Main Article Content

Abstract

Developing students’ mathematical reasoning skills (MRS) and mathematical communication skills (MCS) is crucial, as both are fundamental to effective mathematical problem-solving (MPS). Despite their theoretical interconnectedness, limited empirical evidence exists on how MRS and MCS relate to MPS, particularly in problem-based contexts. This study investigates the relationship between MRS and MCS within an MPS-oriented framework using a quantitative, descriptive correlational design. A modified mathematical word problem (MWP) essay test was administered to 117 students across two pilot classes. The test items were designed to elicit reasoning and communication processes associated with MPS. Psychometric analyses, including evidence of content validity (Aiken’s V), consequential validity, reliability (α and ω coefficients), and item-level metrics (discrimination and difficulty indices), confirmed the instrument’s robustness. Factor analysis supported a unidimensional structure aligned with MPS. Correlational analyses revealed significant positive associations between MRS and MCS, meeting bivariate normality assumptions. Pearson’s r was 0.529 (95% CI: 0.261–0.722), Spearman’s ρ was 0.493 (CI: 0.215–0.697), and Kendall’s τ was 0.400 (CI: 0.101–0.632), indicating a strong relationship. These findings underscore the interdependence of reasoning and communication skills in the context of MPS. The study also offers a detailed analysis of student obstacles in solving MWPs, contributing to a nuanced understanding of cognitive and linguistic dimensions in mathematical problem-solving. Implications are discussed for researchers, policymakers, and educators, particularly in designing instructional interventions that strengthen MRS and MCS in support of MPS.

Keywords

Correlational Study Mathematical Communication Skill Mathematical Problem-Solving Orientation Mathematical Reasoning Skill Mathematical Word Problem

Article Details

How to Cite
Aljura, A. N., Retnawati, H., Dewanti, S. R., Kassymova, G. K., Sotlikova, R., & Septiana, A. R. (2025). Mathematical reasoning and communication word problems with mathematical problem-solving orientation: A relation between the skills. Journal on Mathematics Education, 16(2). Retrieved from https://jme.ejournal.unsri.ac.id/index.php/jme/article/view/3604

References

  1. Aiken, L. R. (1985). Three Coefficients for Analyzing the Reliability and Validity of Ratings. Educational and Psychological Measurement, 45(1), 131–142. https://doi.org/10.1177/0013164485451012
  2. Aljura, A. N., Retnawati, H., Zulnaidi, H., & Mbazumutima, V. (2025). Understanding High School Students’ Errors in solving Mathematics Problems: A Phenomenological Research. Indonesian Journal on Learning and Advanced Education (IJOLAE), 7(1), 154–178. https://doi.org/10.23917/ijolae.v7i1.24005
  3. Amalina, I. K., & Vidákovich, T. (2022). An integrated STEM-based mathematical problem-solving test: Developing and reporting psychometric evidence. Journal on Mathematics Education, 13(4), 587–604. https://doi.org/10.22342/jme.v13i4.pp587-604
  4. Anghileri, J. (2006). Scaffolding practices that enhance mathematics learning. Journal of Mathematics Teacher Education, 9(1), 33–52. https://doi.org/10.1007/s10857-006-9005-9
  5. Ansari, B. I., Taufiq, T., & Saminan, S. (2020). The use of creative problem solving model to develop students’ adaptive reasoning ability: Inductive, deductive, and intuitive. International Journal on Teaching and Learning Mathematics, 3(1), 23–36. https://doi.org/10.18860/ijtlm.v3i1.9439
  6. Askell-Williams, H., Lawson, M. J., & Skrzypiec, G. (2012). Scaffolding cognitive and metacognitive strategy instruction in regular class lessons. Instructional Science, 40(2), 413–443. https://doi.org/10.1007/s11251-011-9182-5
  7. Aziza, N., Sridana, N., Hikmah, N., & Subarinah, S. (2023). Analisis Kesalahan dan Scaffolding dalam Menyelesaikan Soal Cerita Matematika Materi Pecahan. Jurnal Ilmiah Profesi Pendidikan, 8(1), 221–231. https://doi.org/10.29303/jipp.v8i1.1119
  8. Baroody, A. J. (1993). Problem Solving, Reasoning, And Communicating, K-8 Helping Children Think Mathematically. Macmillan Publishing Company.
