Main Article Content
Abstract
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Alsina, A. (2016). Diseño, gestión y evaluación de actividades matemáticas competenciales en el aula. Épsilon, 33(92), 7-29. https://thales.cica.es/epsilon/sites/thales.cica.es.epsilon/files/epsilon92_0.pdf
- Arcavi, A., & Friedlander, A. (2007). Curriculum developers and problem solving: the case of Israeli elementary school projects. ZDM Ma¬thematics Education, 39(5-6), 355-364. https://doi.org/10.1007/s11858-007-0050-3
- Ball, D.L, Hoover Thames M., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
- Baroody, A. J., & Coslick, R. T. (1998). Fostering Children's Mathematical Power: An Investigative Approach to K-8 Mathematics Instruction. Lawrence Erlbaum Associates. https://doi.org/10.4324/9781410602084
- Bikner-Ahsbahs, A., & Prediger, S. (2010). Networking of theories—an approach for exploiting the diversity of theoretical approaches. In Theories of mathematics education (pp. 483-506). Springer. https://doi.org/10.1007/978-3-642-00742-2_46
- Blömeke, S, Hsieh, F.J., Kaiser, G., & Schmidt, W.H. (2014). International perspectives on teacher knowledge, beliefs and opportunities to learn. TEDS-M Results. Springer. https://doi.org/10.1007/978-94-007-6437-8
- Borasi, R. (1986). On the nature of problems. Educa¬tional Studies in Mathematics, 17(2), 125-141. https://doi.org/10.1007/BF00311517
- Braun, V., & Clarke, V. (2012). Thematic analysis. In H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology, Vol. 2. Research designs: Quantitative, qualitative, neuropsychological, and biological (pp. 57–71). American Psychological Association. https://doi.org/10.1037/13620-004
- Breda, A. (2020). Características del análisis didáctico realizado por profesores para justificar la mejora en la enseñanza de las matemáticas. Bolema, 34(66), 69-88. https://doi.org/10.1590/1980-4415v34n66a04
- Breda, A., Font, V., & Pino-Fan, L. R. (2018). Criterios valorativos y normativos en la Didáctica de las Matemáticas: el caso del constructo idoneidad didáctica. Bolema, 32(60), 255-278. https://doi.org/10.1590/1980-4415v32n60a13
- Breda, A., Pino-Fan, L. R., & Font, V. (2017). Meta Didactic-Mathematical Knowledge of Teachers: Criteria for The Reflection and Assessment on Teaching Practice. EURASIA Journal of Mathematics, Science and Technology Education, 13, 1893-1918. https://doi.org/10.12973/eurasia.2017.01207a
- Breda, A., Pino-Fan, L. R., Font, V., & do Rosário Lima, V. M. (2017). Didactic assessment over a final work of a master for mathematics teachers in service. In T. Dooley, & G. Gueudet (Eds.), Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education, p. 3272-3279. DCU Institute of Education and ERME. https://hal.archives-ouvertes.fr/hal-01949157/document
- Calle, E. C., Breda, A., & Font, V. (2021). Reflection on the complexity of mathematical items in initial teacher education. Journal of Higher Education Theory and Practice, 21, 197-214. https://doi.org/10.33423/jhetp.v21i13.4801
- Carpenter, T. P., Ansell, E., Franke, M. L., Fennema, E., & Weisbeck, L. (1993). Models of problem-solving: A study of kindergarten children’s problem-solving processes. Journal for Research in Mathematics Education, 24, 428-441. https://doi.org/10.2307/749152
- De Castro, C., & Escorial, B. (2007). Resolución de problemas aritméticos verbales en la Educación Infantil: Una experiencia de enfoque investigativo. Indivisa, Boletín de Estudios e Investigación, Monografía IX, 23-47. https://eprints.ucm.es/id/eprint/12643/1/De_Castro_&_Escorial_PNA_2007.pdf
- Even, R., & Ball, D. L. (2009). The professional education and development of teachers of mathematics. Springer. https://doi.org/10.1007/978-0-387-09601-8
- Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82(1), 97–124. http://www.jstor.org/stable/23434841
