Main Article Content
Abstract
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Al-Salman, W., Li, Y., Oudah, A. Y., & Almaged, S. (2023). Sleep stage classification in EEG signals using the clustering approach based probability distribution features coupled with classification algorithms. Neuroscience Research, 188, 51–67. https://doi.org/10.1016/J.NEURES.2022.09.009
- Alyasseri, Z. A. A., Abasi, A. K., Al-Betar, M. A., Makhadmeh, S. N., Papa, J. P., Abdullah, S., & Khader, A. T. (2021). EEG-Based Person Identification Using Multi-Verse Optimizer as Unsupervised Clustering Techniques. 89–110. https://doi.org/10.1007/978-981-33-4191-3_4
- Apicella, A., Arpaia, P., Frosolone, M., Improta, G., Moccaldi, N., & Pollastro, A. (2022). EEG-based measurement system for monitoring student engagement in learning 4.0. Scientific Reports 2022, 12(1), 1–13. https://doi.org/10.1038/s41598-022-09578-y
- Armitage, P., Berry, G., & Matthews, J. N. S. (2013). Statistical methods in medical research. John Wiley & Sons.
- Atiomo, W. (2020). Emotional Well-Being, Cognitive Load and Academic Attainment. MedEdPublish, 9, 118. https://doi.org/10.15694/MEP.2020.000118.1
- Bablani, A., Edla, D. R., Kuppili, V., & Ramesh, D. (2020). A multi stage EEG data classification using k-means and feed forward neural network. Clinical Epidemiology and Global Health, 8(3), 718–724. https://doi.org/10.1016/J.CEGH.2020.01.008
- Basharpoor, S., Heidari, F., & Molavi, P. (2021). EEG coherence in theta, alpha, and beta bands in frontal regions and executive functions. Applied Neuropsychology: Adult, 28(3), 310–317. https://doi.org/10.1080/23279095.2019.1632860
- Bashir, F., Ali, A., Soomro, T. A., Marouf, M., Bilal, M., & Chowdhry, B. S. (2021). Electroencephalogram (EEG) Signals for Modern Educational Research. Innovative Education Technologies for 21st Century Teaching and Learning, 149–171. https://doi.org/10.1201/9781003143796-10
- Bradley, C., Nydam, A. S., Dux, P. E., & Mattingley, J. B. (2022). State-dependent effects of neural stimulation on brain function and cognition. Nature Reviews Neuroscience, 23(8), 459–475. https://doi.org/10.1038/s41583-022-00598-1
- Budin, G., Gavrilova, M. L., Shell, D. F., Wang, Y., Fiorini, R. A., Widrow, B., ... & Chan, C. (2016). Cognitive Intelligence: Deep Learning, Thinking, and Reasoning by Brain-Inspired Systems. International Journal of Cognitive Informatics and Natural Intelligence, 10(4), 1-20. https://doi.org/10.4018/IJCINI.2016100101
- Cabañero, L., Hervás, R., González, I., Fontecha, J., Mondéjar, T., & Bravo, J. (2020). Characterisation of mobile-device tasks by their associated cognitive load through EEG data processing. Future Generation Computer Systems, 113, 380–390. https://doi.org/10.1016/J.FUTURE.2020.07.013
- Cezar, B. G. da S., & Maçada, A. C. G. (2023). Cognitive Overload, Anxiety, Cognitive Fatigue, Avoidance Behavior and Data Literacy in Big Data environments. Information Processing & Management, 60(6), 103482. https://doi.org/10.1016/J.IPM.2023.103482
- Chen, O., Paas, F., & Sweller, J. (2023). A Cognitive Load Theory Approach to Defining and Measuring Task Complexity Through Element Interactivity. Educational Psychology Review, 35(2), 1–18. https://doi.org/10.1007/S10648-023-09782-W/FIGURES/3
- Cheng, B., Fan, C., Fu, H., Huang, J., Chen, H., & Luo, X. (2022). Measuring and Computing Cognitive Statuses of Construction Workers Based on Electroencephalogram: A Critical Review. IEEE Transactions on Computational Social Systems, 9(6), 1644–1659. https://doi.org/10.1109/TCSS.2022.3158585
- Chew, S. L., & Cerbin, W. J. (2021). The cognitive challenges of effective teaching. The Journal of Economic Education, 52(1), 17–40. https://doi.org/10.1080/00220485.2020.1845266
- Chikhi, S., Matton, N., & Blanchet, S. (2022). EEG power spectral measures of cognitive workload: A meta-analysis. Psychophysiology, 59(6), e14009. https://doi.org/10.1111/PSYP.14009
- Choubey, H., & Pandey, A. (2021). A combination of statistical parameters for the detection of epilepsy and EEG classification using ANN and KNN classifier. Signal, Image and Video Processing, 15(3), 475–483. https://doi.org/10.1007/S11760-020-01767-4/METRICS
- Christodoulides, P., Miltiadous, A., Tzimourta, K. D., Peschos, D., Ntritsos, G., Zakopoulou, V., Giannakeas, N., Astrakas, L. G., Tsipouras, M. G., Tsamis, K. I., Glavas, E., & Tzallas, A. T. (2022). Classification of EEG signals from young adults with dyslexia combining a Brain Computer Interface device and an Interactive Linguistic Software Tool. Biomedical Signal Processing and Control, 76, 103646. https://doi.org/10.1016/J.BSPC.2022.103646
- Curham, K. J., & Allen, J. J. B. (2022). Logic Behind EEG Frequency Analysis: Basic Electricity and Assumptions. The Oxford Handbook of EEG Frequency, 15. https://global.oup.com/academic/product/the-oxford-handbook-of-eeg-frequency-9780192898340
- da Silva, F. L. (2022). EEG: Origin and Measurement. EEG-FMRI: Physiological Basis, Technique, and Applications, Second Edition, 23–48. https://doi.org/10.1007/978-3-031-07121-8_2
- Dalmaijer, E. S., Nord, C. L., & Astle, D. E. (2022). Statistical power for cluster analysis. BMC Bioinformatics, 23(1), 1–28. https://doi.org/10.1186/S12859-022-04675-1/TABLES/5
- Das Chakladar, D., & Roy, P. P. (2023). Cognitive workload estimation using physiological measures: a review. Cognitive Neurodynamics, 18(4), 1445–1465. https://doi.org/10.1007/S11571-023-10051-3/METRICS
- Demšar, U., Harris, P., Brunsdon, C., Fotheringham, A. S., & McLoone, S. (2013). Principal Component Analysis on Spatial Data: An Overview. Annals of the Association of American Geographers, 103(1), 106–128. https://doi.org/10.1080/00045608.2012.689236
