Main Article Content

Abstract

Mathematics textbooks are essential tools for facilitating the achievement of learning objectives, yet their use varies across classrooms, even when the same mathematical concepts are being taught. This study aims to investigate students' understanding of geometrical similarity through praxeological analysis within the framework of the Anthropology of Didactics (ATD). The analysis identifies differences in the structuring of geometrical similarity tasks between Indonesian and Singaporean textbooks. According to ATD praxeology, mathematical content is analyzed through the "praxis" and "logos" blocks, where praxis encompasses task types (T) and techniques (τ), while logos involves technology (θ) and theory (Θ). The findings highlight distinct priorities in how geometrical similarity is presented in textbooks from both countries, with implications for students’ conceptual and procedural understanding. Specifically, the absence of pantograph tasks in Singaporean textbooks and the lack of scale factor exercises in Indonesian textbooks reflect differences in knowledge construction and task emphasis. These variations impact students' ability to relate textbook knowledge to real-world applications. The study underscores the significance of incorporating a diverse range of task designs and practical experiences to enhance students' geometric reasoning abilities. A well-structured textbook not only supports students in achieving learning objectives but also fosters a continuous process of building, connecting, and deepening their mathematical understanding.

Keywords

Anthropological Theory of the Didactic Comparative Study Mathematics Textbooks Praxeology Similarity

Article Details

How to Cite
Kuncoro, K. S., Suryadi, D., Dahlan, J. A., & Jupri, A. (2024). Praxeological analysis in Indonesian and Singaporean mathematics textbooks: An understanding geometrical similarity by students. Journal on Mathematics Education, 15(4), 1197–1218. https://doi.org/10.22342/jme.v15i4.pp1197-1218