- Gascón, J., & Nicolás, P. (2017). Can didactics say how to teach? The beginning of a dialogue between the anthropological theory of the didactic and other approaches. For the Learning of Mathematics, 37(3), 9-13. https://www.jstor.org/stable/26548462
- Godino, J. D. (2013). Indicadores de la idoneidad didáctica de procesos de enseñanza y aprendizaje de las matemáticas. Cuadernos de Investigación y Formación en Educación Matemática, 11, 111-132. https://www.ugr.es/~jgodino/eos/jdgodino_indicadores_idoneidad.pdf
- Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM, 39(1), 127-135. https://doi.org/10.1007/s11858-006-0004-1
- Godino, J. D., Batanero, C., & Font, V. (2019). The onto-semiotic approach: Implications for the prescriptive character of didactics. For the Learning of Mathematics, 39(1), 37- 42. https://www.jstor.org/stable/26742011
- Godino, J. D., Giacomone, B., Font, V., & Pino-Fan (2018). Conocimientos profesionales en el diseño y gestión de una clase sobre semejanza de triángulos. Análisis con herramientas del modelo CCDM. Avances de Investigación en Educación Matemática (AIEM), 13, 63–83. https://doi.org/10.35763/aiem.v0i13.224
- Gusmão, T. C. R. S. (2019). Do desenho à gestão de tarefas no ensino e na aprendizagem da Matemática. En Anais do XVIII Encontro Baiano de Educação Matemática. https://casilhero.com.br/ebem/mini/uploads/periodico/files/2019/PA2.pdf
- Gusmão, T. C. R. S., & Font, V. (2020). Ciclo de estudo e desenho de tarefas. Educação Matemática Pesquisa, 22(3), 666-697. https://doi.org/10.23925/1983-3156.2020v22i3p666-697
- Gutiérrez, A., & Boero, P. (2006). Handbook of research on the psychology of mathematics education: Past, present and future. BRILL. https://doi.org/10.1163/9789087901127
- Halmos, P. R. (1980). The heart of mathematics. The American Mathematical Monthly, 87(7), 519- 524. https://doi.org/10.1080/00029890.1980.11995081
- Hill, H.C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American educational research journal, 42(2), 371-406. https://doi.org/10.3102/00028312042002371
- Kaiser, G., Blömeke, S., König, J., Busse, A. Dohrmann, M., & Hoth, J. (2017). Professional competencies of (prospective) mathematics teachers—cognitive versus situated approaches. Educational Studies in Mathematics, 94, (2), 161-182. https://doi.org/10.1007/s10649-016-9713-8
- Kilpatrick, J. (1985). A Retrospective Account of the Twenty-five Years of Research on Teaching Mathematical Problem Solving. In E. A. Sil¬ver (Ed.), Teaching and learning mathemati¬cal problem solving: Multiple research pers¬pective (pp.1-15). Lawrence Erlbaum. https://doi-org.sire.ub.edu/10.4324/9780203063545
- König, J., Blömeke, S. Klein, P., Suhl, U., Busse, A., & Kaiser, G. (2014). Is teachers' general pedagogical knowledge a premise for noticing and interpreting classroom situations? A video-based assessment approach. Teaching and Teacher Education, 38, 76-88. https://doi.org/10.1016/j.tate.2013.11.004
- Malaspina, U. (2017). La creación de problemas como medio para potenciar la articulación de competencias y conocimientos del profesor de matemáticas. En J. M. Contreras, P. Artea-ga, G. R. Cañadas, M. M. Gea, B. Giacomone y M. M. López-Martín (Eds.), Actas del Se-gundo Congreso International Virtual sobre el Enfoque Ontosemiótico del Conocimiento y la Instrucción Matemáticos. Pontificia Uni¬versidad Católica del Perú. http://enfoqueontosemiotico.ugr.es/ civeos/malaspina.pdf
- Monje, Y., Seckel, M.J., & Breda, A. (2018). Tratamiento de la Inecuación en el Currículum y Textos Escolares Chilenos. Bolema, 32(61), 480-502. https://doi.org/10.1590/1980-4415v32n61a09
- National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics NCTM. Reston, VA. https://www-nctm-org.sire.ub.edu/standards/
- National Council of Teachers of Mathematics [NCTM] (2003). Principios y estándares para la educación matemática. Servicio de Publicaciones de la SAEM Thales.