- Denis, D. J. (2020). Univariate, bivariate, and multivariate statistics using R: Quantitative tools for data analysis and data science. Univariate, Bivariate, and Multivariate Statistics Using R: Quantitative Tools for Data Analysis and Data Science, 1–366. https://doi.org/10.1002/9781119549963
- Devi, D., Sophia, S., & Boselin Prabhu, S. R. (2021). Deep learning-based cognitive state prediction analysis using brain wave signal. Cognitive Computing for Human-Robot Interaction: Principles and Practices, 69–84. https://doi.org/10.1016/B978-0-323-85769-7.00017-3
- Donohoe, D., & Costello, E. (2020). Data visualisation literacy in higher education: An exploratory study of understanding of a learning dashboard tool. International Journal of Emerging Technologies in Learning (iJET), 15(17), 115-126. https://doi.org/10.3991/ijet.v15i17.15041
- Dos Anjos, T., Di Rienzo, F., Benoit, C. E., Daligault, S., & Guillot, A. (2024). Brain wave modulation and EEG power changes during auditory beats stimulation. Neuroscience, 554, 156–166. https://doi.org/10.1016/J.NEUROSCIENCE.2024.07.014
- Emami, Z., & Chau, T. (2020). The effects of visual distractors on cognitive load in a motor imagery brain-computer interface. Behavioural Brain Research, 378, 112240. https://doi.org/10.1016/J.BBR.2019.112240
- Feldmann, L. K., Lofredi, R., Neumann, W. J., Al-Fatly, B., Roediger, J., Bahners, B. H., Nikolov, P., Denison, T., Saryyeva, A., Krauss, J. K., Faust, K., Florin, E., Schnitzler, A., Schneider, G. H., & Kühn, A. A. (2022). Toward therapeutic electrophysiology: beta-band suppression as a biomarker in chronic local field potential recordings. Npj Parkinson’s Disease, 8(1), 1–9. https://doi.org/10.1038/s41531-022-00301-2
- Fernandez, N. F., Gundersen, G. W., Rahman, A., Grimes, M. L., Rikova, K., Hornbeck, P., & Maayan, A. (2017). Clustergrammer, a web-based heatmap visualization and analysis tool for high-dimensional biological data. Scientific Data, 4(1), 1–12. https://doi.org/10.1038/sdata.2017.151
- Finley, A. J., Angus, D. J., van Reekum, C. M., Davidson, R. J., & Schaefer, S. M. (2024). Correction to “Periodic and aperiodic contributions to theta-beta ratios across adulthood.” Psychophysiology, 61(7), e14555. https://doi.org/10.1111/PSYP.14555
- Finn, E. S., Glerean, E., Khojandi, A. Y., Nielson, D., Molfese, P. J., Handwerker, D. A., & Bandettini, P. A. (2020). Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging. NeuroImage, 215, 116828. https://doi.org/10.1016/J.NEUROIMAGE.2020.116828
- Forbes, O., Schwenn, P. E., Wu, P. P. Y., Santos-Fernandez, E., Xie, H. B., Lagopoulos, J., McLoughlin, L. T., Sacks, D. D., Mengersen, K., & Hermens, D. F. (2022). EEG-based clusters differentiate psychological distress, sleep quality and cognitive function in adolescents. Biological Psychology, 173, 108403. https://doi.org/10.1016/J.BIOPSYCHO.2022.108403
- Fu, B., Li, F., Niu, Y., Wu, H., Li, Y., & Shi, G. (2021). Conditional generative adversarial network for EEG-based emotion fine-grained estimation and visualization. Journal of Visual Communication and Image Representation, 74, 102982. https://doi.org/10.1016/J.JVCIR.2020.102982
- Fuentes-Martinez, V. J., Romero, S., Lopez-Gordo, M. A., Minguillon, J., & Rodríguez-Álvarez, M. (2023). Low-Cost EEG Multi-Subject Recording Platform for the Assessment of Students’ Attention and the Estimation of Academic Performance in Secondary School. Sensors, 23(23), 9361. https://doi.org/10.3390/S23239361
- Gao, X., Huang, W., Liu, Y., Zhang, Y., Zhang, J., Li, C., Chelangat Bore, J., Wang, Z., Si, Y., Tian, Y., & Li, P. (2023). A novel robust Student’s t-based Granger causality for EEG based brain network analysis. Biomedical Signal Processing and Control, 80, 104321. https://doi.org/10.1016/J.BSPC.2022.104321
- Gao, Z., Dang, W., Wang, X., Hong, X., Hou, L., Ma, K., & Perc, M. (2020). Complex networks and deep learning for EEG signal analysis. Cognitive Neurodynamics, 15(3), 369–388. https://doi.org/10.1007/S11571-020-09626-1
- Gashaj, V., Trninić, D., Formaz, C., Tobler, S., Gómez Cañón, J. S., Poikonen, H., & Kapur, M. (2024). Bridging cognitive neuroscience and education: Insights from EEG recording during mathematical proof evaluation. Trends in Neuroscience and Education, 35, 100226. https://doi.org/10.1016/J.TINE.2024.100226
- Gewers, F. L., Ferreira, G. R., De Arruda, H. F., Silva, F. N., Comin, C. H., Amancio, D. R., & Costa, L. D. F. (2021). Principal component analysis: A natural approach to data exploration. ACM Computing Surveys, 54(4), 1-34. https://doi.org/10.1145/3447755/SUPPL_FILE/GEWERS.ZIP
- Gnambs, T. (2023). A Brief Note on the Standard Error of the Pearson Correlation. Collabra: Psychology, 9(1), 1-8. https://doi.org/10.1525/collabra.87615
- González-Hernández, H. G., Medina-Pozos, J. M., Cantú-González, V., Amozurrutia-Elizalde, A., Flores-Amado, A., & Mora-Salinas, R. J. (2021). Looking for experimental evidence of critical thinking through EEG. International Journal on Interactive Design and Manufacturing, 15(2–3), 333–351. https://doi.org/10.1007/S12008-021-00761-5/METRICS
- Grekousis, G. (2020). Spatial Analysis Methods and Practice: Describe-Explore-Explain through GIS. Spatial Analysis Methods and Practice: Describe-Explore-Explain through GIS, 1–518. https://doi.org/10.1017/9781108614528
- Gu, Z. (2022). Complex heatmap visualization. IMeta, 1(3), e43. https://doi.org/10.1002/IMT2.43
- Hadd, A., & Rodgers, J. L. (2020). Understanding correlation matrices. Sage Publications.
