Main Article Content

Abstract

Understanding the relationship between cognitive load and brain activity is essential for enhancing learning outcomes, particularly in complex subjects such as calculus. Despite its significance, empirical research examining the manifestation of cognitive load in brain activity patterns remains sparse, indicating a notable gap in the literature. This study aims to investigate the correlation between brain activity and cognitive load in a cohort of 30 mathematics education students enrolled in a calculus course, utilizing electroencephalogram (EEG) recordings. A quantitative descriptive research design was employed, integrating cluster analysis and data visualization techniques to facilitate an in-depth examination. EEG recordings of theta, alpha, and beta wave activity were collected during calculus sessions, followed by the administration of a cognitive load questionnaire. Descriptive statistics were utilized to analyze the distribution of cognitive load and brain activity, while correlation analysis was conducted to explore the relationships between cognitive load and EEG parameters across the different brainwave bands. The results revealed that higher cognitive load was positively correlated with increased frequency and amplitude in the alpha and beta bands, while a negative correlation was observed with theta frequency. Furthermore, cluster analysis effectively categorized participants based on distinct EEG signal patterns associated with varying levels of cognitive load. These findings offer valuable insights for the development of personalized learning interventions tailored to individual brain activity profiles, providing a foundation for future research on adaptive learning environments.

Keywords

Brain Wave Frequency Calculus Cluster Analysis Cognitive Load Electroencephalogram

Article Details

How to Cite
Oktaviyanthi, R., Agus, R. N., & Khotimah. (2024). Exploring the link between cognitive load and brain activity during calculus learning through electroencephalogram (EEG): Insights from visualization and cluster analysis. Journal on Mathematics Education, 15(4), 1383–1408. https://doi.org/10.22342/jme.v15i4.pp1383-1408

References

  1. Al-Salman, W., Li, Y., Oudah, A. Y., & Almaged, S. (2023). Sleep stage classification in EEG signals using the clustering approach based probability distribution features coupled with classification algorithms. Neuroscience Research, 188, 51–67. https://doi.org/10.1016/J.NEURES.2022.09.009
  2. Alyasseri, Z. A. A., Abasi, A. K., Al-Betar, M. A., Makhadmeh, S. N., Papa, J. P., Abdullah, S., & Khader, A. T. (2021). EEG-Based Person Identification Using Multi-Verse Optimizer as Unsupervised Clustering Techniques. 89–110. https://doi.org/10.1007/978-981-33-4191-3_4
  3. Apicella, A., Arpaia, P., Frosolone, M., Improta, G., Moccaldi, N., & Pollastro, A. (2022). EEG-based measurement system for monitoring student engagement in learning 4.0. Scientific Reports 2022, 12(1), 1–13. https://doi.org/10.1038/s41598-022-09578-y
  4. Armitage, P., Berry, G., & Matthews, J. N. S. (2013). Statistical methods in medical research. John Wiley & Sons.
  5. Atiomo, W. (2020). Emotional Well-Being, Cognitive Load and Academic Attainment. MedEdPublish, 9, 118. https://doi.org/10.15694/MEP.2020.000118.1
  6. Bablani, A., Edla, D. R., Kuppili, V., & Ramesh, D. (2020). A multi stage EEG data classification using k-means and feed forward neural network. Clinical Epidemiology and Global Health, 8(3), 718–724. https://doi.org/10.1016/J.CEGH.2020.01.008