  9. Berben, L., Sereika, S. M., & Engberg, S. (2012). Effect size estimation: Methods and examples. International Journal of Nursing Studies, 49(8), 1039–1047. https://doi.org/10.1016/j.ijnurstu.2012.01.015
  10. Bishara, A. J., & Hittner, J. B. (2012). Testing the significance of a correlation with nonnormal data: Comparison of Pearson, Spearman, transformation, and resampling approaches. Psychological Methods, 17(3), 399–417. https://doi.org/10.1037/a0028087
  11. Bjuland, R. (2007). Adult Students’ Reasoning in Geometry: Teaching Mathematics through Collaborative Problem Solving in Teacher Education. The Mathematics Enthusiast, 4(1), 1–30. https://doi.org/10.54870/1551-3440.1056
  12. Boaler, J. (1993). The Role of Contexts in the Mathematics Classroom: Do They Make Mathematics More “Real”? For the Learning of Mathematics, 13(2), 12–17. http://www.jstor.org/stable/40248079
  13. Böswald, V., & Schukajlow, S. (2023). I value the problem, but I don’t think my students will: preservice teachers’ judgments of task value and self-efficacy for modelling, word, and intramathematical problems. ZDM - Mathematics Education, 55(2), 331–344. https://doi.org/10.1007/s11858-022-01412-z
  14. Bozkuş, F., & Ayvaz, Ü. (2018). Middle School Mathematics Teachers’ Knowledge of Mathematical Reasoning. European Journal of Education Studies, 4(9), 16–34.
  15. BSKAP. (2022). Salinan Lampiran I Keputusan Kepala Badan Standar, Kurikulum, dan Asesmen Pendidikan Nomor 008/Kr/2022 Tentang Capaian Pembelajaran Pada Pendidikan Anak Usia Dini, Jenjang Pendidikan Dasar, dan Jenjang Pendidikan Menengah Pada Kurikulum Merdeka (p. 146). https://guru.kemdikbud.go.id/kurikulum/referensi-penerapan/capaian-pembelajaran/mata-pelajaran/fase/?level=SD-SMA&subject=Matematika&phase=F
  16. Cartwright, K. (2020). Analyzing students’ communication and representation of mathematical fluency during group tasks. Journal of Mathematical Behavior, 60. https://doi.org/10.1016/j.jmathb.2020.100821
  17. Chiphambo, S. M., & Mtsi, N. (2021). Exploring Grade 8 Students’ Errors When Learning About the Surface Area of Prisms. Eurasia Journal of Mathematics, Science and Technology Education, 17(8), em1985. https://doi.org/10.29333/ejmste/10994
  18. Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. Routledge. https://doi.org/10.4324/9780203771587
  19. Creswell, J. W., & Creswell, J. D. (2023). Research design: Qualitative, quantitative, and mixed methods approaches (Sixth Edition). Sage publications.
  20. Creswell, J. W., & Guetterman, T. C. (2019). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (Sixth Edition). Pearson.
  21. Daroczy, G., Wolska, M., Meurers, W. D., & Nuerk, H.-C. (2015). Word problems: a review of linguistic and numerical factors contributing to their difficulty. Frontiers in Psychology, 06. https://doi.org/10.3389/fpsyg.2015.00348
  22. Dwi Anggoro, A. F., Haji, S., & Sumardi, H. (2022). Structural equation fit test of mathematical connection ability, mathematical reasoning, and mathematics problem-solving ability of junior high school students. International Journal of Trends in Mathematics Education Research, 5(1), 82–93. https://doi.org/10.33122/ijtmer.v5i1.117
  23. Dwita, A., & Retnawati, H. (2022). Students’ errors in solving mathematical problems. AIP Conference Proceedings, 2575. https://doi.org/10.1063/5.0107794
