Main Article Content
Abstract
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Aiken, L. R. (1985). Three coefficients for analyzing the reliability and validity of ratings. Educational and psychological measurement, 45(1), 131-142. https://doi.org/10.1177/0013164485451012
- Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198. https://doi.org/10.1016/j.learninstruc.2006.03.001
- Apsari, R. A., Putri, R. I. I., Sariyasa, Abels, M., & Prayitno, S. (2020). Geometry representation to develop algebraic thinking: A recommendation for a pattern investigation in pre-algebra class. Journal on Mathematics Education, 11(1), 45–58. https://doi.org/10.22342/jme.11.1.9535.45-58
- Beswick, K., & Muir, T. (2004). Talking and writing about the problem solving process. Mathematics Education For the Third Millennium: …, 1999, 95–102. http://www.merga.net.au/publications/counter.php?pub=pub_conf&id=202
- Brookhart, S. M. (2013). How to create and use rubrics for formative assessment and grading. Ascd.
- Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13(2), 145–182. https://doi.org/10.1016/0364-0213(89)90002-5
- Creswell, J. W., & Creswell, J. D. (2018). Research Defign: Qualitative, Quantitative, and Mixed M ethods Approaches. In Research Defign: Qualitative, Quantitative, and Mixed M ethods Approaches.
- Davidson, A., Herbert, S., & Bragg, L. (2018). Supporting Elementary Teachers’ Planning and Assessing of Mathematical Reasoning. International Journal of Science and Mathematics Education, 17. https://doi.org/10.1007/s10763-018-9904-0
- de Boer, I., de Vegt, F., Pluk, H., & Latijnhouwers, M. (2021). Rubrics-a tool for feedback and assessment viewed from different perspectives. Springer.
- Domu, I., Regar, V. E., Kumesan, S., Mangelep, N. O., & Manurung, O. (2023). Did the Teacher Ask the Right Questions? An Analysis of Teacher Asking Ability in Stimulating Students’ Mathematical Literacy. Journal of Higher Education Theory and Practice, 23(5), 248–256. https://doi.org/10.33423/jhetp.v23i5.5970
- Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1–2), 103–131. https://doi.org/10.1007/s10649-006-0400-z Fauzan, A., Harisman, Y., & Arini. (2019). Analysis of students’ strategies in solving multiplication problems. International Journal of Scientific and Technology Research, 8(10), 568–573.
- Gezie, A., Khaja, K., Chang, V. N., Adamek, M. E., & Johnsen, M. B. (2012). Rubrics as a Tool for Learning and Assessment: What Do Baccalaureate Students Think? Journal of Teaching in Social Work, 32(4), 421–437. https://doi.org/10.1080/08841233.2012.705240
- Goldin-Meadow, S., So, W. C., Özyürek, A., & Mylander, C. (2008). The natural order of events: How speakers of different languages represent events nonverbally. Proceedings of the National Academy of Sciences of the United States of America, 105(27), 9163–9168. https://doi.org/10.1073/pnas.0710060105
- Goldin, G. (2020). A Joint Perspective on the Idea of Representation in Learning and Doing Mathematics. Theories of Mathematical Learning, September, 409–442. https://doi.org/10.4324/9780203053126-30
- Gunawan, I., Darhim, D., & Kusnandi, K. (2019). Exploration of the behavior of understanding mathematical concepts of junior high school students. Journal of Physics: Conference Series, 1157(4). https://doi.org/10.1088/1742-6596/1157/4/042098
- Hanifah, Waluya, S. B., Rochmad, & Wardono. (2020). Mathematical Representation Ability and Self -Efficacy. Journal of Physics: Conference Series, 1613(1). https://doi.org/10.1088/1742-6596/1613/1/012062
- Hannula, M. S. (2006). Motivation in mathematics: Goals reflected in emotions. Educational Studies in Mathematics, 63(2), 165–178. https://doi.org/10.1007/s10649-005-9019-8
