactic effectiveness of mathematical definitions: The case of the absolute value. International Electronic Journal of Mathematics Education, 2(2), 72–90. https://doi.org/10.29333/iejme/176
  98. Wood, M. B. (2013). Mathematical micro-identities: Moment-to-moment positioning and learning in a fourth-grade classroom. Journal for Research in Mathematics Education, 44(5), 775–808. https://doi.org/10.5951/jresematheduc.44.5.0775
  99. Yorulmaz, A., Uysal, H., & Çokçaliskan, H. (2021). Pre-service primary school teachers’ metacognitive awareness and beliefs about mathematical problem solving. JRAMathEdu (Journal of Research and Advances in Mathematics Education), 6(3), 239–259. https://doi.org/10.23917/jramathedu.v6i3.14349
  100. Yuen, A. H. K., Law, N., & Wong, K. C. (2003). ICT implementation and school leadership: Case studies of ICT integration in teaching and learning. Journal of Educational Administration, 41(2), 158–170. https://doi.org/10.1108/09578230310464666

Most read articles by the same author(s)