  7. Basharpoor, S., Heidari, F., & Molavi, P. (2021). EEG coherence in theta, alpha, and beta bands in frontal regions and executive functions. Applied Neuropsychology: Adult, 28(3), 310–317. https://doi.org/10.1080/23279095.2019.1632860
  8. Bashir, F., Ali, A., Soomro, T. A., Marouf, M., Bilal, M., & Chowdhry, B. S. (2021). Electroencephalogram (EEG) Signals for Modern Educational Research. Innovative Education Technologies for 21st Century Teaching and Learning, 149–171. https://doi.org/10.1201/9781003143796-10
  9. Bradley, C., Nydam, A. S., Dux, P. E., & Mattingley, J. B. (2022). State-dependent effects of neural stimulation on brain function and cognition. Nature Reviews Neuroscience, 23(8), 459–475. https://doi.org/10.1038/s41583-022-00598-1
  10. Budin, G., Gavrilova, M. L., Shell, D. F., Wang, Y., Fiorini, R. A., Widrow, B., ... & Chan, C. (2016). Cognitive Intelligence: Deep Learning, Thinking, and Reasoning by Brain-Inspired Systems. International Journal of Cognitive Informatics and Natural Intelligence, 10(4), 1-20. https://doi.org/10.4018/IJCINI.2016100101
  11. Cabañero, L., Hervás, R., González, I., Fontecha, J., Mondéjar, T., & Bravo, J. (2020). Characterisation of mobile-device tasks by their associated cognitive load through EEG data processing. Future Generation Computer Systems, 113, 380–390. https://doi.org/10.1016/J.FUTURE.2020.07.013
  12. Cezar, B. G. da S., & Maçada, A. C. G. (2023). Cognitive Overload, Anxiety, Cognitive Fatigue, Avoidance Behavior and Data Literacy in Big Data environments. Information Processing & Management, 60(6), 103482. https://doi.org/10.1016/J.IPM.2023.103482
  13. Chen, O., Paas, F., & Sweller, J. (2023). A Cognitive Load Theory Approach to Defining and Measuring Task Complexity Through Element Interactivity. Educational Psychology Review, 35(2), 1–18. https://doi.org/10.1007/S10648-023-09782-W/FIGURES/3
  14. Cheng, B., Fan, C., Fu, H., Huang, J., Chen, H., & Luo, X. (2022). Measuring and Computing Cognitive Statuses of Construction Workers Based on Electroencephalogram: A Critical Review. IEEE Transactions on Computational Social Systems, 9(6), 1644–1659. https://doi.org/10.1109/TCSS.2022.3158585
  15. Chew, S. L., & Cerbin, W. J. (2021). The cognitive challenges of effective teaching. The Journal of Economic Education, 52(1), 17–40. https://doi.org/10.1080/00220485.2020.1845266
  16. Chikhi, S., Matton, N., & Blanchet, S. (2022). EEG power spectral measures of cognitive workload: A meta-analysis. Psychophysiology, 59(6), e14009. https://doi.org/10.1111/PSYP.14009
  17. Choubey, H., & Pandey, A. (2021). A combination of statistical parameters for the detection of epilepsy and EEG classification using ANN and KNN classifier. Signal, Image and Video Processing, 15(3), 475–483. https://doi.org/10.1007/S11760-020-01767-4/METRICS
  18. Christodoulides, P., Miltiadous, A., Tzimourta, K. D., Peschos, D., Ntritsos, G., Zakopoulou, V., Giannakeas, N., Astrakas, L. G., Tsipouras, M. G., Tsamis, K. I., Glavas, E., & Tzallas, A. T. (2022). Classification of EEG signals from young adults with dyslexia combining a Brain Computer Interface device and an Interactive Linguistic Software Tool. Biomedical Signal Processing and Control, 76, 103646. https://doi.org/10.1016/J.BSPC.2022.103646
  19. Curham, K. J., & Allen, J. J. B. (2022). Logic Behind EEG Frequency Analysis: Basic Electricity and Assumptions. The Oxford Handbook of EEG Frequency, 15. https://global.oup.com/academic/product/the-oxford-handbook-of-eeg-frequency-9780192898340