- Harisman, Y., Noto, M. S., & Hidayat, W. (2021). Investigation of Students’ Behavior in Mathematical Problem Solving. Infinity Journal, 10(2), 235–258. https://doi.org/10.22460/infinity.v10i2.p235-258
- Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684–689. https://doi.org/10.1037//0022-0663.91.4.684
- Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action. Psychonomic Bulletin and Review, 15(3), 495–514. https://doi.org/10.3758/PBR.15.3.495
- J. H., F. (1979). Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. American Psychologist, 157(DEC14), 424. https://doi.org/10.1093/nq/CLVII.dec14.424-a
- Ikashaum, F., Mustika, J., Wulantina, E., & Cahyo, E. D. (2021). Analysis of Students' Symbolic Representation Errors in Plane Analytic Geometry Problems. Al-Khwarizmi : Jurnal Pendidikan Matematika Dan Ilmu Pengetahuan Alam, 9(1), 57–68. https://doi.org/10.24256/jpmipa.v9i1.1701
- Khalid, M. (2017). Fostering Problem Solving and Performance Assessment among Malaysian Mathematics Teachers. Sains Humanika, 9(1–2), 51–55. https://doi.org/10.11113/sh.v9n1-2.1098
- Karaca, H., Ertekin, E., & Cagiltay, K. (2025). Investigating middle school students’ eye movements on the mathematical representations: An eye-tracking study. Education and Information Technologies, 30(11), 16189–16210. https://doi.org/10.1007/s10639-025-13436-5
- Kohen, Z., & Gharra-Badran, Y. (2023). A rubric for assessing mathematical modelling problems in a scientific-engineering context. Teaching Mathematics and Its Applications, 42(3), 266–288. https://doi.org/10.1093/teamat/hrac018
- Krathwohl, D. R. (2002). A Revision of Bloom’s Taxonomy: An Overview. Theory into Practice, 41(4), 212–218. https://doi.org/10.1207/s15430421tip4104_2Khairunnisak, C., Johar, R., Morina Zubainur, C., & Sasalia, P. (2021). Learning Trajectory of Algebraic Expression: Supporting Students’ Mathematical Representation Ability. Mathematics Teaching Research Journal, 13(4), 27–41. https://commons.hostos.cuny.edu/mtrj/
- Kusumaningtyas, A. A. S., Kartono, & Asih, T. S. N. (2020). Error Analysis in Mathematical Representation Through the Think-Talk-Write Model with Verbal Feedback. PRISMA, Prosiding Seminar Nasional Matematika, 3, 518–520. https://journal.unnes.ac.id/sju/index.php/prisma/article/view/37574/15534
- Lesh, R., Post, T. R., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In Problems of representations in the teaching and learning of mathematics (pp. 33–40). Lawrence Erlbaum.
- Lestari, D., Usman, U., & Munzir, S. (2024). Mathematical Representation Abilities and Self-Confidence through Application of Discovery Learning Model with Geogebra-assisted. 98–106. https://doi.org/10.2991/978-2-38476-216-3_11
- Marnizam, F. I., & Ali, S. R. (2021). Pentaksiran Dalam Pendidikan. Jurnal Pendidikan Sains Dan Matematik Malaysia, 11(2), 81–94
- Martínez-Planell, R., & Cruz Delgado, A. (2016). The unit circle approach to the construction of the sine and cosine functions and their inverses: An application of APOS theory. Journal of Mathematical Behavior, 43, 111–133. https://doi.org/10.1016/j.jmathb.2016.06.002
- Midgett, C., & Eddins, S. (2001). NCTM’s Principles and Standards for School Mathematics: Implications for Administrators. Nassp Bulletin, 85, 35–42. https://doi.org/10.1177/019263650108562305
- Muir, T., Beswick, K., & Williamson, J. (2008). “I’am nor very goot at solving problems”: An exploration of students’ problem solving behaviours. The Journal of Mathematical Behavior, 27(3), 228-241. https://doi.org/10.1016/j.jmathb.2008.04.003
- Musdi, E., Syahputra, H., Arnellis, A., & Harisman, Y. (2024). Students ’ m athematics communication behavior : Assessment tools and their application. Journal on Mathematics Education, 15(1), 317-338.. https://doi.org/10.22342/jme.v15i1.pp317-338
- NCTM, N. C. of T. of M. (2000). Principles and standards for school mathematics. NCTM. (Vol. 17, p. 302).