  24. Eggen, P. D., & Kauchak, D. P. (1996). Strategy for Teacher: Teaching Content and Thinking Skills. Allyn & Bacon.
  25. Etikan, I. (2016). Comparison of Convenience Sampling and Purposive Sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1. https://doi.org/10.11648/j.ajtas.20160501.11
  26. Fauzie, M., Pada, A. U. T., & Supriatno, S. (2021). Analysis of the difficulty index of item bank according to cognitive aspects during the Covid-19 pandemic. Jurnal Penelitian Dan Evaluasi Pendidikan, 25(2). https://doi.org/10.21831/pep.v25i2.42603
  27. Fisher, R. A. (1921). On the “Probable Error” of a Coefficient of Correlation Deduced from a Small Sample. Metron, 1, 3–32. http://hdl.handle.net/2440/15169
  28. Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: Current use, calculations, and interpretation. Journal of Experimental Psychology: General, 141(1), 2–18. https://doi.org/10.1037/a0024338
  29. Guilford, J. P. (1950). Fundamental Statistics in Psychology and Education (C. T. Morgan, Ed.; 2nd ed.). McGraw-Hill Book Company.
  30. Habsah, F. (2017). Developing teaching material based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. Jurnal Riset Pendidikan Matematika, 4(1), 43–55. https://doi.org/10.21831/jrpm.v4i1.10199
  31. Haladyna, T. M., & Rodriguez, M. C. (2021). Using Full-information Item Analysis to Improve Item Quality. Educational Assessment, 26(3), 198–211. https://doi.org/10.1080/10627197.2021.1946390
  32. Hancock, G. R., & An, J. (2020). A Closed-Form Alternative for Estimating ω Reliability under Unidimensionality. Measurement, 18(1), 1–14. https://doi.org/10.1080/15366367.2019.1656049
  33. Hasan, N., Subanji, S., & Sukorianto, S. (2019). Analisis Kesalahan Siswa Kelas VIII dalam Menyelesaikan Soal Cerita Terkait Teorema Pythagoras. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 4(4), 468. https://doi.org/10.17977/jptpp.v4i4.12264
  34. Herbert, S., Vale, C., White, P., & Bragg, L. A. (2022). Engagement with a formative assessment rubric: A case of mathematical reasoning. International Journal of Educational Research, 111, 101899. https://doi.org/10.1016/j.ijer.2021.101899
  35. Hershkowitz, R. (2020). Shape and Space: Geometry Teaching and Learning. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 774–779). Springer International Publishing. https://doi.org/10.1007/978-3-030-15789-0_138
  36. Hoyles, C., Wolf, A., Molyneux-Hodgson, S., & Kent, P. (2002). Mathematical Skills in the Workplace. https://discovery.ucl.ac.uk/id/eprint/10001565/1/Hoyles2002MathematicalSkills.pdf
  37. Hwang, I. H. (1970). The Usability of Item-Total Correlation as the Index of Item Discrimination. Korean Journal of Medical Education, 12(1), 45–51. https://doi.org/10.3946/kjme.2000.12.1.45
  38. Jick, T. D. (1979). Mixing Qualitative and Quantitative Methods: Triangulation in Action. Administrative Science Quarterly, 24(4), 602. https://doi.org/10.2307/2392366
  39. Johari, J., Sahari, J., Abd Wahab, D., Abdullah, S., Abdullah, S., Omar, M. Z., & Muhamad, N. (2011). Difficulty index of examinations and their relation to the achievement of programme outcomes. Procedia - Social and Behavioral Sciences, 18, 71–80. https://doi.org/10.1016/j.sbspro.2011.05.011
  40. Johnson, B., & Christensen, L. (2019). Educational research: Quantitative, qualitative, and mixed approaches (7th ed.). Sage Publication.