  20. da Silva, F. L. (2022). EEG: Origin and Measurement. EEG-FMRI: Physiological Basis, Technique, and Applications, Second Edition, 23–48. https://doi.org/10.1007/978-3-031-07121-8_2
  21. Dalmaijer, E. S., Nord, C. L., & Astle, D. E. (2022). Statistical power for cluster analysis. BMC Bioinformatics, 23(1), 1–28. https://doi.org/10.1186/S12859-022-04675-1/TABLES/5
  22. Das Chakladar, D., & Roy, P. P. (2023). Cognitive workload estimation using physiological measures: a review. Cognitive Neurodynamics, 18(4), 1445–1465. https://doi.org/10.1007/S11571-023-10051-3/METRICS
  23. Demšar, U., Harris, P., Brunsdon, C., Fotheringham, A. S., & McLoone, S. (2013). Principal Component Analysis on Spatial Data: An Overview. Annals of the Association of American Geographers, 103(1), 106–128. https://doi.org/10.1080/00045608.2012.689236
  24. Denis, D. J. (2020). Univariate, bivariate, and multivariate statistics using R: Quantitative tools for data analysis and data science. Univariate, Bivariate, and Multivariate Statistics Using R: Quantitative Tools for Data Analysis and Data Science, 1–366. https://doi.org/10.1002/9781119549963
  25. Devi, D., Sophia, S., & Boselin Prabhu, S. R. (2021). Deep learning-based cognitive state prediction analysis using brain wave signal. Cognitive Computing for Human-Robot Interaction: Principles and Practices, 69–84. https://doi.org/10.1016/B978-0-323-85769-7.00017-3
  26. Donohoe, D., & Costello, E. (2020). Data visualisation literacy in higher education: An exploratory study of understanding of a learning dashboard tool. International Journal of Emerging Technologies in Learning (iJET), 15(17), 115-126. https://doi.org/10.3991/ijet.v15i17.15041
  27. Dos Anjos, T., Di Rienzo, F., Benoit, C. E., Daligault, S., & Guillot, A. (2024). Brain wave modulation and EEG power changes during auditory beats stimulation. Neuroscience, 554, 156–166. https://doi.org/10.1016/J.NEUROSCIENCE.2024.07.014
  28. Emami, Z., & Chau, T. (2020). The effects of visual distractors on cognitive load in a motor imagery brain-computer interface. Behavioural Brain Research, 378, 112240. https://doi.org/10.1016/J.BBR.2019.112240
  29. Feldmann, L. K., Lofredi, R., Neumann, W. J., Al-Fatly, B., Roediger, J., Bahners, B. H., Nikolov, P., Denison, T., Saryyeva, A., Krauss, J. K., Faust, K., Florin, E., Schnitzler, A., Schneider, G. H., & Kühn, A. A. (2022). Toward therapeutic electrophysiology: beta-band suppression as a biomarker in chronic local field potential recordings. Npj Parkinson’s Disease, 8(1), 1–9. https://doi.org/10.1038/s41531-022-00301-2
  30. Fernandez, N. F., Gundersen, G. W., Rahman, A., Grimes, M. L., Rikova, K., Hornbeck, P., & Maayan, A. (2017). Clustergrammer, a web-based heatmap visualization and analysis tool for high-dimensional biological data. Scientific Data, 4(1), 1–12. https://doi.org/10.1038/sdata.2017.151
  31. Finley, A. J., Angus, D. J., van Reekum, C. M., Davidson, R. J., & Schaefer, S. M. (2024). Correction to “Periodic and aperiodic contributions to theta-beta ratios across adulthood.” Psychophysiology, 61(7), e14555. https://doi.org/10.1111/PSYP.14555
  32. Finn, E. S., Glerean, E., Khojandi, A. Y., Nielson, D., Molfese, P. J., Handwerker, D. A., & Bandettini, P. A. (2020). Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging. NeuroImage, 215, 116828. https://doi.org/10.1016/J.NEUROIMAGE.2020.116828
  33. Forbes, O., Schwenn, P. E., Wu, P. P. Y., Santos-Fernandez, E., Xie, H. B., Lagopoulos, J., McLoughlin, L. T., Sacks, D. D., Mengersen, K., & Hermens, D. F. (2022). EEG-based clusters differentiate psychological distress, sleep quality and cognitive function in adolescents. Biological Psychology, 173, 108403. https://doi.org/10.1016/J.BIOPSYCHO.2022.108403
