Main Article Content

Abstract

Polyhedrons present a challenging topic in elementary geometry education. The Indonesian Realistic Mathematics Education (IRME) approach, when contextualized within the Bukit Sulap tourism area, offers a promising solution to this challenge. This study aims to design a learning trajectory for teaching the surface area of polyhedron using IRME in the context of Bukit Sulap tourism. Employing a research design with a validation study type, the study was conducted in three phases: preparation and design, experimental teaching, and retrospective analysis. The participants were 27 elementary school students from Lubuklinggau City, Indonesia. Data collection instruments included surface area problem-solving worksheets, video recordings of in-depth learning interviews, field notes, and observation sheets. The findings suggest that the Bukit Sulap tourism context significantly enhanced students' understanding of surface area problems, specifically those involving combinations of cuboids and cubes. Additionally, IRME effectively facilitated students' comprehension of abstract mathematical concepts, particularly the surface area formulas for cubes and cuboids. The study concludes that using the Bukit Sulap tourism park context as a starting point for teaching the surface area of polyhedron aligns well with the principles of IRME.

Keywords

Bukit Sulap Tourism Context Cube and Cuboid IRME Surface Area

Article Details

How to Cite
Adha, I., Zulkardi, Putri, R. I. I., & Somakim. (2024). When designer meets local culture: The promising learning trajectory on the surface area of polyhedron. Journal on Mathematics Education, 15(3), 945–960. https://doi.org/10.22342/jme.v15i3.pp945-960