- Ng, C. H., & Adnan, M. (2018). Integrating STEM education through Project-Based Inquiry Learning (PIL) in topic space among year one pupils. IOP Conference Series: Materials Science and Engineering, 296(1). https://doi.org/10.1088/1757-899X/296/1/012020
- Novick, L. R. (2004). Diagram Literacy in Preservice Math Teachers, Computer Science Majors, and Typical Undergraduates: The Case of Matrices, Networks, and Hierarchies. Mathematical Thinking and Learning, 6(3), 307–342. https://doi.org/10.1207/s15327833mtl0603_3
- Novotná, Jarmila, Eisenmann, P., Přibyl, J., Ondrušová, J., & Břehovský, J. (2012). Problem Solving in School Mathematics Based on. Journal on Efficiency and Responsibility in Education and Science, 7(1), 1–6. https://doi.org/10.7160/eriesj.2013.070101.Introduction
- OECD. (2023). PISA 2022 Assessment and Analytical Frameword. In Paris: Journal of OECH Publishing
- Pape, S. J., & Tchoshanov, M. A. (2001). The role of representation(s) in developing mathematical understanding. Theory into Practice, 40(2), 118–127. https://doi.org/10.1207/s15430421tip4002_6
- Post, M., & Prediger, S. (2024). Teaching practices for unfolding information and connecting multiple representations: the case of conditional probability information. In Mathematics Education Research Journal (Vol. 36, Issue 1). Springer Netherlands. https://doi.org/10.1007/s13394-022-00431-z
- Rahmawati, D., Purwantoa, P., Subanji, S., Hidayanto, E., & Anwar, R. B. (2021). Process of Mathematical Representation Translation from Verbal into Graphic. International Electronic Journal of Mathematics Education, 12(3), 367–381. https://doi.org/10.29333/iejme/618
- Rebolledo-Mendez, G., Huerta-Pacheco, N. S., Baker, R. S., & du Boulay, B. (2022). Meta-Affective Behaviour within an Intelligent Tutoring System for Mathematics. International Journal of Artificial Intelligence in Education, 32(1), 174–195. https://doi.org/10.1007/s40593-021-00247-1
- Rittle-Johnson, B. (2006). Promoting transfer: Effects of self-explanation and direct instruction. Child Development, 77(1), 1–15. https://doi.org/10.1111/j.1467-8624.2006.00852.x
- Rohati, R., Kusumah, Y. S., & Kusnandi, K. (2022). The development of analytical rubrics: An avenue to assess students’ mathematical reasoning behavior. Cypriot Journal of Educational Sciences, 17(8), 2553–2566. https://doi.org/10.18844/cjes.v17i8.7043
- Rohati, R., Kusumah, Y. S., & Kusnandi, K. (2023). Exploring Students’ Mathematical Reasoning Behavior in Junior High Schools: A Grounded Theory. Education Sciences, 13(3). https://doi.org/10.3390/educsci13030252
- Santia, I., Purwanto, Sutawidjadja, A., Sudirman, & Subanji. (2019). Ill-Structured Problems : the Case of Quadratic. Journal on Mathematics Education, 10(3), 365–378.
- Sari, D. P., Darhim, & Rosjanuardi, R. (2018). Errors of students learning with react strategy in solving the problems of mathematical representation ability. Journal on Mathematics Education, 9(1), 121–128. https://doi.org/10.22342/jme.9.1.4378.121-128
- Sari, R. H. N., & Wijaya, A. (2017). Mathematical literacy of senior high school students in Yogyakarta. Jurnal Riset Pendidikan Matematika, 4(1), 100–107. https://doi.org/10.21831/jrpm.v4i1.10649
- Shimakeleni, L. (2022). the Use of Smartphones and Visualisation Processes for Conceptual Understanding of Mensuration: a Case Study of the Mathcitymap Project in Namibia. January.
- Sofnidar, S., Kamid, K., Anwar, K., Basuki, F. R., & Kurniawan, D. A. (2019). Student ’ s Behavior Base Cognitive Style In Outdoor Learning-Mathematiacal Modelling. 8(10).
