Main Article Content

Abstract

Classroom discussions are essential for developing students’ mathematical understanding. While prior studies have examined teacher-led instruction, there remains a gap in understanding how metacognitive and discursive activities shape the quality of mathematical discussions at the whole-class level. To address this gap, this study proposes a systematic framework for analyzing public classroom discussions with a focus on metacognitive-discursive activities that support mathematical argumentation. The analysis centers on two dimensions: (1) monitoring the logical validity, correctness, and completeness of mathematical arguments, and (2) identifying how discourse quality is enhanced or obstructed by participants’ communicative strategies. This qualitative study employed a two-stage procedure: first, a fine-grained micro-level coding of classroom interactions to identify metacognitive and discursive activities, including monitoring (of terminology, methods, and argument consistency), reflection (on representational structures and methodological effectiveness), and discursive actions that either promote or hinder mutual understanding and second, a macro-level evaluation of discussion quality using a standardized rating framework. This methodological approach, applied for the first time in the Indonesian mathematics education context, enabled a more comprehensive analysis of discourse processes in whole-class discussions and helped identify phases in which strategies for enhancing the classroom discussion culture could be developed. The findings indicate that productive mathematical discussions require an environment that encourages students to articulate and critique solution strategies, justify their reasoning, and collaboratively resolve discrepancies with minimal teacher scaffolding. The study contributes to mathematics education research by providing a rigorous analytical model for examining mathematical discourse and offering evidence-based recommendations for cultivating a classroom culture that promotes deeper mathematical understanding.

Keywords

Comparative Case Study Metacognitive-Discursive Activities Public Classroom Discussions Rating System

Article Details

How to Cite
Ate, D., Kusumah, Y. S., & Cohors-Fresenborg, E. (2025). Metacognitive-discursive activities in Indonesian mathematics classrooms: A two-stage comparative case study. Journal on Mathematics Education, 16(3), 1023–1042. https://doi.org/10.22342/jme.v16i3.pp1023-1042