- Niss, M. (2002). Mathematical competencies and the learning of mathematics: the Danish Kom Project. Roskilde University. https://aausmed.files.wordpress.com/2011/01/mathematical_competencies_and_the_learning_of_mathematics1.pdf
- Pino-Fan, L. R., Assis, A., & Castro, W.F. (2015). Towards a methodology for the characterization of teachers' didactic-mathematical knowledge. Eurasia Journal of Mathematics, Science & Technology Education,11(6), 1429-1456. https://doi.org/10.12973/eurasia.2015.1403a
- Pino-Fan, L. R., Báez-Huaiquián, D. I., Molina-Cabero, J. G., & Hernández-Arredondo, E. (2020). Criterios utilizados por profesores de matemáticas para el planteamiento de problemas en el aula. Uniciencia, 34(2), 114-137. http://dx.doi.org/10.15359/ru.34-2.7
- Pino-Fan, L., Castro, W. F., Godino, J. D., & Font, V. (2013). Idoneidad epistémica del significado de la derivada en el currículo de bachillerato. Paradigma, 34(2), 123-150. https:// doi.org/10.37618/PARADIGMA.1011-2251.2013.p123-150.id522
- Pochulu, M., Font, V., & Rodríguez, M. (2016). Desarrollo de la competencia en análisis didáctico de formadores de futuros profesores de matemática a través del diseño de tareas. Revista latinoamericana de investigación en matemática educativa, 19(1), 71-98. https://doi.org/10.12802/relime.13.1913
- Polya, G. (1986). How to Solve it. Prin¬ceton University Press.
- Ponte, J. P. (2005). Gestão curricular em Matemática. En GTI (Ed.) O professor e o desenvolvimento curricular. APM.
- Ponte, J. P. (2014). Tarefas no ensino e na aprendizagem da Matemática. En Ponte, J. P. (Org.). Práticas Profissionais dos Professores de Matemática (pp. 13-27). Instituto de Educação da Universidade de Lisboa. http://hdl.handle.net/10451/3008
- Putman, R., & Borko, H. (2000). What do new views of knowledge and thinking have to say? Qualitative Health Research, 9(1), 112-121. https://eric.ed.gov/?id=EJ602721
- Rafiepour, A., & Farsani, D. (2021). Cultural-historical analysis of Iranian school mathematics curriculum: The role of computational thinking. Research on Mathematics Education, 12(3), 411-426. https://doi.org/10.22342/jme.12.3.14296.411-426
- Rondero, C., & Font, V. (2015). Articulación de la complejidad matemática de la media aritmética. Enseñanza de las Ciencias, 33(2), 29-49. https://doi.org/10.5565/rev/ensciencias.1386
- Sánchez, A., Font, V., & Breda, A. (2021). Significance of creativity and its development in mathematics classes for preservice teachers who are not trained to develop students’ creativity. Mathematics Education Research Journal, 1-23. https:// doi.org/10.1007/s13394-021-00367-w
- Sapti, M., Purwanto, Irawan, E.B., As’ari, A.R., Sa’dijah, C., Susiswo, & Wijaya, A. (2019). Comparing Model-Building Process: A Model Prospective Teachers Used in Interpreting Students’ Mathematical Thinking. Journal on Mathematics Education, 10(2), 171-184. https://doi.org/10.22342/jme.10.2.7351.171-184
- Schoenfeld, A. H. (1985). Mathematical problem sol¬ving. Academic Press. https:// doi.org/10.1016/C2013-0-05012-8
- Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4-14. https://doi.org/10.3102/0013189X015002004
- Silverman, J., & Thompson, P.W. (2008). Toward a framework for the development of mathematical knowledge for teaching. Journal of Mathematics Teacher Education, 11(6), 499-511. https://doi.org/10.1007/s10857-008-9089-5
- Singer, F.M., Ellerton, N., & Cai, J. (2015). Mathe¬matical Problem Posing. Sprin¬ger. https:// doi.org/10.1007/978-1-4614-6258-3
- Stahnke, R, Schueler, S., & Roesken-Winter, B. (2016). Teachers’ perception, interpretation, and decision-making: a systematic review of empirical mathematics education research. ZDM. The International Journal on Mathematics Education, 48(1), 1-27. https://doi.org/10.1007/s11858-016-0775-y
References