  41. Junsay, M. (2016). Reflective learning and prospective teachers’ conceptual understanding, critical thinking, problem solving, and mathematical communication skills. Research in Pedagogy, 6(2), 43–58. https://doi.org/10.17810/2015.34
  42. Kalkbrenner, M. T. (2023). Alpha, Omega, and H Internal Consistency Reliability Estimates: Reviewing These Options and When to Use Them. Counseling Outcome Research and Evaluation, 14(1), 77–88. https://doi.org/10.1080/21501378.2021.1940118
  43. Kameenui, E. J., & Griffin, C. C. (1989). The National Crisis in Verbal Problem Solving in Mathematics: A Proposal for Examining the Role of Basal Mathematics Programs. The Elementary School Journal, 89(5), 575–593. https://doi.org/10.1086/461593
  44. Kamid, Rusdi, M., Fitaloka, O., Basuki, F. R., & Anwar, K. (2020). Mathematical communication skills based on cognitive styles and gender. International Journal of Evaluation and Research in Education, 9(4), 847–856. https://doi.org/10.11591/ijere.v9i4.20497
  45. Kania, N., Kusumah, Y. S., Dahlan, J. A., Nurlaelah, E., Gürbüz, F., & Bonyah, E. (2024). Constructing and providing content validity evidence through the Aiken’s V index based on the experts’ judgments of the instrument to measure mathematical problem-solving skills. REID (Research and Evaluation in Education), 10(1), 64–79. https://doi.org/10.21831/reid.v10i1.71032
  46. Karaali, G. (2015). Metacognition in the Classroom: Motivation and Self-Awareness of Mathematics Learners. PRIMUS, 25(5), 439–452. https://doi.org/10.1080/10511970.2015.1027837
  47. Kaya, D., & Aydın, H. (2016). Elementary Mathematics Teachers’ Perceptions and Lived Experiences on Mathematical Communication. EURASIA Journal of Mathematics, Science and Technology Education, 12(6). https://doi.org/10.12973/eurasia.2014.1203a
  48. Kelley, K., & Preacher, K. J. (2012). On effect size. Psychological Methods, 17(2), 137–152. https://doi.org/10.1037/a0028086
  49. Kingsdorf, S., & Krawec, J. (2014). Error Analysis of Mathematical Word Problem Solving Across Students with and without Learning Disabilities. Learning Disabilities Research & Practice, 29(2), 66–74. https://doi.org/10.1111/ldrp.12029
  50. Kotze, H. (2018). Competencies in Mathematical Modelling Tasks: An Error Analysis. EURASIA Journal of Mathematics, Science and Technology Education, 14(8). https://doi.org/10.29333/ejmste/91922
  51. Kustiawati, D., & Siregar, N. (2022). Problem-solving with Geogebra: How the relationship between reasoning and communication in mathematics. AIP Conference Proceedings, 020031. https://doi.org/10.1063/5.0096136
  52. Kwon, K., & Jonassen, D. H. (2011). The Influence of Reflective Self-Explanations on Problem-Solving Performance. Journal of Educational Computing Research, 44(3), 247–263. https://doi.org/10.2190/EC.44.3.a
  53. Larasati, Y., & Mampouw, H. L. (2018). Scaffolding to Solve The Problem of Comparative Matter Worth of Value and Turning Value. Math Didactic: Jurnal Pendidikan Matematika, 4(1), 47–56. http://jurnal.stkipbjm.ac.id/index.php/math
  54. Larsen, S. C., Parker, R. M., & Trenholme, B. (1978). The Effects of Syntactic Complexity upon Arithmetic Performance. Learning Disability Quarterly, 1(4), 80–85. https://doi.org/10.2307/1510980
  55. Leong, Y. H., Dindyal, J., Toh, T. L., Quek, K. S., Tay, E. G., & Lou, S. T. (2011). Teacher preparation for a problem-solving curriculum in Singapore. ZDM, 43(6–7), 819–831. https://doi.org/10.1007/s11858-011-0356-z
  56. Lestari, A. R. A., Minggi, I., & Qadry, I. K. (2019). Analisis Kesalahan dalam Menyelesaikan Soal Cerita Materi Bangun Ruang Sisi Datar Berdasarkan Prosedur Newman. SIGMA (Suara Intelektual Gaya Mtematika), 11(2), 122–129.