- Hassan, I., Zolezzi, M., Khalil, H., Mohmood, R., Pedersen, S., & Chowdhury, M. E. H. (2024). Cognitive load estimation using a hybrid cluster-based unsupervised machine learning technique. IEEE Access, 12, 118785-118801. https://doi.org/10.1109/ACCESS.2024.3428691
- Hernández-Mustieles, M. A., Lima-Carmona, Y. E., Pacheco-Ramírez, M. A., Mendoza-Armenta, A. A., Romero-Gómez, J. E., Cruz-Gómez, C. F., ... & Lozoya-Santos, J. D. J. (2024). Wearable Biosensor Technology in Education: A Systematic Review. Sensors, 24(8), 2437. https://doi.org/10.3390/S24082437
- Horwitz, B., Friston, K. J., & Taylor, J. G. (2000). Neural modeling and functional brain imaging: An overview. Neural Networks, 13(8–9), 829–846. https://doi.org/10.1016/S0893-6080(00)00062-9
- Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. https://doi.org/10.1016/J.INS.2022.11.139
- Ismail, L. E., & Karwowski, W. (2020). Applications of EEG indices for the quantification of human cognitive performance: A systematic review and bibliometric analysis. PLOS ONE, 15(12), e0242857. https://doi.org/10.1371/JOURNAL.PONE.0242857
- Kalantari, S., Rounds, J. D., Kan, J., Tripathi, V., & Cruz-Garza, J. G. (2021). Comparing physiological responses during cognitive tests in virtual environments vs. in identical real-world environments. Scientific Reports, 11(1), 1–14. https://doi.org/10.1038/s41598-021-89297-y
- Kästle, J. L., Anvari, B., Krol, J., & Wurdemann, H. A. (2021). Correlation between Situational Awareness and EEG signals. Neurocomputing, 432, 70–79. https://doi.org/10.1016/J.NEUCOM.2020.12.026
- Ke, J., Liao, P., Li, J., & Luo, X. (2023). Effect of information load and cognitive style on cognitive load of visualized dashboards for construction-related activities. Automation in Construction, 154, 105029. https://doi.org/10.1016/J.AUTCON.2023.105029
- Khosla, A., Khandnor, P., & Chand, T. (2020). A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybernetics and Biomedical Engineering, 40(2), 649–690. https://doi.org/10.1016/J.BBE.2020.02.002
- Kramer, A. F. (2020). Physiological metrics of mental workload: A review of recent progress. Multiple-Task Performance, 279–328. https://doi.org/10.1201/9781003069447-14
- Kunze, T., Hunold, A., Haueisen, J., Jirsa, V., & Spiegler, A. (2016). Transcranial direct current stimulation changes resting state functional connectivity: A large-scale brain network modeling study. NeuroImage, 140, 174–187. https://doi.org/10.1016/J.NEUROIMAGE.2016.02.015
- Lapomarda, G., Valer, S., Job, R., & Grecucci, A. (2022). Built to last: Theta and delta changes in resting-state EEG activity after regulating emotions. Brain and Behavior, 12(6), e2597. https://doi.org/10.1002/BRB3.2597
- Liu, Y., Yu, Y., Ye, Z., Li, M., Zhang, Y., Zhou, Z., Hu, D., & Zeng, L. L. (2023). Fusion of Spatial, Temporal, and Spectral EEG Signatures Improves Multilevel Cognitive Load Prediction. IEEE Transactions on Human-Machine Systems, 53(2), 357–366. https://doi.org/10.1109/THMS.2023.3235003
- Magnotti, J. F., Wang, Z., & Beauchamp, M. S. (2020). RAVE: Comprehensive open-source software for reproducible analysis and visualization of intracranial EEG data. NeuroImage, 223, 117341. https://doi.org/10.1016/J.NEUROIMAGE.2020.117341
- Makowski, D., Ben-Shachar, M. S., Patil, I., & Lüdecke, D. (2020). Methods and Algorithms for Correlation Analysis in R. https://doi.org/10.21105/joss.02306
- Mangaroska, K., Sharma, K., Gašević, D., & Giannakos, M. (2022). Exploring students’ cognitive and affective states during problem solving through multimodal data: Lessons learned from a programming activity. Journal of Computer Assisted Learning, 38(1), 40–59. https://doi.org/10.1111/JCAL.12590
- Mendoza-Armenta, A. A., Blanco-Téllez, P., García-Alcántar, A. G., Ceballos-González, I., Hernández-Mustieles, M. A., Ramírez-Mendoza, R. A., Lozoya-Santos, J. de J., & Ramírez-Moreno, M. A. (2024). Implementation of a Real-Time Brain-to-Brain Synchrony Estimation Algorithm for Neuroeducation Applications. Sensors, 24(6), 1776. https://doi.org/10.3390/S24061776
- Morales, S., & Bowers, M. E. (2022). Time-frequency analysis methods and their application in developmental EEG data. Developmental Cognitive Neuroscience, 54, 101067. https://doi.org/10.1016/J.DCN.2022.101067
- Moscarelli, M. (2023). Correlation. In: Biostatistics With 'R': A Guide for Medical Doctors. Springer, Cham. https://doi.org/10.1007/978-3-031-33073-5_7
- Niso, G., Romero, E., Moreau, J. T., Araujo, A., & Krol, L. R. (2023). Wireless EEG: A survey of systems and studies. NeuroImage, 269, 119774. https://doi.org/10.1016/J.NEUROIMAGE.2022.119774
- Oktaviyanthi, R., Agus, R. N., Garcia, M. L. B., & Lertdechapat, K. (2024). Cognitive load scale in learning formal definition of limit: A rasch model approach. Infinity Journal, 13(1), 99–118. https://doi.org/10.22460/INFINITY.V13I1.P99-118
- Pei, Y., Yang, J., Boubchir, L., Yoo, G., Kim, H., & Hong, S. (2023). Prediction of Cognitive Load from Electroencephalography Signals Using Long Short-Term Memory Network. Bioengineering, 10(3), 361. https://doi.org/10.3390/BIOENGINEERING10030361
- Pereira, T. D., Shaevitz, J. W., & Murthy, M. (2020). Quantifying behavior to understand the brain. Nature Neuroscience, 23(12), 1537–1549. https://doi.org/10.1038/s41593-020-00734-z
- Qin, T., Fias, W., Van de Weghe, N., & Huang, H. (2024). Recognition of map activities using eye tracking and EEG data. International Journal of Geographical Information Science, 38(3), 550-576. https://doi.org/10.1080/13658816.2024.2309188
- Qu, X., Liukasemsarn, S., Tu, J., Higgins, A., Hickey, T. J., & Hall, M. H. (2020). Identifying Clinically and Functionally Distinct Groups Among Healthy Controls and First Episode Psychosis Patients by Clustering on EEG Patterns. Frontiers in Psychiatry, 11, 541659. https://doi.org/10.3389/FPSYT.2020.541659/BIBTEX
- Rahman, M. A., Hossain, M. F., Hossain, M., & Ahmmed, R. (2020). Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal. Egyptian Informatics Journal, 21(1), 23–35. https://doi.org/10.1016/J.EIJ.2019.10.002