Alsina, A. (2016). Diseño, gestión y evaluación de actividades matemáticas competenciales en el aula. Épsilon, 33(92), 7-29. https://thales.cica.es/epsilon/sites/thales.cica.es.epsilon/files/epsilon92_0.pdf
Arcavi, A., & Friedlander, A. (2007). Curriculum developers and problem solving: the case of Israeli elementary school projects. ZDM Ma¬thematics Education, 39(5-6), 355-364. https://doi.org/10.1007/s11858-007-0050-3
Ball, D.L, Hoover Thames M., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407. https://doi.org/10.1177/0022487108324554
Baroody, A. J., & Coslick, R. T. (1998). Fostering Children's Mathematical Power: An Investigative Approach to K-8 Mathematics Instruction. Lawrence Erlbaum Associates. https://doi.org/10.4324/9781410602084
Bikner-Ahsbahs, A., & Prediger, S. (2010). Networking of theories—an approach for exploiting the diversity of theoretical approaches. In Theories of mathematics education (pp. 483-506). Springer. https://doi.org/10.1007/978-3-642-00742-2_46
Blömeke, S, Hsieh, F.J., Kaiser, G., & Schmidt, W.H. (2014). International perspectives on teacher knowledge, beliefs and opportunities to learn. TEDS-M Results. Springer. https://doi.org/10.1007/978-94-007-6437-8
Borasi, R. (1986). On the nature of problems. Educa¬tional Studies in Mathematics, 17(2), 125-141. https://doi.org/10.1007/BF00311517
Braun, V., & Clarke, V. (2012). Thematic analysis. In H. Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.), APA handbook of research methods in psychology, Vol. 2. Research designs: Quantitative, qualitative, neuropsychological, and biological (pp. 57–71). American Psychological Association. https://doi.org/10.1037/13620-004
Breda, A. (2020). Características del análisis didáctico realizado por profesores para justificar la mejora en la enseñanza de las matemáticas. Bolema, 34(66), 69-88. https://doi.org/10.1590/1980-4415v34n66a04
Breda, A., Font, V., & Pino-Fan, L. R. (2018). Criterios valorativos y normativos en la Didáctica de las Matemáticas: el caso del constructo idoneidad didáctica. Bolema, 32(60), 255-278. https://doi.org/10.1590/1980-4415v32n60a13
Breda, A., Pino-Fan, L. R., & Font, V. (2017). Meta Didactic-Mathematical Knowledge of Teachers: Criteria for The Reflection and Assessment on Teaching Practice. EURASIA Journal of Mathematics, Science and Technology Education, 13, 1893-1918. https://doi.org/10.12973/eurasia.2017.01207a
Breda, A., Pino-Fan, L. R., Font, V., & do Rosário Lima, V. M. (2017). Didactic assessment over a final work of a master for mathematics teachers in service. In T. Dooley, & G. Gueudet (Eds.), Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education, p. 3272-3279. DCU Institute of Education and ERME. https://hal.archives-ouvertes.fr/hal-01949157/document
Calle, E. C., Breda, A., & Font, V. (2021). Reflection on the complexity of mathematical items in initial teacher education. Journal of Higher Education Theory and Practice, 21, 197-214. https://doi.org/10.33423/jhetp.v21i13.4801
Carpenter, T. P., Ansell, E., Franke, M. L., Fennema, E., & Weisbeck, L. (1993). Models of problem-solving: A study of kindergarten children’s problem-solving processes. Journal for Research in Mathematics Education, 24, 428-441. https://doi.org/10.2307/749152
De Castro, C., & Escorial, B. (2007). Resolución de problemas aritméticos verbales en la Educación Infantil: Una experiencia de enfoque investigativo. Indivisa, Boletín de Estudios e Investigación, Monografía IX, 23-47. https://eprints.ucm.es/id/eprint/12643/1/De_Castro_&_Escorial_PNA_2007.pdf
Even, R., & Ball, D. L. (2009). The professional education and development of teachers of mathematics. Springer. https://doi.org/10.1007/978-0-387-09601-8
Font, V., Godino, J. D., & Gallardo, J. (2013). The emergence of objects from mathematical practices. Educational Studies in Mathematics, 82(1), 97–124. http://www.jstor.org/stable/23434841