- Stemler, S. E. (2004). A comparison of consensus, consistency, and measurement approaches to estimating interrater reliability. Practical Assessment, Research and Evaluation, 9(4).
- Stevens, D. D. (2023). Introduction to rubrics: An assessment tool to save grading time, convey effective feedback, and promote student learning. Routledge.
- Stevens, D. D., & Leve, A. J. (2005). Introduction to Rubrics: An Assessment Tool to Save Grading Time, Convey Effective Feedback and Promote Student Learning. Stylus, Sterling, Virginia. (2nd ed.).
- Stylianou, D. A. (2002). On the interaction of visualization and analysis: The negotiation of a visual representation in expert problem solving. Journal of Mathematical Behavior, 21(3), 303–317. https://doi.org/10.1016/S0732-3123(02)00131-1
- SUNY Discipline Panel in Mathematics. (2005). Standards and Rubrics for Assessing General Education in Mathematics. The State University of New York, Ic, 1–9. https://system.suny.edu/media/suny/content-assets/documents/academic-affairs/assessment/SUNY-Math-Rubric.pdf
- Telaumbanua, Y. N., Syahputra, E., & Surya, E. (2024). Students’ Metacognitive Awareness in Mathematics Learning. Academy of Education Journal, 15(1), 1047–1055. https://doi.org/10.47200/aoej.v15i1.2359
- Tian, Y., Fang, Y., & Li, J. (2018). The effect of metacognitive knowledge on mathematics performance in self-regulated learning framework-multiple mediation of self-efficacy and motivation. Frontiers in Psychology, 9(DEC), 1–11. https://doi.org/10.3389/fpsyg.2018.02518
- Toalongo, X., Trelles, C., & Alsina, Á. (2022). Design, Construction and Validation of a Rubric to Evaluate Mathematical Modelling in School Education. Mathematics, 10(24), 1–19. https://doi.org/10.3390/math10244662
- van der Wal, N. J., Bakker, A., & Drijvers, P. (2023). Designing an instrument to measure the development of techno-mathematical literacies in an innovative mathematics course for future engineers in STEM education. ZDM - Mathematics Education, 55(7), 1243–1254. https://doi.org/10.1007/s11858-023-01507-1
- van Lieshout, E. C. D. M., & Xenidou-Dervou, I. (2018). Pictorial representations of simple arithmetic problems are not always helpful: a cognitive load perspective. Educational Studies in Mathematics, 98(1), 39–55. https://doi.org/10.1007/s10649-017-9802-3
- Wijaya, A. (2016). Students’ Information Literacy: A Perspective from Mathematical Literacy. Journal on Mathematics Education, 7(2), 73–82. https://doi.org/10.22342/jme.7.2.3532.73-82
- Wulandari, E. D., Hidayanto, E., Subanji, & Rahardi, R. (2019). Mathematical Representation of Cerebral Palsy Students in Constructing the Concept of Plane Geometry Based on APOS Theory. Journal of Physics: Conference Series, 1227(1). https://doi.org/10.1088/1742-6596/1227/1/012018
- Yelisieiev, V., Lutsenko, V., & Berkout, V. (2022). Mathematical model of porous solid impregnation based on multichannel representation of the pore system. IOP Conference Series: Earth and Environmental Science, 970(1). https://doi.org/10.1088/1755-1315/970/1/012023
- Yudhanegara, M. R., Lestari, K. E., Studi, P., Matematika, P., & Karawang, U. S. (2014). Analysis of Students' Mathematical Representation Abilities in Geometry Courses Based on Their Background in Learning Achievement in Transformation Geometry Courses. JP3M (Jurnal Penelitian Pendidikan Dan Pengajaran Matematika), 3(2), 83–88. http://jurnal.unsil.ac.id/index.php/jp3m/article/view/258
- Yusuf Sodhiqin, Haryanto, & Abdul Muin. (2024). Problem Solving Learning With Drawing A Diagram Strategy To Improve Mathematical Reflective Thinking Skills. Jurnal Pendidikan Dan Pengajaran, 57(3), 551–562. https://doi.org/10.23887/jpp.v57i3.80361
References
Aiken, L. R. (1985). Three coefficients for analyzing the reliability and validity of ratings. Educational and psychological measurement, 45(1), 131-142. https://doi.org/10.1177/0013164485451012
Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198. https://doi.org/10.1016/j.learninstruc.2006.03.001
Apsari, R. A., Putri, R. I. I., Sariyasa, Abels, M., & Prayitno, S. (2020). Geometry representation to develop algebraic thinking: A recommendation for a pattern investigation in pre-algebra class. Journal on Mathematics Education, 11(1), 45–58. https://doi.org/10.22342/jme.11.1.9535.45-58
Beswick, K., & Muir, T. (2004). Talking and writing about the problem solving process. Mathematics Education For the Third Millennium: …, 1999, 95–102. http://www.merga.net.au/publications/counter.php?pub=pub_conf&id=202
Brookhart, S. M. (2013). How to create and use rubrics for formative assessment and grading. Ascd.
Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13(2), 145–182. https://doi.org/10.1016/0364-0213(89)90002-5
Creswell, J. W., & Creswell, J. D. (2018). Research Defign: Qualitative, Quantitative, and Mixed M ethods Approaches. In Research Defign: Qualitative, Quantitative, and Mixed M ethods Approaches.
Davidson, A., Herbert, S., & Bragg, L. (2018). Supporting Elementary Teachers’ Planning and Assessing of Mathematical Reasoning. International Journal of Science and Mathematics Education, 17. https://doi.org/10.1007/s10763-018-9904-0
de Boer, I., de Vegt, F., Pluk, H., & Latijnhouwers, M. (2021). Rubrics-a tool for feedback and assessment viewed from different perspectives. Springer.
Domu, I., Regar, V. E., Kumesan, S., Mangelep, N. O., & Manurung, O. (2023). Did the Teacher Ask the Right Questions? An Analysis of Teacher Asking Ability in Stimulating Students’ Mathematical Literacy. Journal of Higher Education Theory and Practice, 23(5), 248–256. https://doi.org/10.33423/jhetp.v23i5.5970
Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61(1–2), 103–131. https://doi.org/10.1007/s10649-006-0400-z Fauzan, A., Harisman, Y., & Arini. (2019). Analysis of students’ strategies in solving multiplication problems. International Journal of Scientific and Technology Research, 8(10), 568–573.
Gezie, A., Khaja, K., Chang, V. N., Adamek, M. E., & Johnsen, M. B. (2012). Rubrics as a Tool for Learning and Assessment: What Do Baccalaureate Students Think? Journal of Teaching in Social Work, 32(4), 421–437. https://doi.org/10.1080/08841233.2012.705240
Goldin-Meadow, S., So, W. C., Özyürek, A., & Mylander, C. (2008). The natural order of events: How speakers of different languages represent events nonverbally. Proceedings of the National Academy of Sciences of the United States of America, 105(27), 9163–9168. https://doi.org/10.1073/pnas.0710060105
Goldin, G. (2020). A Joint Perspective on the Idea of Representation in Learning and Doing Mathematics. Theories of Mathematical Learning, September, 409–442. https://doi.org/10.4324/9780203053126-30
Gunawan, I., Darhim, D., & Kusnandi, K. (2019). Exploration of the behavior of understanding mathematical concepts of junior high school students. Journal of Physics: Conference Series, 1157(4). https://doi.org/10.1088/1742-6596/1157/4/042098
Hanifah, Waluya, S. B., Rochmad, & Wardono. (2020). Mathematical Representation Ability and Self -Efficacy. Journal of Physics: Conference Series, 1613(1). https://doi.org/10.1088/1742-6596/1613/1/012062
Hannula, M. S. (2006). Motivation in mathematics: Goals reflected in emotions. Educational Studies in Mathematics, 63(2), 165–178. https://doi.org/10.1007/s10649-005-9019-8
Harisman, Y., Noto, M. S., & Hidayat, W. (2021). Investigation of Students’ Behavior in Mathematical Problem Solving. Infinity Journal, 10(2), 235–258. https://doi.org/10.22460/infinity.v10i2.p235-258
Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 684–689. https://doi.org/10.1037//0022-0663.91.4.684
Hostetter, A. B., & Alibali, M. W. (2008). Visible embodiment: Gestures as simulated action. Psychonomic Bulletin and Review, 15(3), 495–514. https://doi.org/10.3758/PBR.15.3.495
J. H., F. (1979). Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. American Psychologist, 157(DEC14), 424. https://doi.org/10.1093/nq/CLVII.dec14.424-a