- Ramírez-Moreno, M. A., Díaz-Padilla, M., Valenzuela-Gómez, K. D., Vargas-Martínez, A., Tudón-Martínez, J. C., Morales-Menendez, R., Ramírez-Mendoza, R. A., Pérez-Henríquez, B. L., & Lozoya-Santos, J. de J. (2021). Eeg-based tool for prediction of university students’ cognitive performance in the classroom. Brain Sciences, 11(6), 698. https://doi.org/10.3390/BRAINSCI11060698/S1
- Sachdeva, S., & Eggen, P.-O. (2021). Learners’ Critical Thinking About Learning Mathematics. International Electronic Journal of Mathematics Education, 16(3), em0644. https://doi.org/10.29333/IEJME/11003
- Skulmowski, A., & Xu, K. M. (2021). Understanding Cognitive Load in Digital and Online Learning: a New Perspective on Extraneous Cognitive Load. Educational Psychology Review, 34(1), 171–196. https://doi.org/10.1007/S10648-021-09624-7
- Souza, R. H. C. e., & Naves, E. L. M. (2021). Attention Detection in Virtual Environments Using EEG Signals: A Scoping Review. Frontiers in Physiology, 12, 727840. https://doi.org/10.3389/FPHYS.2021.727840/BIBTEX
- Srinivasa, K. G., Kurni, M., & Saritha, K. (2022). Adaptive Teaching/Learning. 201–240. https://doi.org/10.1007/978-981-19-6734-4_9
- Šverko, Z., Vrankić, M., Vlahinić, S., & Rogelj, P. (2022). Complex Pearson Correlation Coefficient for EEG Connectivity Analysis. Sensors, 22(4), 1477. https://doi.org/10.3390/S22041477
- Sweller, J. (2011). Cognitive Load Theory. Psychology of Learning and Motivation - Advances in Research and Theory, 55, 37–76. https://doi.org/10.1016/B978-0-12-387691-1.00002-8
- Sweller, J. (2020). Cognitive load theory and educational technology. Educational Technology Research and Development, 68(1), 1–16. https://link.springer.com/article/10.1007/s11423-019-09701-3
- Tan, E., Troller-Renfree, S. V., Morales, S., Buzzell, G. A., McSweeney, M., Antúnez, M., & Fox, N. A. (2024). Theta activity and cognitive functioning: Integrating evidence from resting-state and task-related developmental electroencephalography (EEG) research. Developmental Cognitive Neuroscience, 67, 101404. https://doi.org/10.1016/J.DCN.2024.101404
- Tang, H., Dai, M., Du, X., Hung, J. L., & Li, H. (2024). An EEG study on college students’ attention levels in a blended computer science class. Innovations in Education and Teaching International, 61(4), 789–801. https://doi.org/10.1080/14703297.2023.2166562
- Tetzlaff, L., Schmiedek, F., & Brod, G. (2021). Developing Personalized Education: A Dynamic Framework. Educational Psychology Review, 33(3), 863–882. https://doi.org/10.1007/S10648-020-09570-W/FIGURES/3
- Trinidad, J. E. (2020). Understanding student-centred learning in higher education: students’ and teachers’ perceptions, challenges, and cognitive gaps. Journal of Further and Higher Education, 44(8), 1013–1023. https://doi.org/10.1080/0309877X.2019.1636214
- Wang, C. C., Cheng, P. K. H., & Wang, T. H. (2022). Measurement of Extraneous and Germane Cognitive Load in the Mathematics Addition Task: An Event-Related Potential Study. Brain Sciences 2022, Vol. 12, Page 1036, 12(8), 1036. https://doi.org/10.3390/BRAINSCI12081036
- Wang, G., Tian, L., Liu, J., Nie, S., & Yu, S. (2024). Neural mechanisms of cognitive load in Multimedia Learning: a Meta-analysis of EEG frequency Band Modulation. Current Psychology 2024, 1–17. https://doi.org/10.1007/S12144-024-06577-2
- Wang, M., Hu, J., & Abbass, H. A. (2020). BrainPrint: EEG biometric identification based on analyzing brain connectivity graphs. Pattern Recognition, 105, 107381. https://doi.org/10.1016/J.PATCOG.2020.107381
- Wen, T. Y., & Aris, S. A. M. (2022). Hybrid Approach of EEG Stress Level Classification Using K-Means Clustering and Support Vector Machine. IEEE Access, 10, 18370–18379. https://doi.org/10.1109/ACCESS.2022.3148380
- Wirth, J., Stebner, F., Trypke, M., Schuster, C., & Leutner, D. (2020). An Interactive Layers Model of Self-Regulated Learning and Cognitive Load. Educational Psychology Review, 32(4), 1127–1149. https://doi.org/10.1007/S10648-020-09568-4/FIGURES/5
- Xiong, R., Kong, F., Yang, X., Liu, G., & Wen, W. (2020). Pattern Recognition of Cognitive Load Using EEG and ECG Signals. Sensors, 20(18), 5122. https://doi.org/10.3390/S20185122
- Xu, K. M., Koorn, P., de Koning, B., Skuballa, I. T., Lin, L., Henderikx, M., Marsh, H. W., Sweller, J., & Paas, F. (2021). A Growth Mindset Lowers Perceived Cognitive Load and Improves Learning: Integrating Motivation to Cognitive Load. Journal of Educational Psychology, 113(6), 1177–1191. https://doi.org/10.1037/EDU0000631
- Zanetti, R., Arza, A., Aminifar, A., & Atienza, D. (2022). Real-Time EEG-Based Cognitive Workload Monitoring on Wearable Devices. IEEE Transactions on Biomedical Engineering, 69(1), 265–277. https://doi.org/10.1109/TBME.2021.3092206
- Zhang, Y., Zhou, T., Wu, W., Xie, H., Zhu, H., Zhou, G., & Cichocki, A. (2022). Improving EEG Decoding via Clustering-Based Multitask Feature Learning. IEEE Transactions on Neural Networks and Learning Systems, 33(8), 3587–3597. https://doi.org/10.1109/TNNLS.2021.3053576
- Zhou, Y., Huang, S., Xu, Z., Wang, P., Wu, X., & Zhang, D. (2022). Cognitive Workload Recognition Using EEG Signals and Machine Learning: A Review. IEEE Transactions on Cognitive and Developmental Systems, 14(3), 799–818. https://doi.org/10.1109/TCDS.2021.3090217
References
Al-Salman, W., Li, Y., Oudah, A. Y., & Almaged, S. (2023). Sleep stage classification in EEG signals using the clustering approach based probability distribution features coupled with classification algorithms. Neuroscience Research, 188, 51–67. https://doi.org/10.1016/J.NEURES.2022.09.009
Alyasseri, Z. A. A., Abasi, A. K., Al-Betar, M. A., Makhadmeh, S. N., Papa, J. P., Abdullah, S., & Khader, A. T. (2021). EEG-Based Person Identification Using Multi-Verse Optimizer as Unsupervised Clustering Techniques. 89–110. https://doi.org/10.1007/978-981-33-4191-3_4
Apicella, A., Arpaia, P., Frosolone, M., Improta, G., Moccaldi, N., & Pollastro, A. (2022). EEG-based measurement system for monitoring student engagement in learning 4.0. Scientific Reports 2022, 12(1), 1–13. https://doi.org/10.1038/s41598-022-09578-y
Armitage, P., Berry, G., & Matthews, J. N. S. (2013). Statistical methods in medical research. John Wiley & Sons.