  57. Lithner, J. (2000). Mathematical Reasoning in Task Solving. Educational Studies in Mathematics, 41(2), 165–190. http://www.jstor.org/stable/3483188
  58. Lombasari, B. N., Subarinah, S., Azmi, S., & Kurniati, N. (2022). Analisis Kesulitan dalam Memecahkan Masalah Soal Cerita Matematika dan Bentuk Scaffolding yang Diberikan Pada Peserta Didik Kelas X SMA Al Ma’arif NU Sinah Pengembur Tahun Ajaran 2021/2022. Jurnal Ilmiah Profesi Pendidikan, 7(3c), 2007–2017. https://doi.org/10.29303/jipp.v7i3c.876
  59. Makamure, C., & Jojo, Z. M. (2022). An analysis of errors for pre-service teachers in first order ordinary differential equations. Eurasia Journal of Mathematics, Science and Technology Education, 18(6), em2117. https://doi.org/10.29333/ejmste/12074
  60. Malkewitz, C. P., Schwall, P., Meesters, C., & Hardt, J. (2023). Estimating reliability: A comparison of Cronbach’s α, McDonald’s ωt and the greatest lower bound. Social Sciences & Humanities Open, 7(1), 100368. https://doi.org/10.1016/j.ssaho.2022.100368
  61. Mammarella, I. C., Giofrè, D., & Caviola, S. (2017). Learning Geometry: the Development of Geometrical Concepts and the Role of Cognitive Processes. In Acquisition of Complex Arithmetic Skills and Higher-Order Mathematics Concepts (pp. 221–246). Elsevier. https://doi.org/10.1016/B978-0-12-805086-6.00010-2
  62. Marianti, S., Rufaida, A., Hasanah, N., & Nuryanti, S. (2023). Comparing item-total correlation and item-theta correlation in test item selection: A simulation and empirical study. Jurnal Penelitian Dan Evaluasi Pendidikan, 27(2), 133–145. https://doi.org/10.21831/pep.v27i2.61477
  63. McDonald, R. P. (1999). Test theory: A unified treatment. Lawrence Erlbaum.
  64. McNeish, D. (2018). Thanks coefficient alpha, We’ll take it from here. Psychological Methods, 23(3), 412–433. https://doi.org/10.1037/met0000144
  65. Milazoni, T. R., Maison, M., & Nizlel, N. (2022). Analisis Kesalahan Siswa Dalam Menyelesaikan Soal Cerita Matematika Berdasarkan Teori Pemrosesan Informasi dan Pemberian Scaffolding. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 11(1), 654–666. https://doi.org/10.24127/ajpm.v11i1.4705
  66. Mohamad, M. M., Sulaiman, N. L., Sern, L. C., & Salleh, K. M. (2015). Measuring the Validity and Reliability of Research Instruments. Procedia - Social and Behavioral Sciences, 204, 164–171. https://doi.org/10.1016/j.sbspro.2015.08.129
  67. Moyer, J. C., Moyer, M. B., Sowder, L., & Threadgill-Sowder, J. (1984). Story Problem Formats: Verbal versus Telegraphic. Journal for Research in Mathematics Education, 15(1), 64. https://doi.org/10.2307/748989
  68. Moyer, J. C., Sowder, L., Threadgill-Sowder, J., & Moyer, M. B. (1984). Story Problem Formats: Drawn versus Verbal versus Telegraphic. Journal for Research in Mathematics Education, 15(5), 342. https://doi.org/10.2307/748424
  69. NCTM. (2000). Principles and Standards for School Mathematics. NCTM.
  70. Newcombe, N. S., & Frick, A. (2010). Early Education for Spatial Intelligence: Why, What, and How. Mind, Brain, and Education, 4(3), 102–111. https://doi.org/10.1111/j.1751-228X.2010.01089.x
  71. Nickerson, R. (2011). Mathematical Reasoning. Psychology Press. https://doi.org/10.4324/9780203848029
  72. Ningrum, F. E., Ayu, D., & Wardhani, P. (2019). Analisis Kesalahan Siswa SD Dalam Menyelesaikan Soal Cerita Operasi Hitung Bilangan Cacah dan Pemberian Scaffolding. INDIKTIKA (Jurnal Inovasi Pendidikan Matematika), 2(1), 44–57.