References

  1. Abdullah, A. H., & Shin, B. (2019). A Comparative Study of Quadrilaterals Topic Content in Mathematics Textbooks between Malaysia and South Korea. Journal on Mathematics Education, 10(3), 315–340. https://doi.org/10.22342/jme.10.3.7572.315-340
  2. Amaral, R. B., & Hollebrands, K. (2017). An analysis of context-based similarity tasks in textbooks from Brazil and the United States. International Journal of Mathematical Education in Science and Technology, 48(8), 1166–1184. https://doi.org/10.1080/0020739X.2017.1315188
  3. Audi, R. (2010). Epistemology: A contemporary introduction to the theory of knowledge. Routledge. https://doi.org/10.4324/9780203846469
  4. Basu, M., Koellner, K., Jacobs, J. K., & Seago, N. (2022). Understanding Similarity through Dilations of Nonstandard Shapes. Mathematics Teacher: Learning and Teaching PK-12, 115(9), 642–649. https://doi.org/10.5951/mtlt.2021.0284
  5. Bosch, M., & Gascón, J. (2014). Introduction to the Anthropological Theory of the Didactic (ATD). In Networking of theories as a research practice in mathematics education (pp. 67–83). Springer. https://doi.org/10.1007/978-3-319-05389-9_5
  6. Chaachoua, H., Bessot, A., Romo, A., & Castela, C. (2019). Developments and functionalities in the praxeological model. Working with the Anthropological Theory of the Didactic in Mathematics Education: A Comprehensive Casebook, 41. https://doi.org/10.4324/9780429198168-4
  7. Chevallard, Y., & Bosch, M. (2020a). Anthropological theory of the didactic (ATD). Encyclopedia of Mathematics Education, 53–61. https://doi.org/10.1007/978-3-030-15789-0_100034
  8. Chevallard, Y., & Bosch, M. (2020b). Didactic transposition in mathematics education. Encyclopedia of Mathematics Education, 214–218. https://doi.org/10.1007/978-3-030-15789-0_48
  9. Chevallard, Y., Bosch, M., & Kim, S. (2015). What is a theory according to the anthropological theory of the didactic? CERME 9-Ninth Congress of the European Society for Research in Mathematics Education, 2614–2620. Retrieved from https://hal.science/hal-01289424
  10. Choi, K. M., & Park, H.-J. (2013). A comparative analysis of geometry education on curriculum standards, textbook structure, and textbook items between the US and Korea. Eurasia Journal of Mathematics, Science and Technology Education, 9(4), 379–391. https://doi.org/10.12973/eurasia.2013.947a
  11. Citrini, C. (2015). The Role of Geometry in Reasoning and Teaching. In The Visual Language of Technique: Volume 3-Heritage and Expectations in Education (pp. 77–91). Springer. https://doi.org/10.1007/978-3-319-05326-4_8
  12. Clements, D. H., & Sarama, J. (2020). Learning and teaching early math: The learning trajectories approach. Routledge. https://doi.org/10.4324/9781003083528
  13. Clivaz, S., & Miyakawa, T. (2020). The effects of culture on mathematics lessons: an international comparative study of a collaboratively designed lesson. Educational Studies in Mathematics, 105(1), 53–70. https://doi.org/10.1007/s10649-020-09980-1
  14. Collopy, R. (2003). Curriculum materials as a professional development tool: How a mathematics textbook affected two teachers’ learning. The Elementary School Journal, 103(3), 287–311. https://doi.org/10.1086/499727
  15. Cornelius, K. E., & Owiny, R. L. (2024). How Can I Ensure My Lessons Are Logically Sequenced? In The Practical Guide to High-Leverage Practices in Special Education (pp. 173–186). Routledge. https://doi.org/10.4324/9781003525844
  16. Creswell, J. W. (2018). Mixed Methods Procedures. In Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. SAGE Publications Ltd. Retrieved from https://books.google.co.id/books?id=4uB76IC_pOQC&printsec=copyright&hl=id#v=onepage&q&f=false
  17. DeJarnette, A. F., Lausell, S. L. R., & González, G. (2015). Shadow puppets: Exploring a context for similarity and dilations. The Mathematics Teacher, 109(1), 20–27. https://doi.org/10.5951/mathteacher.109.1.0020
  18. Dixon, R. A., & Brown, R. A. (2012). Transfer of Learning: Connecting Concepts during Problem Solving. Journal of Technology Education, 24(1), 2–17. https://doi.org/10.21061/jte.v24i1.a.1
  19. Flick, U. (2018). Designing qualitative research. (Vols. 1-0). SAGE Publications Ltd, https://doi.org/10.4135/9781529622737
  20. Friesen, N., Henriksson, C., & Saevi, T. (2012). Hermeneutic phenomenology in education: Method and practice (M. Friesen, C. Henriksson, & T. Saevi (eds.); Vol. 4). Sense Publisher. https://doi.org/10.1007/978-94-6091-834-6