Atiomo, W. (2020). Emotional Well-Being, Cognitive Load and Academic Attainment. MedEdPublish, 9, 118. https://doi.org/10.15694/MEP.2020.000118.1
Bablani, A., Edla, D. R., Kuppili, V., & Ramesh, D. (2020). A multi stage EEG data classification using k-means and feed forward neural network. Clinical Epidemiology and Global Health, 8(3), 718–724. https://doi.org/10.1016/J.CEGH.2020.01.008
Basharpoor, S., Heidari, F., & Molavi, P. (2021). EEG coherence in theta, alpha, and beta bands in frontal regions and executive functions. Applied Neuropsychology: Adult, 28(3), 310–317. https://doi.org/10.1080/23279095.2019.1632860
Bashir, F., Ali, A., Soomro, T. A., Marouf, M., Bilal, M., & Chowdhry, B. S. (2021). Electroencephalogram (EEG) Signals for Modern Educational Research. Innovative Education Technologies for 21st Century Teaching and Learning, 149–171. https://doi.org/10.1201/9781003143796-10
Bradley, C., Nydam, A. S., Dux, P. E., & Mattingley, J. B. (2022). State-dependent effects of neural stimulation on brain function and cognition. Nature Reviews Neuroscience, 23(8), 459–475. https://doi.org/10.1038/s41583-022-00598-1
Budin, G., Gavrilova, M. L., Shell, D. F., Wang, Y., Fiorini, R. A., Widrow, B., ... & Chan, C. (2016). Cognitive Intelligence: Deep Learning, Thinking, and Reasoning by Brain-Inspired Systems. International Journal of Cognitive Informatics and Natural Intelligence, 10(4), 1-20. https://doi.org/10.4018/IJCINI.2016100101
Cabañero, L., Hervás, R., González, I., Fontecha, J., Mondéjar, T., & Bravo, J. (2020). Characterisation of mobile-device tasks by their associated cognitive load through EEG data processing. Future Generation Computer Systems, 113, 380–390. https://doi.org/10.1016/J.FUTURE.2020.07.013
Cezar, B. G. da S., & Maçada, A. C. G. (2023). Cognitive Overload, Anxiety, Cognitive Fatigue, Avoidance Behavior and Data Literacy in Big Data environments. Information Processing & Management, 60(6), 103482. https://doi.org/10.1016/J.IPM.2023.103482
Chen, O., Paas, F., & Sweller, J. (2023). A Cognitive Load Theory Approach to Defining and Measuring Task Complexity Through Element Interactivity. Educational Psychology Review, 35(2), 1–18. https://doi.org/10.1007/S10648-023-09782-W/FIGURES/3
Cheng, B., Fan, C., Fu, H., Huang, J., Chen, H., & Luo, X. (2022). Measuring and Computing Cognitive Statuses of Construction Workers Based on Electroencephalogram: A Critical Review. IEEE Transactions on Computational Social Systems, 9(6), 1644–1659. https://doi.org/10.1109/TCSS.2022.3158585
Chew, S. L., & Cerbin, W. J. (2021). The cognitive challenges of effective teaching. The Journal of Economic Education, 52(1), 17–40. https://doi.org/10.1080/00220485.2020.1845266
Chikhi, S., Matton, N., & Blanchet, S. (2022). EEG power spectral measures of cognitive workload: A meta-analysis. Psychophysiology, 59(6), e14009. https://doi.org/10.1111/PSYP.14009
Choubey, H., & Pandey, A. (2021). A combination of statistical parameters for the detection of epilepsy and EEG classification using ANN and KNN classifier. Signal, Image and Video Processing, 15(3), 475–483. https://doi.org/10.1007/S11760-020-01767-4/METRICS
Christodoulides, P., Miltiadous, A., Tzimourta, K. D., Peschos, D., Ntritsos, G., Zakopoulou, V., Giannakeas, N., Astrakas, L. G., Tsipouras, M. G., Tsamis, K. I., Glavas, E., & Tzallas, A. T. (2022). Classification of EEG signals from young adults with dyslexia combining a Brain Computer Interface device and an Interactive Linguistic Software Tool. Biomedical Signal Processing and Control, 76, 103646. https://doi.org/10.1016/J.BSPC.2022.103646
Curham, K. J., & Allen, J. J. B. (2022). Logic Behind EEG Frequency Analysis: Basic Electricity and Assumptions. The Oxford Handbook of EEG Frequency, 15. https://global.oup.com/academic/product/the-oxford-handbook-of-eeg-frequency-9780192898340
da Silva, F. L. (2022). EEG: Origin and Measurement. EEG-FMRI: Physiological Basis, Technique, and Applications, Second Edition, 23–48. https://doi.org/10.1007/978-3-031-07121-8_2
Dalmaijer, E. S., Nord, C. L., & Astle, D. E. (2022). Statistical power for cluster analysis. BMC Bioinformatics, 23(1), 1–28. https://doi.org/10.1186/S12859-022-04675-1/TABLES/5
Das Chakladar, D., & Roy, P. P. (2023). Cognitive workload estimation using physiological measures: a review. Cognitive Neurodynamics, 18(4), 1445–1465. https://doi.org/10.1007/S11571-023-10051-3/METRICS
Demšar, U., Harris, P., Brunsdon, C., Fotheringham, A. S., & McLoone, S. (2013). Principal Component Analysis on Spatial Data: An Overview. Annals of the Association of American Geographers, 103(1), 106–128. https://doi.org/10.1080/00045608.2012.689236
Denis, D. J. (2020). Univariate, bivariate, and multivariate statistics using R: Quantitative tools for data analysis and data science. Univariate, Bivariate, and Multivariate Statistics Using R: Quantitative Tools for Data Analysis and Data Science, 1–366. https://doi.org/10.1002/9781119549963