  34. Fu, B., Li, F., Niu, Y., Wu, H., Li, Y., & Shi, G. (2021). Conditional generative adversarial network for EEG-based emotion fine-grained estimation and visualization. Journal of Visual Communication and Image Representation, 74, 102982. https://doi.org/10.1016/J.JVCIR.2020.102982
  35. Fuentes-Martinez, V. J., Romero, S., Lopez-Gordo, M. A., Minguillon, J., & Rodríguez-Álvarez, M. (2023). Low-Cost EEG Multi-Subject Recording Platform for the Assessment of Students’ Attention and the Estimation of Academic Performance in Secondary School. Sensors, 23(23), 9361. https://doi.org/10.3390/S23239361
  36. Gao, X., Huang, W., Liu, Y., Zhang, Y., Zhang, J., Li, C., Chelangat Bore, J., Wang, Z., Si, Y., Tian, Y., & Li, P. (2023). A novel robust Student’s t-based Granger causality for EEG based brain network analysis. Biomedical Signal Processing and Control, 80, 104321. https://doi.org/10.1016/J.BSPC.2022.104321
  37. Gao, Z., Dang, W., Wang, X., Hong, X., Hou, L., Ma, K., & Perc, M. (2020). Complex networks and deep learning for EEG signal analysis. Cognitive Neurodynamics, 15(3), 369–388. https://doi.org/10.1007/S11571-020-09626-1
  38. Gashaj, V., Trninić, D., Formaz, C., Tobler, S., Gómez Cañón, J. S., Poikonen, H., & Kapur, M. (2024). Bridging cognitive neuroscience and education: Insights from EEG recording during mathematical proof evaluation. Trends in Neuroscience and Education, 35, 100226. https://doi.org/10.1016/J.TINE.2024.100226
  39. Gewers, F. L., Ferreira, G. R., De Arruda, H. F., Silva, F. N., Comin, C. H., Amancio, D. R., & Costa, L. D. F. (2021). Principal component analysis: A natural approach to data exploration. ACM Computing Surveys, 54(4), 1-34. https://doi.org/10.1145/3447755/SUPPL_FILE/GEWERS.ZIP
  40. Gnambs, T. (2023). A Brief Note on the Standard Error of the Pearson Correlation. Collabra: Psychology, 9(1), 1-8. https://doi.org/10.1525/collabra.87615
  41. González-Hernández, H. G., Medina-Pozos, J. M., Cantú-González, V., Amozurrutia-Elizalde, A., Flores-Amado, A., & Mora-Salinas, R. J. (2021). Looking for experimental evidence of critical thinking through EEG. International Journal on Interactive Design and Manufacturing, 15(2–3), 333–351. https://doi.org/10.1007/S12008-021-00761-5/METRICS
  42. Grekousis, G. (2020). Spatial Analysis Methods and Practice: Describe-Explore-Explain through GIS. Spatial Analysis Methods and Practice: Describe-Explore-Explain through GIS, 1–518. https://doi.org/10.1017/9781108614528
  43. Gu, Z. (2022). Complex heatmap visualization. IMeta, 1(3), e43. https://doi.org/10.1002/IMT2.43
  44. Hadd, A., & Rodgers, J. L. (2020). Understanding correlation matrices. Sage Publications.
  45. Hassan, I., Zolezzi, M., Khalil, H., Mohmood, R., Pedersen, S., & Chowdhury, M. E. H. (2024). Cognitive load estimation using a hybrid cluster-based unsupervised machine learning technique. IEEE Access, 12, 118785-118801. https://doi.org/10.1109/ACCESS.2024.3428691
  46. Hernández-Mustieles, M. A., Lima-Carmona, Y. E., Pacheco-Ramírez, M. A., Mendoza-Armenta, A. A., Romero-Gómez, J. E., Cruz-Gómez, C. F., ... & Lozoya-Santos, J. D. J. (2024). Wearable Biosensor Technology in Education: A Systematic Review. Sensors, 24(8), 2437. https://doi.org/10.3390/S24082437
  47. Horwitz, B., Friston, K. J., & Taylor, J. G. (2000). Neural modeling and functional brain imaging: An overview. Neural Networks, 13(8–9), 829–846. https://doi.org/10.1016/S0893-6080(00)00062-9