References

  1. Aduko, E. A., & Akayuure, P. (2025). Discourse trajectories in mathematics classrooms: An empirical study of preservice teachers in Ghana. Asian Journal for Mathematics Education, 4(3), 369-393. https://doi.org/10.1177/27527263251322538
  2. Alexander, R. J. (2008). Towards dialogic teaching: Rethinking classroom talk (4th ed.). Dialogos.
  3. Alghaeth, A. S., Alomiear, M. I., Alnuaim, H. S., & Alshalhob, S. A. (2024). The impact of cognitive activation practices on enhancing student mathematical reasoning in mathematical literacy: A causal comparative study based on PISA 2022. International Journal of Research in Educational Sciences, 7(4), 227–253. http://dx.doi.org/10.29009/ijres.7.4.6
  4. Arakaza, A., & Mugabo, L. R. (2022). Teachers’ practices in teaching mathematics in selected schools of Bujumbura Mairie Province in Burundi. Rwandan Journal of Education, 5(2), 140–152. https://www.ajol.info/index.php/rje/article/view/222396/209841
  5. Ate, D. (2021). Enhancing primary school students’ competencies in step-by-step controllable argumentation using a new learning environment. Jurnal Riset Pendidikan Matematika, 8(1), 73–82. https://doi.org/10.21831/jrpm.v8i1.35322
  6. Ate, D., Kusumah, Y. S., & Cohors-Fresenborg, E. (2024). Exploring metacognitive and discursive activities using a video transcript. The Eurasia Proceedings of Science, Technology, Engineering and Mathematics, 27, 145–154. https://doi.org/10.55549/epstem.1518473
  7. Ayuwanti, I., Marsigit, & Siswoyo, D. (2021). Teacher-student interaction in mathematics learning. International Journal of Evaluation and Research in Education (IJERE), 10(2), 660–667. https://doi.org/10.11591/ijere.v10i2.21184
  8. Burge, B., Lenkeit, J., & Sizmur, J. (2015). PISA in practice: Cognitive activation in maths. NFER.
  9. Cohors-Fresenborg, E., & Kaune, C. (2007). Modelling classroom discussions and categorizing discursive and metacognitive activities. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the Fifth Congress of the European Society for Research in Mathematics Education (pp. 1180–1189). University of Cyprus.
  10. Cohors-Fresenborg, E., & Nowińska, E. (2021). Pengantar kategorisasi kegiatan metakognitif-diskursif para siswa dan guru dalam pelajaran matematika [Introduction to categorizing metacognitive-discursive activities of students and teachers in mathematics lessons]. Lembaga Matematika Kognitif STKIP Weetebula.
  11. Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publications.
  12. Fauzan, A. (2002). Applying Realistic Mathematics Education (RME) in teaching geometry in Indonesian primary schools. Doctoral dissertation. University of Twente, Enschede, The Netherlands.
  13. Genç, M., & Çolakoğlu, Ö. M. (2021). Modeling the effects of instructional quality on mathematical literacy performance from the students’ perspective: PISA 2012 Turkey sample. Education and Science, 46(206), 1–26. http://dx.doi.org/10.15390/EB.2020.9013
  14. Hansen, E. K. S., & Naalsund, M. (2022). The role of teacher actions for students’ productive interaction solving a linear function problem. International Electronic Journal of Mathematics Education, 17(3), Article em0685. https://doi.org/10.29333/iejme/11921
  15. Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371–404). Information Age Publishing.
  16. Hofmann, R., & Ruthven, K. (2018). Operational, interpersonal, discussional and ideational dimensions of classroom norms for dialogic practice in school mathematics. British Educational Research Journal, 44(3), 496–514. https://doi.org/10.1002/berj.3444
  17. Iiskala, T., Lehtinen, E., Volet, S., & Vauras, M. (2015). Socially shared metacognitive regulation in asynchronous CSCL in science: Functions, evolution and participation. Frontline Learning Research, 3(1), 78–111. https://doi.org/10.14786/flr.v3i1.159
  18. Iiskala, T., Vauras, M., Lehtinen, E., & Salonen, P. (2011). Socially shared metacognition of dyads of pupils in collaborative mathematical problem solving processes. Learning and Instruction, 21(3), 379–393. https://doi.org/10.1016/j.learninstruc.2010.05.002
  19. Kaune, C., & Cohors-Fresenborg, E. (2021). Monograph Series in Mathematics Education. Lembaga Matematika Kognitif STKIP Weetebula.
  20. Klieme, E. (2006). Empirische Unterrichtsforschung: Aktuelle Entwicklungen, theoretische Grundlagen und fachspezifische Befunde [Empirical classroom research: Current developments, theoretical foundations, and subject-specific findings]. Zeitschrift für Pädagogik, 52(6), 765–775. http://dx.doi.org/10.25656/01:4487
  21. Li, H., Liu, J., Zhang, D., & Liu, H. (2021). Examining the relationships between cognitive activation, self-efficacy, socioeconomic status, and achievement in mathematics: A multi-level analysis. Educational Psychology, 41(1), 101–126. https://doi.org/10.1111/bjep.12351
  22. Liu, X., Yang Hansen, K., Valcke, M., & De Neve, J. (2024). A decade of PISA: Student perceived instructional quality and mathematics achievement across European countries. ZDM – Mathematics Education, 56, 859–891. https://doi.org/10.1007/s11858-024-01630-7