  21. Glasnovic Gracin, D. (2018). Requirements in mathematics textbooks: a five-dimensional analysis of textbook exercises and examples. International Journal of Mathematical Education in Science and Technology, 49(7), 1003–1024. https://doi.org/10.1080/0020739X.2018.1431849
  22. Gravemeijer, K. P. E. (2014). Transforming mathematics education: The role of textbooks and teachers. In Transforming mathematics instruction (pp. 153–172). Springer. https://doi.org/10.1007/978-3-319-04993-9_10
  23. Guillen, D. E. F. (2019). Qualitative research: Hermeneutical phenomenological method. Propósitos y Representaciones, 7(1), 201–229. https://doi.org/10.20511/pyr2019.v7n1.267
  24. Hidayah, M., & Forgasz, H. (2020). A Comparison of Mathematical Tasks Types Used in Indonesian and Australian Textbooks Based on Geometry Contents. Journal on Mathematics Education, 11(3), 385–404. https://doi.org/10.22342/jme.11.3.11754.385-404
  25. Hodgen, J. (2010). Knowing and identity: A situated theory of mathematics knowledge in teaching. In Mathematical knowledge in teaching (pp. 27–42). Springer. https://doi.org/10.1007/978-90-481-9766-8_3
  26. Hong, D. S., & Choi, K. M. (2018). Reasoning and Proving Opportunities in Textbooks: A Comparative Analysis. International Journal of Research in Education and Science, 4(1), 82–97. https://doi.org/10.21890/ijres.382937
  27. Islam, M. (2020). Data analysis: types, process, methods, techniques and tools. International Journal on Data Science and Technology, 6(1), 10–15. https://doi.org/10.11648/j.ijdst.20200601.12
  28. Jupri, A., Sispiyati, R., & Chin, K. E. (2021). An investigation of students algebraic proficiency from a structure sense perspective. Journal on Mathematics Education, 12(1), 315–340. https://doi.org/10.22342/jme.12.1.13125.147-158
  29. Kang, W., & Kilpatrick, J. (1992). Didactic transposition in mathematics textbooks. For the Learning of Mathematics, 12(1), 2–7. Retrieved from https://api.semanticscholar.org/CorpusID:58900546
  30. Lepik, M., Grevholm, B., & Viholainen, A. (2015). Using textbooks in the mathematics classroom–the teachers’ view. Nordic Studies in Mathematics Education, 20(3–4), 129–156. https://doi.org/10.15388/ActPaed.2015.35.9193
  31. Lundberg, A. L. V., & Kilhamn, C. (2018). Transposition of Knowledge: Encountering Proportionality in an Algebra Task. International Journal of Science and Mathematics Education, 16(3), 559–579. https://doi.org/10.1007/s10763-016-9781-3
  32. Ma, L. (2010). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Routledge. https://doi.org/10.4324/9781003009443
  33. Miyakawa, T., & Winsløw, C. (2019). Paradidactic infrastructure for sharing and documenting mathematics teacher knowledge: a case study of “practice research” in Japan. Journal of Mathematics Teacher Education, 22(3), 281–303. https://doi.org/10.1007/s10857-017-9394-y
  34. O’Halloran, K. L., Beezer, R. A., & Farmer, D. W. (2018). A new generation of mathematics textbook research and development. ZDM, 50(5), 863–879. https://doi.org/10.1007/s11858-018-0959-8
  35. OECD. (2023). PISA 2022 Results (Volume I): The State of Learning and Equity in Education (PISA). OECD Publishing. https://doi.org/10.1787/53f23881-en
  36. Pansell, A., & Bjorklund Boistrup, L. (2018). Mathematics teachers’ teaching practices in relation to textbooks: exploring praxeologies. The Mathematics Enthusiast, 15(3), 541–562. https://doi.org/10.54870/1551-3440.1444
  37. Pernia-Espinoza, A., Sanz-Garcia, A., Martinez-de-Pison-Ascacibar, F. J., Peciña-Marqueta, S., & Blanco-Fernandez, J. (2020). Technical projects with social commitment for teaching-learning intervention in STEM students. 2020 IEEE Global Engineering Education Conference (EDUCON), 579–586. https://doi.org/10.1109/EDUCON45650.2020.9125176
  38. Peterson, A., Dumont, H., Lafuente, M., & Law, N. (2018). Understanding innovative pedagogies: Key themes to analyse new approaches to teaching and learning. https://doi.org/10.1787/19939019
  39. Prediger, S., Barzel, B., Hußmann, S., & Leuders, T. (2021). Towards a research base for textbooks as teacher support: The case of engaging students in active knowledge organization in the KOSIMA project. ZDM–Mathematics Education, 53(6), 1233–1248. https://doi.org/10.1007/s11858-021-01245-2
  40. Rezat, S., Fan, L., & Pepin, B. (2021). Mathematics textbooks and curriculum resources as instruments for change. ZDM – Mathematics Education, 53(6), 1189–1206. https://doi.org/10.1007/s11858-021-01309-3