Ikashaum, F., Mustika, J., Wulantina, E., & Cahyo, E. D. (2021). Analysis of Students' Symbolic Representation Errors in Plane Analytic Geometry Problems. Al-Khwarizmi : Jurnal Pendidikan Matematika Dan Ilmu Pengetahuan Alam, 9(1), 57–68. https://doi.org/10.24256/jpmipa.v9i1.1701
Khalid, M. (2017). Fostering Problem Solving and Performance Assessment among Malaysian Mathematics Teachers. Sains Humanika, 9(1–2), 51–55. https://doi.org/10.11113/sh.v9n1-2.1098
Karaca, H., Ertekin, E., & Cagiltay, K. (2025). Investigating middle school students’ eye movements on the mathematical representations: An eye-tracking study. Education and Information Technologies, 30(11), 16189–16210. https://doi.org/10.1007/s10639-025-13436-5
Kohen, Z., & Gharra-Badran, Y. (2023). A rubric for assessing mathematical modelling problems in a scientific-engineering context. Teaching Mathematics and Its Applications, 42(3), 266–288. https://doi.org/10.1093/teamat/hrac018
Krathwohl, D. R. (2002). A Revision of Bloom’s Taxonomy: An Overview. Theory into Practice, 41(4), 212–218. https://doi.org/10.1207/s15430421tip4104_2Khairunnisak, C., Johar, R., Morina Zubainur, C., & Sasalia, P. (2021). Learning Trajectory of Algebraic Expression: Supporting Students’ Mathematical Representation Ability. Mathematics Teaching Research Journal, 13(4), 27–41. https://commons.hostos.cuny.edu/mtrj/
Kusumaningtyas, A. A. S., Kartono, & Asih, T. S. N. (2020). Error Analysis in Mathematical Representation Through the Think-Talk-Write Model with Verbal Feedback. PRISMA, Prosiding Seminar Nasional Matematika, 3, 518–520. https://journal.unnes.ac.id/sju/index.php/prisma/article/view/37574/15534
Lesh, R., Post, T. R., & Behr, M. (1987). Representations and translations among representations in mathematics learning and problem solving. In Problems of representations in the teaching and learning of mathematics (pp. 33–40). Lawrence Erlbaum.
Lestari, D., Usman, U., & Munzir, S. (2024). Mathematical Representation Abilities and Self-Confidence through Application of Discovery Learning Model with Geogebra-assisted. 98–106. https://doi.org/10.2991/978-2-38476-216-3_11
Marnizam, F. I., & Ali, S. R. (2021). Pentaksiran Dalam Pendidikan. Jurnal Pendidikan Sains Dan Matematik Malaysia, 11(2), 81–94
Martínez-Planell, R., & Cruz Delgado, A. (2016). The unit circle approach to the construction of the sine and cosine functions and their inverses: An application of APOS theory. Journal of Mathematical Behavior, 43, 111–133. https://doi.org/10.1016/j.jmathb.2016.06.002
Midgett, C., & Eddins, S. (2001). NCTM’s Principles and Standards for School Mathematics: Implications for Administrators. Nassp Bulletin, 85, 35–42. https://doi.org/10.1177/019263650108562305
Muir, T., Beswick, K., & Williamson, J. (2008). “I’am nor very goot at solving problems”: An exploration of students’ problem solving behaviours. The Journal of Mathematical Behavior, 27(3), 228-241. https://doi.org/10.1016/j.jmathb.2008.04.003
Musdi, E., Syahputra, H., Arnellis, A., & Harisman, Y. (2024). Students ’ m athematics communication behavior : Assessment tools and their application. Journal on Mathematics Education, 15(1), 317-338.. https://doi.org/10.22342/jme.v15i1.pp317-338
NCTM, N. C. of T. of M. (2000). Principles and standards for school mathematics. NCTM. (Vol. 17, p. 302).