  73. Novak, E., & Tassell, J. L. (2017). Studying preservice teacher math anxiety and mathematics performance in geometry, word, and non-word problem solving. Learning and Individual Differences, 54, 20–29. https://doi.org/10.1016/j.lindif.2017.01.005
  74. Novikasari, I., & Dede, Y. (2023). Toward proficiency: Developing a multiplication mathematical content knowledge test for pre-service mathematics teachers in Indonesia and Türkiye. Journal on Mathematics Education, 15(1), 115–130. https://doi.org/10.22342/jme.v15i1.pp115-130
  75. Nurjanah, R., & Jusra, H. (2022). An Analysis of Senior High School Students’ Mathematical Communication Ability Based on Self-Efficacy and Gender. Indonesian Journal of Science and Mathematics Education. https://doi.org/10.24042/ijsme.v5i1.12809
  76. OECD. (2023). PISA 2022 Results (Volume I). OECD. https://doi.org/10.1787/53f23881-en
  77. Osterlind, S. J. (1989). Constructing Test Items. Springer Netherlands. https://doi.org/10.1007/978-94-009-1071-3
  78. Öztürk, M., & Sarikaya, İ. (2021). The relationship between the mathematical reasoning skills and video game addiction of Turkish middle schools students: A serial mediator model. Thinking Skills and Creativity, 40, 100843. https://doi.org/10.1016/j.tsc.2021.100843
  79. Palinussa, A. L., Molle, J. S., & Gaspersz, M. (2021). Realistic mathematics education: Mathematical reasoning and communication skills in rural contexts. International Journal of Evaluation and Research in Education (IJERE), 10(2), 522. https://doi.org/10.11591/ijere.v10i2.20640
  80. Pamungkas, M. D., & Nugroho, H. (2020). Implementation of Space Geometry Learning Using GeoGebra to Improve Problem Solving Skills. MaPan, 8(2), 224–235. https://doi.org/10.24252/mapan.2020v8n2a4
  81. Penfield, R. D. (2013). Item analysis. In APA handbook of testing and assessment in psychology, Vol. 1: Test theory and testing and assessment in industrial and organizational psychology. (pp. 121–138). American Psychological Association. https://doi.org/10.1037/14047-007
  82. Pólya, G. (2004). How to solve it: A new aspect of mathematical method (Vol. 5). Princeton university press.
  83. Pomalato, S. W. D., Ili, L., Ningsi, B. A., Fadhilaturrahmi, F., Hasibuan, A. T., & Primayana, K. H. (2020). Student Error Analysis in Solving Mathematical Problems. Universal Journal of Educational Research, 8(11), 5183–5187. https://doi.org/10.13189/ujer.2020.081118
  84. Primadani, A. I., Mardiyana, & Triyanto. (2020). Mathematical Reasoning and Communication in TGT Learning Model with PQ4R Strategy. Journal of Physics: Conference Series, 1613(1), 012022. https://doi.org/10.1088/1742-6596/1613/1/012022
  85. Puspa, S., Riyadi, R., & Subanti, S. (2019). Profile of mathematical communication skills junior high school students in problem solving. Journal of Physics: Conference Series, 1157, 032125. https://doi.org/10.1088/1742-6596/1157/3/032125
  86. Qohar, A. (2011). Mathematical Communication: What And How To Develop It In Mathematics Learning? International Seminar and the Fourth National Conference on Mathematics Education, 1–12.