  41. Rodríguez-Nieto, C. A., Cervantes-Barraza, J. A., & Moll, V. F. (2023). Exploring mathematical connections in the context of proof and mathematical argumentation: A new proposal of networking of theories. Eurasia Journal of Mathematics, Science and Technology Education, 19(5), em2264. https://doi.org/10.29333/ejmste/13157
  42. Sherman, M. F., Cayton, C., Walkington, C., & Funsch, A. (2020). An analysis of secondary mathematics textbooks with regard to technology integration. Journal for Research in Mathematics Education, 51(3), 361–374. https://doi.org/10.5951/jresemtheduc-2020-0005
  43. Shi, L., Dong, L., Zhao, W., & Tan, D. (2023). Improving middle school students’ geometry problem solving ability through hands-on experience: An fNIRS study. Frontiers in Psychology, 14, 1126047. https://doi.org/10.3389/fpsyg.2023.1126047
  44. Shinno, Y., & Mizoguchi, T. (2021). Theoretical approaches to teachers’ lesson designs involving the adaptation of mathematics textbooks: two cases from kyouzai kenkyuu in Japan. ZDM - Mathematics Education, 53(6), 1387–1402. https://doi.org/10.1007/s11858-021-01269-8
  45. Sievert, H., van den Ham, A.-K., Niedermeyer, I., & Heinze, A. (2019). Effects of mathematics textbooks on the development of primary school children’s adaptive expertise in arithmetic. Learning and Individual Differences, 74, 101716. https://doi.org/10.1016/j.lindif.2019.02.006
  46. Subchan, S. ., Winarni, W. ., Mufid, M. S., Fahim, K., & Syaifudin, W. H. (2018). Matematika SMP Kelas IX. Pusat Kurikulum dan Perbukuan, Balitbang, Kemendikbud.
  47. Takeuchi, H., & Shinno, Y. (2020). Comparing the Lower Secondary Textbooks of Japan and England: a Praxeological Analysis of Symmetry and Transformations in Geometry. International Journal of Science and Mathematics Education, 18(4), 791–810. https://doi.org/10.1007/s10763-019-09982-3
  48. Taranto, E., Robutti, O., & Arzarello, F. (2020). Learning within MOOCs for mathematics teacher education. ZDM - Mathematics Education, 52(7), 1439–1453. https://doi.org/10.1007/s11858-020-01178-2
  49. Thompson, D. R., & Senk, S. L. (2014). The same geometry textbook does not mean the same classroom enactment. ZDM, 46(5), 781–795. https://doi.org/10.1007/s11858-014-0622-y
  50. Toh, T. L., Chan, C. M. E., Tay, E. G., Leong, Y. H., Quek, K. S., Toh, P. C., Ho, W. K., Dindyal, J., Ho, F. H., & Dong, F. (2019). Problem Solving in the Singapore School Mathematics Curriculum BT - Mathematics Education in Singapore (T. L. Toh, B. Kaur, & E. G. Tay (eds.); pp. 141–164). Springer Singapore. https://doi.org/10.1007/978-981-13-3573-0_7
  51. Ulusoy, F., & İncikabı, L. (2020). Middle School Teachers’ Use of Compulsory Textbooks in Instruction of Mathematics. International Journal for Mathematics Teaching and Learning, 21(1), 1–18. https://doi.org/10.4256/ijmtl.v21i1.227
  52. van den Ham, A.-K., & Heinze, A. (2018). Does the textbook matter? Longitudinal effects of textbook choice on primary school students’ achievement in mathematics. Studies in Educational Evaluation, 59, 133–140. https://doi.org/https://doi.org/10.1016/j.stueduc.2018.07.005
  53. Wijayanti, D., & Winslow, C. (2017). Mathematical practice in textbooks analysis: Praxeological reference models, the case of proportion. REDIMAT, 6(3), 307–330. https://doi.org/10.17583/redimat.2017.2078
  54. Yang, D.-C., & Sianturi, I. A. (2017). An analysis of Singaporean versus Indonesian textbooks based on trigonometry content. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 3829–3848. https://doi.org/10.12973/eurasia.2017.00760a
  55. Yang, D.-C., Tseng, Y.-K., & Wang, T.-L. (2017). A comparison of geometry problems in middle-grade mathematics textbooks from Taiwan, Singapore, Finland, and the United States. Eurasia Journal of Mathematics, Science and Technology Education, 13(7), 2841–2857. https://doi.org/10.12973/eurasia.2017.00721a
  56. Yeo, J., Seng, T. K., Yee, L. C., Chow, I., Meng, N. C., Liew, J., & Hong, O. C. (2019). New syllabus mathematics 2. Shinglee Publishers.
  57. Yilmaz, R., & Argun, Z. (2018). Role of Visualization in Mathematical Abstraction: The Case of Congruence Concept. International Journal of Education in Mathematics, Science and Technology, 6(1), 41–57. https://doi.org/10.46328/IJEMST.V6I1.427
  58. Zaslavsky, O. (2019). There is more to examples than meets the eye: Thinking with and through mathematical examples in different settings. The Journal of Mathematical Behavior, 53, 245–255. https://doi.org/10.1016/J.JMATHB.2017.10.001

Most read articles by the same author(s)