Devi, D., Sophia, S., & Boselin Prabhu, S. R. (2021). Deep learning-based cognitive state prediction analysis using brain wave signal. Cognitive Computing for Human-Robot Interaction: Principles and Practices, 69–84. https://doi.org/10.1016/B978-0-323-85769-7.00017-3
Donohoe, D., & Costello, E. (2020). Data visualisation literacy in higher education: An exploratory study of understanding of a learning dashboard tool. International Journal of Emerging Technologies in Learning (iJET), 15(17), 115-126. https://doi.org/10.3991/ijet.v15i17.15041
Dos Anjos, T., Di Rienzo, F., Benoit, C. E., Daligault, S., & Guillot, A. (2024). Brain wave modulation and EEG power changes during auditory beats stimulation. Neuroscience, 554, 156–166. https://doi.org/10.1016/J.NEUROSCIENCE.2024.07.014
Emami, Z., & Chau, T. (2020). The effects of visual distractors on cognitive load in a motor imagery brain-computer interface. Behavioural Brain Research, 378, 112240. https://doi.org/10.1016/J.BBR.2019.112240
Feldmann, L. K., Lofredi, R., Neumann, W. J., Al-Fatly, B., Roediger, J., Bahners, B. H., Nikolov, P., Denison, T., Saryyeva, A., Krauss, J. K., Faust, K., Florin, E., Schnitzler, A., Schneider, G. H., & Kühn, A. A. (2022). Toward therapeutic electrophysiology: beta-band suppression as a biomarker in chronic local field potential recordings. Npj Parkinson’s Disease, 8(1), 1–9. https://doi.org/10.1038/s41531-022-00301-2
Fernandez, N. F., Gundersen, G. W., Rahman, A., Grimes, M. L., Rikova, K., Hornbeck, P., & Maayan, A. (2017). Clustergrammer, a web-based heatmap visualization and analysis tool for high-dimensional biological data. Scientific Data, 4(1), 1–12. https://doi.org/10.1038/sdata.2017.151
Finley, A. J., Angus, D. J., van Reekum, C. M., Davidson, R. J., & Schaefer, S. M. (2024). Correction to “Periodic and aperiodic contributions to theta-beta ratios across adulthood.” Psychophysiology, 61(7), e14555. https://doi.org/10.1111/PSYP.14555
Finn, E. S., Glerean, E., Khojandi, A. Y., Nielson, D., Molfese, P. J., Handwerker, D. A., & Bandettini, P. A. (2020). Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging. NeuroImage, 215, 116828. https://doi.org/10.1016/J.NEUROIMAGE.2020.116828
Forbes, O., Schwenn, P. E., Wu, P. P. Y., Santos-Fernandez, E., Xie, H. B., Lagopoulos, J., McLoughlin, L. T., Sacks, D. D., Mengersen, K., & Hermens, D. F. (2022). EEG-based clusters differentiate psychological distress, sleep quality and cognitive function in adolescents. Biological Psychology, 173, 108403. https://doi.org/10.1016/J.BIOPSYCHO.2022.108403
Fu, B., Li, F., Niu, Y., Wu, H., Li, Y., & Shi, G. (2021). Conditional generative adversarial network for EEG-based emotion fine-grained estimation and visualization. Journal of Visual Communication and Image Representation, 74, 102982. https://doi.org/10.1016/J.JVCIR.2020.102982
Fuentes-Martinez, V. J., Romero, S., Lopez-Gordo, M. A., Minguillon, J., & Rodríguez-Álvarez, M. (2023). Low-Cost EEG Multi-Subject Recording Platform for the Assessment of Students’ Attention and the Estimation of Academic Performance in Secondary School. Sensors, 23(23), 9361. https://doi.org/10.3390/S23239361
Gao, X., Huang, W., Liu, Y., Zhang, Y., Zhang, J., Li, C., Chelangat Bore, J., Wang, Z., Si, Y., Tian, Y., & Li, P. (2023). A novel robust Student’s t-based Granger causality for EEG based brain network analysis. Biomedical Signal Processing and Control, 80, 104321. https://doi.org/10.1016/J.BSPC.2022.104321
Gao, Z., Dang, W., Wang, X., Hong, X., Hou, L., Ma, K., & Perc, M. (2020). Complex networks and deep learning for EEG signal analysis. Cognitive Neurodynamics, 15(3), 369–388. https://doi.org/10.1007/S11571-020-09626-1
Gashaj, V., Trninić, D., Formaz, C., Tobler, S., Gómez Cañón, J. S., Poikonen, H., & Kapur, M. (2024). Bridging cognitive neuroscience and education: Insights from EEG recording during mathematical proof evaluation. Trends in Neuroscience and Education, 35, 100226. https://doi.org/10.1016/J.TINE.2024.100226
Gewers, F. L., Ferreira, G. R., De Arruda, H. F., Silva, F. N., Comin, C. H., Amancio, D. R., & Costa, L. D. F. (2021). Principal component analysis: A natural approach to data exploration. ACM Computing Surveys, 54(4), 1-34. https://doi.org/10.1145/3447755/SUPPL_FILE/GEWERS.ZIP
Gnambs, T. (2023). A Brief Note on the Standard Error of the Pearson Correlation. Collabra: Psychology, 9(1), 1-8. https://doi.org/10.1525/collabra.87615
González-Hernández, H. G., Medina-Pozos, J. M., Cantú-González, V., Amozurrutia-Elizalde, A., Flores-Amado, A., & Mora-Salinas, R. J. (2021). Looking for experimental evidence of critical thinking through EEG. International Journal on Interactive Design and Manufacturing, 15(2–3), 333–351. https://doi.org/10.1007/S12008-021-00761-5/METRICS
Grekousis, G. (2020). Spatial Analysis Methods and Practice: Describe-Explore-Explain through GIS. Spatial Analysis Methods and Practice: Describe-Explore-Explain through GIS, 1–518. https://doi.org/10.1017/9781108614528
Gu, Z. (2022). Complex heatmap visualization. IMeta, 1(3), e43. https://doi.org/10.1002/IMT2.43
Hadd, A., & Rodgers, J. L. (2020). Understanding correlation matrices. Sage Publications.