  48. Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. https://doi.org/10.1016/J.INS.2022.11.139
  49. Ismail, L. E., & Karwowski, W. (2020). Applications of EEG indices for the quantification of human cognitive performance: A systematic review and bibliometric analysis. PLOS ONE, 15(12), e0242857. https://doi.org/10.1371/JOURNAL.PONE.0242857
  50. Kalantari, S., Rounds, J. D., Kan, J., Tripathi, V., & Cruz-Garza, J. G. (2021). Comparing physiological responses during cognitive tests in virtual environments vs. in identical real-world environments. Scientific Reports, 11(1), 1–14. https://doi.org/10.1038/s41598-021-89297-y
  51. Kästle, J. L., Anvari, B., Krol, J., & Wurdemann, H. A. (2021). Correlation between Situational Awareness and EEG signals. Neurocomputing, 432, 70–79. https://doi.org/10.1016/J.NEUCOM.2020.12.026
  52. Ke, J., Liao, P., Li, J., & Luo, X. (2023). Effect of information load and cognitive style on cognitive load of visualized dashboards for construction-related activities. Automation in Construction, 154, 105029. https://doi.org/10.1016/J.AUTCON.2023.105029
  53. Khosla, A., Khandnor, P., & Chand, T. (2020). A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybernetics and Biomedical Engineering, 40(2), 649–690. https://doi.org/10.1016/J.BBE.2020.02.002
  54. Kramer, A. F. (2020). Physiological metrics of mental workload: A review of recent progress. Multiple-Task Performance, 279–328. https://doi.org/10.1201/9781003069447-14
  55. Kunze, T., Hunold, A., Haueisen, J., Jirsa, V., & Spiegler, A. (2016). Transcranial direct current stimulation changes resting state functional connectivity: A large-scale brain network modeling study. NeuroImage, 140, 174–187. https://doi.org/10.1016/J.NEUROIMAGE.2016.02.015
  56. Lapomarda, G., Valer, S., Job, R., & Grecucci, A. (2022). Built to last: Theta and delta changes in resting-state EEG activity after regulating emotions. Brain and Behavior, 12(6), e2597. https://doi.org/10.1002/BRB3.2597
  57. Liu, Y., Yu, Y., Ye, Z., Li, M., Zhang, Y., Zhou, Z., Hu, D., & Zeng, L. L. (2023). Fusion of Spatial, Temporal, and Spectral EEG Signatures Improves Multilevel Cognitive Load Prediction. IEEE Transactions on Human-Machine Systems, 53(2), 357–366. https://doi.org/10.1109/THMS.2023.3235003
  58. Magnotti, J. F., Wang, Z., & Beauchamp, M. S. (2020). RAVE: Comprehensive open-source software for reproducible analysis and visualization of intracranial EEG data. NeuroImage, 223, 117341. https://doi.org/10.1016/J.NEUROIMAGE.2020.117341
  59. Makowski, D., Ben-Shachar, M. S., Patil, I., & Lüdecke, D. (2020). Methods and Algorithms for Correlation Analysis in R. https://doi.org/10.21105/joss.02306
  60. Mangaroska, K., Sharma, K., Gašević, D., & Giannakos, M. (2022). Exploring students’ cognitive and affective states during problem solving through multimodal data: Lessons learned from a programming activity. Journal of Computer Assisted Learning, 38(1), 40–59. https://doi.org/10.1111/JCAL.12590
  61. Mendoza-Armenta, A. A., Blanco-Téllez, P., García-Alcántar, A. G., Ceballos-González, I., Hernández-Mustieles, M. A., Ramírez-Mendoza, R. A., Lozoya-Santos, J. de J., & Ramírez-Moreno, M. A. (2024). Implementation of a Real-Time Brain-to-Brain Synchrony Estimation Algorithm for Neuroeducation Applications. Sensors, 24(6), 1776. https://doi.org/10.3390/S24061776
  62. Morales, S., & Bowers, M. E. (2022). Time-frequency analysis methods and their application in developmental EEG data. Developmental Cognitive Neuroscience, 54, 101067. https://doi.org/10.1016/J.DCN.2022.101067