Gascón, J., & Nicolás, P. (2017). Can didactics say how to teach? The beginning of a dialogue between the anthropological theory of the didactic and other approaches. For the Learning of Mathematics, 37(3), 9-13. https://www.jstor.org/stable/26548462
Godino, J. D. (2013). Indicadores de la idoneidad didáctica de procesos de enseñanza y aprendizaje de las matemáticas. Cuadernos de Investigación y Formación en Educación Matemática, 11, 111-132. https://www.ugr.es/~jgodino/eos/jdgodino_indicadores_idoneidad.pdf
Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM, 39(1), 127-135. https://doi.org/10.1007/s11858-006-0004-1
Godino, J. D., Batanero, C., & Font, V. (2019). The onto-semiotic approach: Implications for the prescriptive character of didactics. For the Learning of Mathematics, 39(1), 37- 42. https://www.jstor.org/stable/26742011
Godino, J. D., Giacomone, B., Font, V., & Pino-Fan (2018). Conocimientos profesionales en el diseño y gestión de una clase sobre semejanza de triángulos. Análisis con herramientas del modelo CCDM. Avances de Investigación en Educación Matemática (AIEM), 13, 63–83. https://doi.org/10.35763/aiem.v0i13.224
Gusmão, T. C. R. S. (2019). Do desenho à gestão de tarefas no ensino e na aprendizagem da Matemática. En Anais do XVIII Encontro Baiano de Educação Matemática. https://casilhero.com.br/ebem/mini/uploads/periodico/files/2019/PA2.pdf
Gusmão, T. C. R. S., & Font, V. (2020). Ciclo de estudo e desenho de tarefas. Educação Matemática Pesquisa, 22(3), 666-697. https://doi.org/10.23925/1983-3156.2020v22i3p666-697
Gutiérrez, A., & Boero, P. (2006). Handbook of research on the psychology of mathematics education: Past, present and future. BRILL. https://doi.org/10.1163/9789087901127
Halmos, P. R. (1980). The heart of mathematics. The American Mathematical Monthly, 87(7), 519- 524. https://doi.org/10.1080/00029890.1980.11995081
Hill, H.C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American educational research journal, 42(2), 371-406. https://doi.org/10.3102/00028312042002371
Kaiser, G., Blömeke, S., König, J., Busse, A. Dohrmann, M., & Hoth, J. (2017). Professional competencies of (prospective) mathematics teachers—cognitive versus situated approaches. Educational Studies in Mathematics, 94, (2), 161-182. https://doi.org/10.1007/s10649-016-9713-8
Kilpatrick, J. (1985). A Retrospective Account of the Twenty-five Years of Research on Teaching Mathematical Problem Solving. In E. A. Sil¬ver (Ed.), Teaching and learning mathemati¬cal problem solving: Multiple research pers¬pective (pp.1-15). Lawrence Erlbaum. https://doi-org.sire.ub.edu/10.4324/9780203063545
König, J., Blömeke, S. Klein, P., Suhl, U., Busse, A., & Kaiser, G. (2014). Is teachers' general pedagogical knowledge a premise for noticing and interpreting classroom situations? A video-based assessment approach. Teaching and Teacher Education, 38, 76-88. https://doi.org/10.1016/j.tate.2013.11.004
Malaspina, U. (2017). La creación de problemas como medio para potenciar la articulación de competencias y conocimientos del profesor de matemáticas. En J. M. Contreras, P. Artea-ga, G. R. Cañadas, M. M. Gea, B. Giacomone y M. M. López-Martín (Eds.), Actas del Se-gundo Congreso International Virtual sobre el Enfoque Ontosemiótico del Conocimiento y la Instrucción Matemáticos. Pontificia Uni¬versidad Católica del Perú. http://enfoqueontosemiotico.ugr.es/ civeos/malaspina.pdf
Monje, Y., Seckel, M.J., & Breda, A. (2018). Tratamiento de la Inecuación en el Currículum y Textos Escolares Chilenos. Bolema, 32(61), 480-502. https://doi.org/10.1590/1980-4415v32n61a09
National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics NCTM. Reston, VA. https://www-nctm-org.sire.ub.edu/standards/
National Council of Teachers of Mathematics [NCTM] (2003). Principios y estándares para la educación matemática. Servicio de Publicaciones de la SAEM Thales.