References

  1. Apsari, R. A., Putri, R. I. I., Abels, M., & Prayitno, S. (2020). Geometry representation to develop algebraic thinking: A recommendation for a pattern investigation in pre-algebra class. Journal on Mathematics Education, 11(1), 45-58. http://doi.org/10.22342/jme.11.1.9535.45-58
  2. Arifah, A. N., & Retnawati, H. (2020). Are students having trouble solving problems polyhedron?. Journal of Physics: Conference Series, 1613(1), 012029. http://doi.org/10.1088/1742-6596/1613/1/012029
  3. Bakker, A. (2018). Design Research in Education (A Practical Guide for Early Career Researchers). Routledge. https://doi.org/10.4324/9780203701010
  4. Elia, I., van den Heuvel-Panhuizen, M., & Gagatsis, A. (2018). Geometry learning in the early years: Developing understanding of shapes and space with a focus on visualization. In Kinnear, V., Lai, M., Muir, T. (eds) Forging Connections in Early Mathematics Teaching and Learning. Early Mathematics Learning and Development. Springer. https://doi.org/10.1007/978-981-10-7153-9_5
  5. Fouze, A. Q., & Amit, M. (2021). Teaching geometry by integrating ethnomathematics of Bedouin values. Creative Education, 12(02), 402–421. https://doi.org/10.4236/ce.2021.122029
  6. Goktepe Yildiz, S., & Ozdemir, A. S. (2020). The effects of engineering design processes on spatial abilities of middle school students. International Journal of Technology and Design Education, 30, 127-148. https://doi.org/10.1007/s10798-018-9491-y
  7. Gravemeijer, K., & van Eerde, D. (2009). Design research as a means for building a knowledge base for teaching in mathematics education. The Elementary School Journal, 109(5), 510–524. https://doi.org/10.1086/596999
  8. Hartutik, Nugroho, K. U. Z., Sukestiyarno, Y. L., Widada, W., Sugiyana, Taçain, J., & Anggoro, S. D. T. (2024). Digital technology literacy skills of participants in religious teacher professional training in Indonesia. Community Practitioner, 21(5), 1228–1245. https://doi.org/10.5281/zenodo.11365010
  9. Hendriana, H., Prahmana, R. C. I., Ristiana, M. G., Rohaeti, E. E., & Hidayat, W. (2022). The theoretical framework on humanist ethno-metaphorical mathematics learning model: An impactful insight in learning mathematics. Frontiers in Education, 7, 1030471. https://doi.org/10.3389/feduc.2022.1030471
  10. Hendroanto, A., Van Galen, F., Van Eerde, D., Prahmana, R. C. I., Setyawan, F., & Istiandaru, A. (2018). Photography activities for developing students’ spatial orientation and spatial visualization. Journal of Physics: Conference Series, 943(1), 012029. https://doi.org/10.1088/1742-6596/943/1/012029
  11. Herawaty, D., Widada, W., Adhitya, A., Sari, R. D. W., & Novianita, L. (2020). Students’ ability to simplify the concept of function through realistic mathematics learning with the ethnomathematics approach. Journal of Physics: Conference Series, 1470(1), 012031. https://doi.org/10.1088/1742-6596/1470/1/012031
  12. Hwang, W. Y., & Hu, S. S. (2013). Analysis of peer learning behaviors using multiple representations in virtual reality and their impacts on geometry problem solving. Computers & Education, 62, 308-319. https://doi.org/10.1016/j.compedu.2012.10.005
  13. Hwang, W. Y., Zhao, L., Shadiev, R., Lin, L. K., Shih, T. K., & Chen, H. R. (2020). Exploring the effects of ubiquitous geometry learning in real situations. Educational Technology Research and Development, 68, 1121-1147. https://doi.org/10.1016/j.compedu.2012.10.005
  14. Junaedi, Y., Wahyudin, & Juandi, D. (2021). Mathematical creative thinking ability of junior high school students’ on polyhedron. Journal of Physics: Conference Series, 1806(1), 012069. https://doi.org/10.1088/1742-6596/1806/1/012069
  15. Juniarti, A., Jojo, Z., & Prahmana, R. C. I. (2022). Designing the learning trajectory for the topic of circles through a tambourine context. Journal of Honai Math, 5(1), 29-46. https://doi.org/10.30862/jhm.v5i1.239
  16. Kurniawati, L., & Amir, M. F. (2022). Development of learning trajectory of perimeter and area of squares and rectangles through various tasks. Premiere Educandum: Journal of Basic Education and Learning, 12(1), 54-68. https://doi.org/10.25273/pe.v12i1.12121
  17. Lisnani, Putri, R. I. I., Zulkardi, & Somakim. (2023). Web-based realistic mathematics learning environment for 21st-century skills in primary school students. Journal on Mathematics Education, 14(2), 253–274. https://doi.org/10.22342/jme.v14i2.pp253-274
  18. Lowrie, T., Logan, T., & Hegarty, M. (2019). The influence of spatial visualization training on students’ spatial reasoning and mathematics performance. Journal of Cognition and Development, 20(5), 729-751. https://doi.org/10.1080/15248372.2019.1653298
  19. McKenney, S., & Reeves, T. C. (2014). Educational design research. In Spector, J., Merrill, M., Elen, J., Bishop, M. (eds) Handbook of Research on Educational Communications and Technology. Springer. https://doi.org/10.1007/978-1-4614-3185-5_11
  20. Mensah, J. Y. & Nabie, M. J. (2021). The effect of PowerPoint instruction on high school students’ achievement and motivation to learn geometry. International Journal of Technology in Education (IJTE), 4(3), 331-350. https://doi.org/10.46328/ijte.55
  21. Meryansumayeka, Zulkardi, Putri, R. I. I., & Hiltrimartin, C. (2022). Designing geometrical learning activities assisted with ICT media for supporting students’ higher order thinking skills. Journal on Mathematics Education, 13(1), 135–148. https://doi.org/10.22342/jme.v13i1.pp135-148
  22. Nagy-Kondor, R., & Esmailnia, S. (2021). Polyhedrons vs. curved surfaces with mental cutting: Impact of spatial ability. Acta Polytechnica Hungarica, 18(6), 71-83. http://dx.doi.org/10.12700/APH.18.6.2021.6.4
  23. Naidoo, J., & Kapofu, W. (2020). Exploring female learners’ perceptions of learning geometry in mathematics. South African Journal of Education, 40(1), 1-11. https://hdl.handle.net/10520/EJC-1c03576684
  24. Nailurrohmah, A., & Murdiyani, N. M. (2022). Developing realistic mathematics education learning set in polyhedron subject to improve mathematical concepts understanding skills. AIP Conference Proceedings, 2575(1), 050009. https://doi.org/10.1063/5.0107950