  63. Moscarelli, M. (2023). Correlation. In: Biostatistics With 'R': A Guide for Medical Doctors. Springer, Cham. https://doi.org/10.1007/978-3-031-33073-5_7
  64. Niso, G., Romero, E., Moreau, J. T., Araujo, A., & Krol, L. R. (2023). Wireless EEG: A survey of systems and studies. NeuroImage, 269, 119774. https://doi.org/10.1016/J.NEUROIMAGE.2022.119774
  65. Oktaviyanthi, R., Agus, R. N., Garcia, M. L. B., & Lertdechapat, K. (2024). Cognitive load scale in learning formal definition of limit: A rasch model approach. Infinity Journal, 13(1), 99–118. https://doi.org/10.22460/INFINITY.V13I1.P99-118
  66. Pei, Y., Yang, J., Boubchir, L., Yoo, G., Kim, H., & Hong, S. (2023). Prediction of Cognitive Load from Electroencephalography Signals Using Long Short-Term Memory Network. Bioengineering, 10(3), 361. https://doi.org/10.3390/BIOENGINEERING10030361
  67. Pereira, T. D., Shaevitz, J. W., & Murthy, M. (2020). Quantifying behavior to understand the brain. Nature Neuroscience, 23(12), 1537–1549. https://doi.org/10.1038/s41593-020-00734-z
  68. Qin, T., Fias, W., Van de Weghe, N., & Huang, H. (2024). Recognition of map activities using eye tracking and EEG data. International Journal of Geographical Information Science, 38(3), 550-576. https://doi.org/10.1080/13658816.2024.2309188
  69. Qu, X., Liukasemsarn, S., Tu, J., Higgins, A., Hickey, T. J., & Hall, M. H. (2020). Identifying Clinically and Functionally Distinct Groups Among Healthy Controls and First Episode Psychosis Patients by Clustering on EEG Patterns. Frontiers in Psychiatry, 11, 541659. https://doi.org/10.3389/FPSYT.2020.541659/BIBTEX
  70. Rahman, M. A., Hossain, M. F., Hossain, M., & Ahmmed, R. (2020). Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal. Egyptian Informatics Journal, 21(1), 23–35. https://doi.org/10.1016/J.EIJ.2019.10.002
  71. Ramírez-Moreno, M. A., Díaz-Padilla, M., Valenzuela-Gómez, K. D., Vargas-Martínez, A., Tudón-Martínez, J. C., Morales-Menendez, R., Ramírez-Mendoza, R. A., Pérez-Henríquez, B. L., & Lozoya-Santos, J. de J. (2021). Eeg-based tool for prediction of university students’ cognitive performance in the classroom. Brain Sciences, 11(6), 698. https://doi.org/10.3390/BRAINSCI11060698/S1
  72. Sachdeva, S., & Eggen, P.-O. (2021). Learners’ Critical Thinking About Learning Mathematics. International Electronic Journal of Mathematics Education, 16(3), em0644. https://doi.org/10.29333/IEJME/11003
  73. Skulmowski, A., & Xu, K. M. (2021). Understanding Cognitive Load in Digital and Online Learning: a New Perspective on Extraneous Cognitive Load. Educational Psychology Review, 34(1), 171–196. https://doi.org/10.1007/S10648-021-09624-7
  74. Souza, R. H. C. e., & Naves, E. L. M. (2021). Attention Detection in Virtual Environments Using EEG Signals: A Scoping Review. Frontiers in Physiology, 12, 727840. https://doi.org/10.3389/FPHYS.2021.727840/BIBTEX
  75. Srinivasa, K. G., Kurni, M., & Saritha, K. (2022). Adaptive Teaching/Learning. 201–240. https://doi.org/10.1007/978-981-19-6734-4_9
  76. Šverko, Z., Vrankić, M., Vlahinić, S., & Rogelj, P. (2022). Complex Pearson Correlation Coefficient for EEG Connectivity Analysis. Sensors, 22(4), 1477. https://doi.org/10.3390/S22041477
  77. Sweller, J. (2011). Cognitive Load Theory. Psychology of Learning and Motivation - Advances in Research and Theory, 55, 37–76. https://doi.org/10.1016/B978-0-12-387691-1.00002-8
  78. Sweller, J. (2020). Cognitive load theory and educational technology. Educational Technology Research and Development, 68(1), 1–16. https://link.springer.com/article/10.1007/s11423-019-09701-3