Niss, M. (2002). Mathematical competencies and the learning of mathematics: the Danish Kom Project. Roskilde University. https://aausmed.files.wordpress.com/2011/01/mathematical_competencies_and_the_learning_of_mathematics1.pdf
Pino-Fan, L. R., Assis, A., & Castro, W.F. (2015). Towards a methodology for the characterization of teachers' didactic-mathematical knowledge. Eurasia Journal of Mathematics, Science & Technology Education,11(6), 1429-1456. https://doi.org/10.12973/eurasia.2015.1403a
Pino-Fan, L. R., Báez-Huaiquián, D. I., Molina-Cabero, J. G., & Hernández-Arredondo, E. (2020). Criterios utilizados por profesores de matemáticas para el planteamiento de problemas en el aula. Uniciencia, 34(2), 114-137. http://dx.doi.org/10.15359/ru.34-2.7
Pino-Fan, L., Castro, W. F., Godino, J. D., & Font, V. (2013). Idoneidad epistémica del significado de la derivada en el currículo de bachillerato. Paradigma, 34(2), 123-150. https:// doi.org/10.37618/PARADIGMA.1011-2251.2013.p123-150.id522
Pochulu, M., Font, V., & Rodríguez, M. (2016). Desarrollo de la competencia en análisis didáctico de formadores de futuros profesores de matemática a través del diseño de tareas. Revista latinoamericana de investigación en matemática educativa, 19(1), 71-98. https://doi.org/10.12802/relime.13.1913
Polya, G. (1986). How to Solve it. Prin¬ceton University Press.
Ponte, J. P. (2005). Gestão curricular em Matemática. En GTI (Ed.) O professor e o desenvolvimento curricular. APM.
Ponte, J. P. (2014). Tarefas no ensino e na aprendizagem da Matemática. En Ponte, J. P. (Org.). Práticas Profissionais dos Professores de Matemática (pp. 13-27). Instituto de Educação da Universidade de Lisboa. http://hdl.handle.net/10451/3008
Putman, R., & Borko, H. (2000). What do new views of knowledge and thinking have to say? Qualitative Health Research, 9(1), 112-121. https://eric.ed.gov/?id=EJ602721
Rafiepour, A., & Farsani, D. (2021). Cultural-historical analysis of Iranian school mathematics curriculum: The role of computational thinking. Research on Mathematics Education, 12(3), 411-426. https://doi.org/10.22342/jme.12.3.14296.411-426
Rondero, C., & Font, V. (2015). Articulación de la complejidad matemática de la media aritmética. Enseñanza de las Ciencias, 33(2), 29-49. https://doi.org/10.5565/rev/ensciencias.1386
Sánchez, A., Font, V., & Breda, A. (2021). Significance of creativity and its development in mathematics classes for preservice teachers who are not trained to develop students’ creativity. Mathematics Education Research Journal, 1-23. https:// doi.org/10.1007/s13394-021-00367-w
Sapti, M., Purwanto, Irawan, E.B., As’ari, A.R., Sa’dijah, C., Susiswo, & Wijaya, A. (2019). Comparing Model-Building Process: A Model Prospective Teachers Used in Interpreting Students’ Mathematical Thinking. Journal on Mathematics Education, 10(2), 171-184. https://doi.org/10.22342/jme.10.2.7351.171-184
Schoenfeld, A. H. (1985). Mathematical problem sol¬ving. Academic Press. https:// doi.org/10.1016/C2013-0-05012-8
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4-14. https://doi.org/10.3102/0013189X015002004
Silverman, J., & Thompson, P.W. (2008). Toward a framework for the development of mathematical knowledge for teaching. Journal of Mathematics Teacher Education, 11(6), 499-511. https://doi.org/10.1007/s10857-008-9089-5
Singer, F.M., Ellerton, N., & Cai, J. (2015). Mathe¬matical Problem Posing. Sprin¬ger. https:// doi.org/10.1007/978-1-4614-6258-3
Stahnke, R, Schueler, S., & Roesken-Winter, B. (2016). Teachers’ perception, interpretation, and decision-making: a systematic review of empirical mathematics education research. ZDM. The International Journal on Mathematics Education, 48(1), 1-27. https://doi.org/10.1007/s11858-016-0775-y