Hassan, I., Zolezzi, M., Khalil, H., Mohmood, R., Pedersen, S., & Chowdhury, M. E. H. (2024). Cognitive load estimation using a hybrid cluster-based unsupervised machine learning technique. IEEE Access, 12, 118785-118801. https://doi.org/10.1109/ACCESS.2024.3428691
Hernández-Mustieles, M. A., Lima-Carmona, Y. E., Pacheco-Ramírez, M. A., Mendoza-Armenta, A. A., Romero-Gómez, J. E., Cruz-Gómez, C. F., ... & Lozoya-Santos, J. D. J. (2024). Wearable Biosensor Technology in Education: A Systematic Review. Sensors, 24(8), 2437. https://doi.org/10.3390/S24082437
Horwitz, B., Friston, K. J., & Taylor, J. G. (2000). Neural modeling and functional brain imaging: An overview. Neural Networks, 13(8–9), 829–846. https://doi.org/10.1016/S0893-6080(00)00062-9
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Heming, J. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178–210. https://doi.org/10.1016/J.INS.2022.11.139
Ismail, L. E., & Karwowski, W. (2020). Applications of EEG indices for the quantification of human cognitive performance: A systematic review and bibliometric analysis. PLOS ONE, 15(12), e0242857. https://doi.org/10.1371/JOURNAL.PONE.0242857
Kalantari, S., Rounds, J. D., Kan, J., Tripathi, V., & Cruz-Garza, J. G. (2021). Comparing physiological responses during cognitive tests in virtual environments vs. in identical real-world environments. Scientific Reports, 11(1), 1–14. https://doi.org/10.1038/s41598-021-89297-y
Kästle, J. L., Anvari, B., Krol, J., & Wurdemann, H. A. (2021). Correlation between Situational Awareness and EEG signals. Neurocomputing, 432, 70–79. https://doi.org/10.1016/J.NEUCOM.2020.12.026
Ke, J., Liao, P., Li, J., & Luo, X. (2023). Effect of information load and cognitive style on cognitive load of visualized dashboards for construction-related activities. Automation in Construction, 154, 105029. https://doi.org/10.1016/J.AUTCON.2023.105029
Khosla, A., Khandnor, P., & Chand, T. (2020). A comparative analysis of signal processing and classification methods for different applications based on EEG signals. Biocybernetics and Biomedical Engineering, 40(2), 649–690. https://doi.org/10.1016/J.BBE.2020.02.002
Kramer, A. F. (2020). Physiological metrics of mental workload: A review of recent progress. Multiple-Task Performance, 279–328. https://doi.org/10.1201/9781003069447-14
Kunze, T., Hunold, A., Haueisen, J., Jirsa, V., & Spiegler, A. (2016). Transcranial direct current stimulation changes resting state functional connectivity: A large-scale brain network modeling study. NeuroImage, 140, 174–187. https://doi.org/10.1016/J.NEUROIMAGE.2016.02.015
Lapomarda, G., Valer, S., Job, R., & Grecucci, A. (2022). Built to last: Theta and delta changes in resting-state EEG activity after regulating emotions. Brain and Behavior, 12(6), e2597. https://doi.org/10.1002/BRB3.2597
Liu, Y., Yu, Y., Ye, Z., Li, M., Zhang, Y., Zhou, Z., Hu, D., & Zeng, L. L. (2023). Fusion of Spatial, Temporal, and Spectral EEG Signatures Improves Multilevel Cognitive Load Prediction. IEEE Transactions on Human-Machine Systems, 53(2), 357–366. https://doi.org/10.1109/THMS.2023.3235003
Magnotti, J. F., Wang, Z., & Beauchamp, M. S. (2020). RAVE: Comprehensive open-source software for reproducible analysis and visualization of intracranial EEG data. NeuroImage, 223, 117341. https://doi.org/10.1016/J.NEUROIMAGE.2020.117341
Makowski, D., Ben-Shachar, M. S., Patil, I., & Lüdecke, D. (2020). Methods and Algorithms for Correlation Analysis in R. https://doi.org/10.21105/joss.02306
Mangaroska, K., Sharma, K., Gašević, D., & Giannakos, M. (2022). Exploring students’ cognitive and affective states during problem solving through multimodal data: Lessons learned from a programming activity. Journal of Computer Assisted Learning, 38(1), 40–59. https://doi.org/10.1111/JCAL.12590
Mendoza-Armenta, A. A., Blanco-Téllez, P., García-Alcántar, A. G., Ceballos-González, I., Hernández-Mustieles, M. A., Ramírez-Mendoza, R. A., Lozoya-Santos, J. de J., & Ramírez-Moreno, M. A. (2024). Implementation of a Real-Time Brain-to-Brain Synchrony Estimation Algorithm for Neuroeducation Applications. Sensors, 24(6), 1776. https://doi.org/10.3390/S24061776
Morales, S., & Bowers, M. E. (2022). Time-frequency analysis methods and their application in developmental EEG data. Developmental Cognitive Neuroscience, 54, 101067. https://doi.org/10.1016/J.DCN.2022.101067
Moscarelli, M. (2023). Correlation. In: Biostatistics With 'R': A Guide for Medical Doctors. Springer, Cham. https://doi.org/10.1007/978-3-031-33073-5_7
Niso, G., Romero, E., Moreau, J. T., Araujo, A., & Krol, L. R. (2023). Wireless EEG: A survey of systems and studies. NeuroImage, 269, 119774. https://doi.org/10.1016/J.NEUROIMAGE.2022.119774
Oktaviyanthi, R., Agus, R. N., Garcia, M. L. B., & Lertdechapat, K. (2024). Cognitive load scale in learning formal definition of limit: A rasch model approach. Infinity Journal, 13(1), 99–118. https://doi.org/10.22460/INFINITY.V13I1.P99-118
Pei, Y., Yang, J., Boubchir, L., Yoo, G., Kim, H., & Hong, S. (2023). Prediction of Cognitive Load from Electroencephalography Signals Using Long Short-Term Memory Network. Bioengineering, 10(3), 361. https://doi.org/10.3390/BIOENGINEERING10030361
Pereira, T. D., Shaevitz, J. W., & Murthy, M. (2020). Quantifying behavior to understand the brain. Nature Neuroscience, 23(12), 1537–1549. https://doi.org/10.1038/s41593-020-00734-z
Qin, T., Fias, W., Van de Weghe, N., & Huang, H. (2024). Recognition of map activities using eye tracking and EEG data. International Journal of Geographical Information Science, 38(3), 550-576. https://doi.org/10.1080/13658816.2024.2309188