  25. Nursyahidah, F., & Albab, I. U. (2021). Learning design on surface area and volume of cylinder using Indonesian ethno-mathematics of traditional cookie maker assisted by GeoGebra. Mathematics Teaching Research Journal, 13(4), 79-98. https://files.eric.ed.gov/fulltext/EJ1332350.pdf
  26. Plomp, T. & Nieveen, N. (2013). Educational Design Research. SLO. https://www.fi.uu.nl/publicaties/literatuur/educational-design-research-part-a.pdf
  27. Prahmana, R. C. I., & D'Ambrosio, U. (2020). Learning geometry and values from patterns: Ethnomathematics on the batik patterns of Yogyakarta, Indonesia. Journal on Mathematics Education, 11(3), 439-456. https://doi.org/10.22342/jme.11.3.12949.439-456
  28. Prahmana, R. C. I., Sagita, L., Hidayat, W., & Utami, N. W. (2020). Two decades of realistic mathematics education research in Indonesia: A survey. Infinity Journal, 9(2), 223-246. https://doi.org/10.22460/infinity.v9i2.p223-246
  29. Quiroz, S. M. R., Orrego, S. M. L., & López, C. M. J. (2015). Measurement of area and volume in an authentic context: An alternative learning experience through mathematical modelling. In Stillman, G., Blum, W., Salett Biembengut, M. (eds) Mathematical Modelling in Education Research and Practice. International Perspectives on the Teaching and Learning of Mathematical Modelling (pp. 229-240). Springer. https://doi.org/10.1007/978-3-319-18272-8_18
  30. Richit, A., Tomkelski, M. L., & Richit, A. (2021). Understandings of perimeter and area mobilized with an exploratory approach in a lesson study. Acta Scientiae, 23(5), 1-36. https://doi.org/10.17648/acta.scientiae.6226
  31. Risdiyanti, I., Zulkardi, Putri, R. I. I., Prahmana, R. C. I., & Nusantara, D. S. (2024). Ratio and proportion through realistic mathematics education and Pendidikan matematika realistik Indonesia approach: A systematic literature review. Jurnal Elemen, 10(1), 158-180. https://doi.org/10.29408/jel.v10i1.24445
  32. Romero, I., Rodríguez-Martínez, J. A., & Rodríguez, J. L. (2023). Optimizing the surface of orthohedra with virtual reality in primary school. Eurasia Journal of Mathematics, Science and Technology Education, 19(9), em2325. https://doi.org/10.29333/ejmste/13508
  33. Sagita, L., Setiyani, & Sumiarsih. (2021). Designing teaching materials based on process skills approach to mathematical representation ability in polyhedron. Journal of Physics: Conference Series, 1957(1), 012015. http://doi.org/10.1088/1742-6596/1957/1/012015
  34. Sarkar, P., Kadam, K., & Pillai, J. S. (2020). Learners' approaches, motivation and patterns of problem-solving on lines and angles in geometry using augmented reality. Smart Learning Environments, 7, 1-23. https://doi.org/10.1186/s40561-020-00124-9
  35. Schwarz, B. B., Swidan, O., Prusak, N., & Palatnik, A. (2021). Collaborative learning in mathematics classrooms: Can teachers understand progress of concurrent collaborating groups?. Computers & Education, 165, 104151. https://doi.org/10.1016/j.compedu.2021.104151
  36. Seah, R. T. K., & Horne, M. (2020). The influence of spatial reasoning on analysing about measurement situations. Mathematics Education Research Journal, 32, 365-386. https://doi.org/10.1007/s13394-020-00327-w
  37. Sitorus, J., & Masrayati. (2016). Students’ creative thinking process stages: Implementation of realistic mathematics education. Thinking Skills and Creativity, 22, 111-120. https://doi.org/10.1016/j.tsc.2016.09.007
  38. Smith III, J. P., Males, L. M., & Gonulates, F. (2016). Conceptual limitations in curricular presentations of area measurement: One nation’s challenges. Mathematical Thinking and Learning, 18(4), 239-270. https://doi.org/10.1080/10986065.2016.1219930
  39. Sukasno, Zulkardi, Putri, R. I. I., & Somakim. (2024). Students’ cognitive processes in understanding fractions through the tourist context. Jurnal Pendidikan Matematika, 18(1), 27–38. https://doi.org/10.22342/jpm.v18i1.pp27-38
  40. Sukestiyarno, Y. L., Nugroho, K. U. Z., Sugiman, & Waluya, B. (2023). Learning trajectory of non-Euclidean geometry through ethnomathematics learning approaches to improve spatial ability. Eurasia Journal of Mathematics, Science and Technology Education, 19(6), em2285. https://doi.org/10.29333/ejmste/13269
  41. Sukirwan, Darhim, Herman, T., & Prahmana, R. C. I. (2018). The students’ mathematical argumentation in geometry. Journal of Physics: Conference Series, 943(1), 012026. https://doi.org/10.1088/1742-6596/943/1/012026
  42. Taylor, A., & Jones, G. (2009). Proportional reasoning ability and concepts of scale: Surface area to volume relationships in science. International Journal of Science Education, 31(9), 1231-1247. https://doi.org/10.1080/09500690802017545
  43. Toheri, Winarso, W., & Haqq, A. A. (2020). Where exactly for enhance critical and creative thinking: The use of problem posing or contextual learning. European Journal of Educational Research, 9(2), 877-887. https://doi.org/10.12973/eu-jer.9.2.877
  44. Van den Heuvel-Panhuizen, M., & Drijvers, P. (2020). Realistic Mathematics Education. In Lerman, S. (eds) Encyclopedia of Mathematics Education. Springer. https://doi.org/10.1007/978-3-030-15789-0_170
  45. Velten, K., Schmidt, D. M., & Kahlen, K. (2024). Mathematical modeling and simulation: Introduction for scientists and engineers. John Wiley & Sons.
  46. Widodo, S. A., Prahmana, R. C. I., Purnami, A. S., & Turmudi. (2018). Teaching materials of algebraic equation. Journal of Physics: Conference Series, 943(1), 012017. https://doi.org/10.1088/1742-6596/943/1/012017
  47. Woodward, J., Beckmann, S., Driscoll, M., Franke, M., Herzig, P., Jitendra, A., ... & Ogbuehi, P. (2012). Improving Mathematical Problem Solving in Grades 4 through 8. IES Practice Guide. NCEE 2012-4055. What Works Clearinghouse. https://files.eric.ed.gov/fulltext/ED532215.pdf
  48. Zulkardi, & Putri, R. I. I. (2019). New School Mathematics Curricula, PISA and PMRI in Indonesia. In Vistro-Yu, C., Toh, T. (eds) School Mathematics Curricula. Mathematics Education – An Asian Perspective. Springer. https://doi.org/10.1007/978-981-13-6312-2_3
  49. Zulkardi, Putri, R. I. I., & Wijaya, A. (2019). Two Decades of Realistic Mathematics Education in Indonesia. Springer International Publishing. https://doi.org/10.1007/978-3-030-20223-1_18

Most read articles by the same author(s)

1 2 > >>