  23. Lipowsky, F., Rakoczy, K., Pauli, C., Drollinger-Vetter, B., Klieme, E., & Reusser, K. (2009). Quality of geometry instruction and its short-term impact on students’ understanding of the Pythagorean theorem. Learning and Instruction, 19(6), 527–537. https://doi.org/10.1016/j.learninstruc.2008.11.001
  24. Mercer, N., & Howe, C. (2012). Explaining the dialogic processes of teaching and learning: The value and potential of sociocultural theory. Learning, Culture and Social Interaction, 1(1), 12–21. https://doi.org/10.1016/j.lcsi.2012.03.001
  25. Merriam, S. B., & Tisdell, E. J. (2016). Qualitative research: A guide to design and implementation (4th ed.). Jossey-Bass
  26. Moza, F., Cohors-Fresenborg, E., Rato, E. A., Bulu, S. I., Bida, A. A. L., & Ate, S. M. S. A. (2024). Analisis proses pembelajaran matematika dengan menggunakan sistem kategori aktivitas metakognitif-diskursif [Analysis of the mathematics learning process using a metacognitive-discursive activity category system]. Kognitif: Jurnal Riset HOTS Pendidikan Matematika, 4(1), 256–270. https://doi.org/10.51574/kognitif.v4i1.1295
  27. Napu, T. W., Lubur, D. N. L., & Nambers, D. S. (2024). Analisis proses pembelajaran matematika dengan pendekatan metakognitif-diskursif menggunakan sistem kategori [Analysis of the mathematics learning process with a metacognitive-discursive approach using a category system]. Kognitif: Jurnal Riset HOTS Pendidikan Matematika, 4(1), 194–203. https://doi.org/10.51574/kognitif.v4i1.1285
  28. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. NCTM.
  29. Nowińska, E. (2016a). Leitfragen zur Analyse und Beurteilung metakognitiv-diskursiver Unterrichtsqualität [Guiding questions for the analysis and evaluation of metacognitive-discursive instructional quality]. Forschungsinstitut für Mathematikdidaktik.
  30. Nowińska, E. (2016b). The design of a high inference rating system for an evaluation of metacognitiv-discursive teaching and learning quality. In S. Zehetmeier, B. Rösken-Winter, D. Potari, & M. Ribeiro (Eds.), ERME Topic Conference on Mathematics Teaching, Resources and Teacher Professional Development (pp. 46–55). NCTM
  31. Nowińska, E. (2018). Ratingsystem zur Analyse und Einschätzung metakognitiv-diskursiver Unterrichtsqualität [[Rating system for the analysis and evaluation of metacognitive-discursive instructional quality]. In E. Nowińska (Ed.), Metakognitiv-diskursive Unterrichtsqualität – Eine Handreichung zu deren Analyse und Einschätzung in den Fächern Geschichte, Mathematik und Religion [Metacognitive-discursive instructional quality – A guide to its analysis and evaluation in the subjects history, mathematics, and religion] (pp. 57–82). Forschungsinstitut für Mathematikdidaktik.
  32. OECD. (2024). PISA 2022 creative thinking: Outside the box. Canadian results of the OECD PISA 2022 study. Council of Ministers of Education, Canada.
  33. Patton, M. Q. (2015). Qualitative research & evaluation methods: Integrating theory and practice (4th ed.). SAGE Publications.
  34. Putra, H. D., Setiawan, W., & Afrilianto, M. (2020). Indonesian high scholar difficulties in learning mathematics. International Journal of Scientific & Technology Research, 9(1), 3466–3470.
  35. Quabeck, K., Erath, K., & Prediger, S. (2023). Measuring interaction quality in mathematics instruction: How differences in operationalizations matter methodologically. Journal of Mathematical Behavior, 70, 101054. https://doi.org/10.1016/j.jmathb.2023.101054
  36. Scott, P. H., Mortimer, E. F., & Aguiar, O. G. (2006). The tension between authoritative and dialogic discourse: A fundamental characteristic of meaning making interactions in high school science lessons. Science Education, 90(4), 605–631. https://doi.org/10.1002/sce.20131
  37. Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses and mathematizing. Cambridge University Press. https://doi.org/10.1017/CBO9780511499944
  38. Sigurjónsson, J. Ö. (2024). Teaching mathematics with high cognitive activation: Instructional formats and connection-making interactions in high-level Nordic lessons. Nordic Studies in Mathematics Education, 29(1), 5–26. https://doi.org/10.7146/nomad.v29i2.146422
  39. Stockero, S. L., Leatham, K. R., Ochieng, M. A., Van Zoest, L. R., & Peterson, B. E. (2020). Teachers’ orientations toward using student mathematical thinking as a resource during whole-class discussion. Journal of Mathematics Teacher Education, 23(3), 237–267. https://doi.org/10.1007/s10857-018-09421-0
  40. Turmudi. (2010). Pembelajaran matematika: Kini dan kecenderungan masa mendatang [Mathematics learning: Current and future trends]. In T. Hidayat, I. Kaniawati, I. R. Suwarna, A. Setiabudi, & Suhendra (Eds.), Teori, paradigma, prinsip, dan pendekatan pembelajaran MIPA dalam konteks Indonesia [Theory, paradigm, principles, and approaches to science and mathematics learning in the Indonesian context] (pp. 77–96). FPMIPA UPI.
  41. Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes (M. Cole, V. John-Steiner, S. Scribner, & E. Souberman, Eds. & Trans.). Harvard University Press.
  42. Zhang, Q., & Wang, Y. (2024). A comparative study of teacher–student verbal interaction in primary school mathematics classroom teachers: Taking novice teachers and expert teachers as examples. Journal of Educational Technology Development and Exchange, 17(2), 296–314. https://doi.org/10.18785/jetde.1702.14