Qu, X., Liukasemsarn, S., Tu, J., Higgins, A., Hickey, T. J., & Hall, M. H. (2020). Identifying Clinically and Functionally Distinct Groups Among Healthy Controls and First Episode Psychosis Patients by Clustering on EEG Patterns. Frontiers in Psychiatry, 11, 541659. https://doi.org/10.3389/FPSYT.2020.541659/BIBTEX
Rahman, M. A., Hossain, M. F., Hossain, M., & Ahmmed, R. (2020). Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal. Egyptian Informatics Journal, 21(1), 23–35. https://doi.org/10.1016/J.EIJ.2019.10.002
Ramírez-Moreno, M. A., Díaz-Padilla, M., Valenzuela-Gómez, K. D., Vargas-Martínez, A., Tudón-Martínez, J. C., Morales-Menendez, R., Ramírez-Mendoza, R. A., Pérez-Henríquez, B. L., & Lozoya-Santos, J. de J. (2021). Eeg-based tool for prediction of university students’ cognitive performance in the classroom. Brain Sciences, 11(6), 698. https://doi.org/10.3390/BRAINSCI11060698/S1
Sachdeva, S., & Eggen, P.-O. (2021). Learners’ Critical Thinking About Learning Mathematics. International Electronic Journal of Mathematics Education, 16(3), em0644. https://doi.org/10.29333/IEJME/11003
Skulmowski, A., & Xu, K. M. (2021). Understanding Cognitive Load in Digital and Online Learning: a New Perspective on Extraneous Cognitive Load. Educational Psychology Review, 34(1), 171–196. https://doi.org/10.1007/S10648-021-09624-7
Souza, R. H. C. e., & Naves, E. L. M. (2021). Attention Detection in Virtual Environments Using EEG Signals: A Scoping Review. Frontiers in Physiology, 12, 727840. https://doi.org/10.3389/FPHYS.2021.727840/BIBTEX
Srinivasa, K. G., Kurni, M., & Saritha, K. (2022). Adaptive Teaching/Learning. 201–240. https://doi.org/10.1007/978-981-19-6734-4_9
Šverko, Z., Vrankić, M., Vlahinić, S., & Rogelj, P. (2022). Complex Pearson Correlation Coefficient for EEG Connectivity Analysis. Sensors, 22(4), 1477. https://doi.org/10.3390/S22041477
Sweller, J. (2011). Cognitive Load Theory. Psychology of Learning and Motivation - Advances in Research and Theory, 55, 37–76. https://doi.org/10.1016/B978-0-12-387691-1.00002-8
Sweller, J. (2020). Cognitive load theory and educational technology. Educational Technology Research and Development, 68(1), 1–16. https://link.springer.com/article/10.1007/s11423-019-09701-3
Tan, E., Troller-Renfree, S. V., Morales, S., Buzzell, G. A., McSweeney, M., Antúnez, M., & Fox, N. A. (2024). Theta activity and cognitive functioning: Integrating evidence from resting-state and task-related developmental electroencephalography (EEG) research. Developmental Cognitive Neuroscience, 67, 101404. https://doi.org/10.1016/J.DCN.2024.101404
Tang, H., Dai, M., Du, X., Hung, J. L., & Li, H. (2024). An EEG study on college students’ attention levels in a blended computer science class. Innovations in Education and Teaching International, 61(4), 789–801. https://doi.org/10.1080/14703297.2023.2166562
Tetzlaff, L., Schmiedek, F., & Brod, G. (2021). Developing Personalized Education: A Dynamic Framework. Educational Psychology Review, 33(3), 863–882. https://doi.org/10.1007/S10648-020-09570-W/FIGURES/3
Trinidad, J. E. (2020). Understanding student-centred learning in higher education: students’ and teachers’ perceptions, challenges, and cognitive gaps. Journal of Further and Higher Education, 44(8), 1013–1023. https://doi.org/10.1080/0309877X.2019.1636214
Wang, C. C., Cheng, P. K. H., & Wang, T. H. (2022). Measurement of Extraneous and Germane Cognitive Load in the Mathematics Addition Task: An Event-Related Potential Study. Brain Sciences 2022, Vol. 12, Page 1036, 12(8), 1036. https://doi.org/10.3390/BRAINSCI12081036
Wang, G., Tian, L., Liu, J., Nie, S., & Yu, S. (2024). Neural mechanisms of cognitive load in Multimedia Learning: a Meta-analysis of EEG frequency Band Modulation. Current Psychology 2024, 1–17. https://doi.org/10.1007/S12144-024-06577-2
Wang, M., Hu, J., & Abbass, H. A. (2020). BrainPrint: EEG biometric identification based on analyzing brain connectivity graphs. Pattern Recognition, 105, 107381. https://doi.org/10.1016/J.PATCOG.2020.107381
Wen, T. Y., & Aris, S. A. M. (2022). Hybrid Approach of EEG Stress Level Classification Using K-Means Clustering and Support Vector Machine. IEEE Access, 10, 18370–18379. https://doi.org/10.1109/ACCESS.2022.3148380
Wirth, J., Stebner, F., Trypke, M., Schuster, C., & Leutner, D. (2020). An Interactive Layers Model of Self-Regulated Learning and Cognitive Load. Educational Psychology Review, 32(4), 1127–1149. https://doi.org/10.1007/S10648-020-09568-4/FIGURES/5
Xiong, R., Kong, F., Yang, X., Liu, G., & Wen, W. (2020). Pattern Recognition of Cognitive Load Using EEG and ECG Signals. Sensors, 20(18), 5122. https://doi.org/10.3390/S20185122
Xu, K. M., Koorn, P., de Koning, B., Skuballa, I. T., Lin, L., Henderikx, M., Marsh, H. W., Sweller, J., & Paas, F. (2021). A Growth Mindset Lowers Perceived Cognitive Load and Improves Learning: Integrating Motivation to Cognitive Load. Journal of Educational Psychology, 113(6), 1177–1191. https://doi.org/10.1037/EDU0000631
Zanetti, R., Arza, A., Aminifar, A., & Atienza, D. (2022). Real-Time EEG-Based Cognitive Workload Monitoring on Wearable Devices. IEEE Transactions on Biomedical Engineering, 69(1), 265–277. https://doi.org/10.1109/TBME.2021.3092206
Zhang, Y., Zhou, T., Wu, W., Xie, H., Zhu, H., Zhou, G., & Cichocki, A. (2022). Improving EEG Decoding via Clustering-Based Multitask Feature Learning. IEEE Transactions on Neural Networks and Learning Systems, 33(8), 3587–3597. https://doi.org/10.1109/TNNLS.2021.3053576
Zhou, Y., Huang, S., Xu, Z., Wang, P., Wu, X., & Zhang, D. (2022). Cognitive Workload Recognition Using EEG Signals and Machine Learning: A Review. IEEE Transactions on Cognitive and Developmental Systems, 14(3), 799–818. https://doi.org/10.1109/TCDS.2021.3090217