  87. Quintero, A. H. (1983). Conceptual Understanding in Solving Two-Step Word Problems with a Ratio. Journal for Research in Mathematics Education, 14(2), 102. https://doi.org/10.2307/748578
  88. Retnawati, H. (2016). Analisis Kuantitatif Instrumen Penelitian (First). Parama Publishing. www.nuhamedika.gu.ma
  89. Reynolds, C. R., Livingston, R. B., & Willson, V. (2008). Measurement and Assessment in Education. Pearson.
  90. Rizbudiani, A. D., Jaedun, A., Rahim, A., & Nurrahman, A. (2021). Rasch model item response theory (IRT) to analyze the quality of mathematics final semester exam test on system of linear equations in two variables (SLETV). Al-Jabar : Jurnal Pendidikan Matematika, 12(2), 399–412. https://doi.org/10.24042/ajpm.v12i2.9939
  91. Rogers, P. (2024). Best practices for your confirmatory factor analysis: A JASP and lavaan tutorial. Behavior Research Methods, 56(7), 6634–6654. https://doi.org/10.3758/s13428-024-02375-7
  92. Rohid, N., Suryaman, S., & Rusmawati, R. D. (2019). Students’ Mathematical Communication Skills (MCS) in Solving Mathematics Problems: A Case in Indonesian Context. Anatolian Journal of Education, 4(2), 19–30. https://doi.org/10.29333/aje.2019.423a
  93. Rosli, S., Shahrill, M., & Yusof, J. (2020). Applying the hybrid strategy in solving mathematical word problems at the elementary school level. Journal of Technology and Science Education, 10(2), 216. https://doi.org/10.3926/jotse.965
  94. Rosnawati, R., Kartowagiran, B., & Jailani, J. (2015). A formative assessment model of critical thinking in mathematics learning in junior high school. REID (Research and Evaluation in Education), 1(2), 186–198. https://doi.org/10.21831/reid.v1i2.6472
  95. Rott, B., Specht, B., & Knipping, C. (2021). A descriptive phase model of problem-solving processes. ZDM – Mathematics Education, 53(4), 737–752. https://doi.org/10.1007/s11858-021-01244-3
  96. Sandberg, J. A. C., & De Ruiter, H. (1985). The solving of simple arithmetic story problems. Instructional Science, 14(1), 75–86. https://doi.org/10.1007/BF00052438
  97. Sari, Y. M., Kartowagiran, B., Retnawati, H., & Fiangga, S. (2019). The characteristics of mathematical reasoning and proof test on indonesian high school students. Journal of Physics: Conference Series, 1200(1). https://doi.org/10.1088/1742-6596/1200/1/012007
  98. Schoenfeld, A. H. (1985). Mathematical problem solving. Academic Press.
  99. Silmi Juman, Z. A. M., Mathavan, M., Ambegedara, A. S., & Udagedara, I. G. K. (2022). Difficulties in Learning Geometry Component in Mathematics and Active-Based Learning Methods to Overcome the Difficulties. Shanlax International Journal of Education, 10(2), 41–58. https://doi.org/10.34293/education.v10i2.4299
  100. Solso, R. L., Maclin, O. H., & Maclin, M. K. (2013). Cognitive Psychology: Pearson New International Edition (Eight Editon). Pearson.