Ng, C. H., & Adnan, M. (2018). Integrating STEM education through Project-Based Inquiry Learning (PIL) in topic space among year one pupils. IOP Conference Series: Materials Science and Engineering, 296(1). https://doi.org/10.1088/1757-899X/296/1/012020
Novick, L. R. (2004). Diagram Literacy in Preservice Math Teachers, Computer Science Majors, and Typical Undergraduates: The Case of Matrices, Networks, and Hierarchies. Mathematical Thinking and Learning, 6(3), 307–342. https://doi.org/10.1207/s15327833mtl0603_3
Novotná, Jarmila, Eisenmann, P., Přibyl, J., Ondrušová, J., & Břehovský, J. (2012). Problem Solving in School Mathematics Based on. Journal on Efficiency and Responsibility in Education and Science, 7(1), 1–6. https://doi.org/10.7160/eriesj.2013.070101.Introduction
OECD. (2023). PISA 2022 Assessment and Analytical Frameword. In Paris: Journal of OECH Publishing
Pape, S. J., & Tchoshanov, M. A. (2001). The role of representation(s) in developing mathematical understanding. Theory into Practice, 40(2), 118–127. https://doi.org/10.1207/s15430421tip4002_6
Post, M., & Prediger, S. (2024). Teaching practices for unfolding information and connecting multiple representations: the case of conditional probability information. In Mathematics Education Research Journal (Vol. 36, Issue 1). Springer Netherlands. https://doi.org/10.1007/s13394-022-00431-z
Rahmawati, D., Purwantoa, P., Subanji, S., Hidayanto, E., & Anwar, R. B. (2021). Process of Mathematical Representation Translation from Verbal into Graphic. International Electronic Journal of Mathematics Education, 12(3), 367–381. https://doi.org/10.29333/iejme/618
Rebolledo-Mendez, G., Huerta-Pacheco, N. S., Baker, R. S., & du Boulay, B. (2022). Meta-Affective Behaviour within an Intelligent Tutoring System for Mathematics. International Journal of Artificial Intelligence in Education, 32(1), 174–195. https://doi.org/10.1007/s40593-021-00247-1
Rittle-Johnson, B. (2006). Promoting transfer: Effects of self-explanation and direct instruction. Child Development, 77(1), 1–15. https://doi.org/10.1111/j.1467-8624.2006.00852.x
Rohati, R., Kusumah, Y. S., & Kusnandi, K. (2022). The development of analytical rubrics: An avenue to assess students’ mathematical reasoning behavior. Cypriot Journal of Educational Sciences, 17(8), 2553–2566. https://doi.org/10.18844/cjes.v17i8.7043
Rohati, R., Kusumah, Y. S., & Kusnandi, K. (2023). Exploring Students’ Mathematical Reasoning Behavior in Junior High Schools: A Grounded Theory. Education Sciences, 13(3). https://doi.org/10.3390/educsci13030252
Santia, I., Purwanto, Sutawidjadja, A., Sudirman, & Subanji. (2019). Ill-Structured Problems : the Case of Quadratic. Journal on Mathematics Education, 10(3), 365–378.
Sari, D. P., Darhim, & Rosjanuardi, R. (2018). Errors of students learning with react strategy in solving the problems of mathematical representation ability. Journal on Mathematics Education, 9(1), 121–128. https://doi.org/10.22342/jme.9.1.4378.121-128
Sari, R. H. N., & Wijaya, A. (2017). Mathematical literacy of senior high school students in Yogyakarta. Jurnal Riset Pendidikan Matematika, 4(1), 100–107. https://doi.org/10.21831/jrpm.v4i1.10649
Shimakeleni, L. (2022). the Use of Smartphones and Visualisation Processes for Conceptual Understanding of Mensuration: a Case Study of the Mathcitymap Project in Namibia. January.
Sofnidar, S., Kamid, K., Anwar, K., Basuki, F. R., & Kurniawan, D. A. (2019). Student ’ s Behavior Base Cognitive Style In Outdoor Learning-Mathematiacal Modelling. 8(10).