  79. Tan, E., Troller-Renfree, S. V., Morales, S., Buzzell, G. A., McSweeney, M., Antúnez, M., & Fox, N. A. (2024). Theta activity and cognitive functioning: Integrating evidence from resting-state and task-related developmental electroencephalography (EEG) research. Developmental Cognitive Neuroscience, 67, 101404. https://doi.org/10.1016/J.DCN.2024.101404
  80. Tang, H., Dai, M., Du, X., Hung, J. L., & Li, H. (2024). An EEG study on college students’ attention levels in a blended computer science class. Innovations in Education and Teaching International, 61(4), 789–801. https://doi.org/10.1080/14703297.2023.2166562
  81. Tetzlaff, L., Schmiedek, F., & Brod, G. (2021). Developing Personalized Education: A Dynamic Framework. Educational Psychology Review, 33(3), 863–882. https://doi.org/10.1007/S10648-020-09570-W/FIGURES/3
  82. Trinidad, J. E. (2020). Understanding student-centred learning in higher education: students’ and teachers’ perceptions, challenges, and cognitive gaps. Journal of Further and Higher Education, 44(8), 1013–1023. https://doi.org/10.1080/0309877X.2019.1636214
  83. Wang, C. C., Cheng, P. K. H., & Wang, T. H. (2022). Measurement of Extraneous and Germane Cognitive Load in the Mathematics Addition Task: An Event-Related Potential Study. Brain Sciences 2022, Vol. 12, Page 1036, 12(8), 1036. https://doi.org/10.3390/BRAINSCI12081036
  84. Wang, G., Tian, L., Liu, J., Nie, S., & Yu, S. (2024). Neural mechanisms of cognitive load in Multimedia Learning: a Meta-analysis of EEG frequency Band Modulation. Current Psychology 2024, 1–17. https://doi.org/10.1007/S12144-024-06577-2
  85. Wang, M., Hu, J., & Abbass, H. A. (2020). BrainPrint: EEG biometric identification based on analyzing brain connectivity graphs. Pattern Recognition, 105, 107381. https://doi.org/10.1016/J.PATCOG.2020.107381
  86. Wen, T. Y., & Aris, S. A. M. (2022). Hybrid Approach of EEG Stress Level Classification Using K-Means Clustering and Support Vector Machine. IEEE Access, 10, 18370–18379. https://doi.org/10.1109/ACCESS.2022.3148380
  87. Wirth, J., Stebner, F., Trypke, M., Schuster, C., & Leutner, D. (2020). An Interactive Layers Model of Self-Regulated Learning and Cognitive Load. Educational Psychology Review, 32(4), 1127–1149. https://doi.org/10.1007/S10648-020-09568-4/FIGURES/5
  88. Xiong, R., Kong, F., Yang, X., Liu, G., & Wen, W. (2020). Pattern Recognition of Cognitive Load Using EEG and ECG Signals. Sensors, 20(18), 5122. https://doi.org/10.3390/S20185122
  89. Xu, K. M., Koorn, P., de Koning, B., Skuballa, I. T., Lin, L., Henderikx, M., Marsh, H. W., Sweller, J., & Paas, F. (2021). A Growth Mindset Lowers Perceived Cognitive Load and Improves Learning: Integrating Motivation to Cognitive Load. Journal of Educational Psychology, 113(6), 1177–1191. https://doi.org/10.1037/EDU0000631
  90. Zanetti, R., Arza, A., Aminifar, A., & Atienza, D. (2022). Real-Time EEG-Based Cognitive Workload Monitoring on Wearable Devices. IEEE Transactions on Biomedical Engineering, 69(1), 265–277. https://doi.org/10.1109/TBME.2021.3092206
  91. Zhang, Y., Zhou, T., Wu, W., Xie, H., Zhu, H., Zhou, G., & Cichocki, A. (2022). Improving EEG Decoding via Clustering-Based Multitask Feature Learning. IEEE Transactions on Neural Networks and Learning Systems, 33(8), 3587–3597. https://doi.org/10.1109/TNNLS.2021.3053576
  92. Zhou, Y., Huang, S., Xu, Z., Wang, P., Wu, X., & Zhang, D. (2022). Cognitive Workload Recognition Using EEG Signals and Machine Learning: A Review. IEEE Transactions on Cognitive and Developmental Systems, 14(3), 799–818. https://doi.org/10.1109/TCDS.2021.3090217