  101. Sumarsih, Budiyono, & Indriati, D. (2018). Profile of mathematical reasoning ability of 8th grade students seen from communicational ability, basic skills, connection, and logical thinking. Journal of Physics: Conference Series, 1008, 012078. https://doi.org/10.1088/1742-6596/1008/1/012078
  102. Sumpter, L., & Hedefalk, M. (2015). Preschool children’s collective mathematical reasoning during free outdoor play. The Journal of Mathematical Behavior, 39, 1–10. https://doi.org/10.1016/j.jmathb.2015.03.006
  103. Susilowati, P. L., & Ratu, N. (2018). Analisis Kesalahan Siswa Berdasarkan Tahapan Newman dan Scaffolding Pada Materi Aritmatika Sosial. Mosharafa: Jurnal Pendidikan Matematika, 7(1), 13–24. https://doi.org/10.31980/mosharafa.v7i1.337
  104. Syukriani, A., Juniati, D., & Siswono, T. Y. E. (2017). Investigating adaptive reasoning and strategic competence: Difference male and female. 020033. https://doi.org/10.1063/1.4994436
  105. Thurmond, V. A. (2001). The Point of Triangulation. Journal of Nursing Scholarship, 33(3), 253–258. https://doi.org/10.1111/j.1547-5069.2001.00253.x
  106. Tong, D. H., Uyen, B. P., & Quoc, N. V. A. (2021). The improvement of 10th students’ mathematical communication skills through learning ellipse topics. Heliyon, 7(11). https://doi.org/10.1016/j.heliyon.2021.e08282
  107. Tongco, M. D. C. (2007). Purposive Sampling as a Tool for Informant Selection. Ethnobotany Research & Applications, 5, 147–158. http://hdl.handle.net/10125/227
  108. Utami, R. W., Endaryono, B. T., & Djuhartono, T. (2018). Kemampuan Peserta Didik Dalam Menyelesaikan Soal Cerita Matematika. Faktor : Jurnal Ilmiah Kependidikan, 5(3), 187–192. https://journal.lppmunindra.ac.id/index.php/Faktor/article/view/2719
  109. van den Heuvel, E., & Zhan, Z. (2022). Myths About Linear and Monotonic Associations: Pearson’s r, Spearman’s ρ, and Kendall’s τ. The American Statistician, 76(1), 44–52. https://doi.org/10.1080/00031305.2021.2004922
  110. Verschaffel, L., Greer, B., & Corte, E. (2000). Making sense of word problems. Swets and Zeitlinger.
  111. Verschaffel, L., Schukajlow, S., Star, J., & Van Dooren, W. (2020). Word problems in mathematics education: a survey. ZDM, 52(1), 1–16. https://doi.org/10.1007/s11858-020-01130-4
  112. Viholainen, A. (2011). The view of mathematics and argumentation. Proceedings of the 7th Congress of the European Society for Research in Mathematics Education, 243–252.
  113. Viladrich, C., Angulo-Brunet, A., & Doval, E. (2017). Un viaje alrededor de alfa y omega para estimar la fiabilidad de consistencia interna. Anales de Psicologia, 33(3), 755–782. https://doi.org/10.6018/analesps.33.3.268401
  114. White, A. L. (2005). Active Mathematics In Classrooms: Finding Out Why Children Make Mistakes-And Then Doing Something To Help Them. Square One, 15(4).
  115. Wijaya, A., Retnawati, H., Setyaningrum, W., Aoyama, K., & Sugiman. (2019). Diagnosing students’ learning difficulties in the eyes of Indonesian mathematics teachers. Journal on Mathematics Education, 10(3), 357–364. https://doi.org/10.22342/jme.10.3.7798.357-364
  116. Wijaya, A., van den Heuvel-Panhuizen, M., Doorman, M., & Robitzsch, A. (2014). Difficulties in solving context-based PISA mathematics tasks: An analysis of students’ errors. The Mathematics Enthusiast, 11(3), 555–584. https://doi.org/10.54870/1551-3440.1317
  117. Wijayanti, P. S. (2020). ITEM QUALITY ANALYSIS FOR MEASURING MATHEMATICAL PROBLEM-SOLVING SKILLS. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 9(4), 1223. https://doi.org/10.24127/ajpm.v9i4.3036
  118. Yusoff, A. S. M., Durairaj, K., Mohamed, R., Peng, F. S., Abdullah, N., Ismail, H., Salleh, S. M., & Wahid, Z. (2022). Communication in Mathematics Among School Children: A Systematic Review. Journal of Advanced Research in Applied Sciences and Engineering Technology, 28(2), 275–290. https://doi.org/10.37934/araset.28.2.275290
  119. Zimmerman, D. W., Zumbo, B. D., & Williams, R. H. (2003). Bias in Estimation and Hypothesis Testing of Correlation. Psicológica, 24(1), 133–158. https://www.redalyc.org/articulo.oa?id=16924109