Stemler, S. E. (2004). A comparison of consensus, consistency, and measurement approaches to estimating interrater reliability. Practical Assessment, Research and Evaluation, 9(4).
Stevens, D. D. (2023). Introduction to rubrics: An assessment tool to save grading time, convey effective feedback, and promote student learning. Routledge.
Stevens, D. D., & Leve, A. J. (2005). Introduction to Rubrics: An Assessment Tool to Save Grading Time, Convey Effective Feedback and Promote Student Learning. Stylus, Sterling, Virginia. (2nd ed.).
Stylianou, D. A. (2002). On the interaction of visualization and analysis: The negotiation of a visual representation in expert problem solving. Journal of Mathematical Behavior, 21(3), 303–317. https://doi.org/10.1016/S0732-3123(02)00131-1
SUNY Discipline Panel in Mathematics. (2005). Standards and Rubrics for Assessing General Education in Mathematics. The State University of New York, Ic, 1–9. https://system.suny.edu/media/suny/content-assets/documents/academic-affairs/assessment/SUNY-Math-Rubric.pdf
Telaumbanua, Y. N., Syahputra, E., & Surya, E. (2024). Students’ Metacognitive Awareness in Mathematics Learning. Academy of Education Journal, 15(1), 1047–1055. https://doi.org/10.47200/aoej.v15i1.2359
Tian, Y., Fang, Y., & Li, J. (2018). The effect of metacognitive knowledge on mathematics performance in self-regulated learning framework-multiple mediation of self-efficacy and motivation. Frontiers in Psychology, 9(DEC), 1–11. https://doi.org/10.3389/fpsyg.2018.02518
Toalongo, X., Trelles, C., & Alsina, Á. (2022). Design, Construction and Validation of a Rubric to Evaluate Mathematical Modelling in School Education. Mathematics, 10(24), 1–19. https://doi.org/10.3390/math10244662
van der Wal, N. J., Bakker, A., & Drijvers, P. (2023). Designing an instrument to measure the development of techno-mathematical literacies in an innovative mathematics course for future engineers in STEM education. ZDM - Mathematics Education, 55(7), 1243–1254. https://doi.org/10.1007/s11858-023-01507-1
van Lieshout, E. C. D. M., & Xenidou-Dervou, I. (2018). Pictorial representations of simple arithmetic problems are not always helpful: a cognitive load perspective. Educational Studies in Mathematics, 98(1), 39–55. https://doi.org/10.1007/s10649-017-9802-3
Wijaya, A. (2016). Students’ Information Literacy: A Perspective from Mathematical Literacy. Journal on Mathematics Education, 7(2), 73–82. https://doi.org/10.22342/jme.7.2.3532.73-82
Wulandari, E. D., Hidayanto, E., Subanji, & Rahardi, R. (2019). Mathematical Representation of Cerebral Palsy Students in Constructing the Concept of Plane Geometry Based on APOS Theory. Journal of Physics: Conference Series, 1227(1). https://doi.org/10.1088/1742-6596/1227/1/012018
Yelisieiev, V., Lutsenko, V., & Berkout, V. (2022). Mathematical model of porous solid impregnation based on multichannel representation of the pore system. IOP Conference Series: Earth and Environmental Science, 970(1). https://doi.org/10.1088/1755-1315/970/1/012023
Yudhanegara, M. R., Lestari, K. E., Studi, P., Matematika, P., & Karawang, U. S. (2014). Analysis of Students' Mathematical Representation Abilities in Geometry Courses Based on Their Background in Learning Achievement in Transformation Geometry Courses. JP3M (Jurnal Penelitian Pendidikan Dan Pengajaran Matematika), 3(2), 83–88. http://jurnal.unsil.ac.id/index.php/jp3m/article/view/258
Yusuf Sodhiqin, Haryanto, & Abdul Muin. (2024). Problem Solving Learning With Drawing A Diagram Strategy To Improve Mathematical Reflective Thinking Skills. Jurnal Pendidikan Dan Pengajaran, 57(3), 551–562. https://doi.org/10.23887/jpp.v57i3.80361
