Main Article Content

Abstract

In the context of an increasingly data-intensive society, the integration of Computational Thinking (CT) into statistics education is essential to prepare students with the analytical and problem-solving competencies required for navigating complex data environments. Despite growing recognition of its importance, existing pedagogical practices frequently lack systematic didactical frameworks that effectively embed CT within statistical learning, particularly in higher education. Addressing this gap, the present study introduces a novel hypothetical didactical design—termed the Cuboid Framework—which systematically integrates CT components into the learning of descriptive statistics using the R programming language in a Google Colab environment. This research employed the Didactical Design Research (DDR) methodology, emphasizing the prospective and metapedadidactic stages to construct and evaluate the framework. Targeted at third-semester undergraduate students enrolled in an introductory statistics course, the Cuboid Framework aligns with learners’ developmental levels in both statistical reasoning and CT proficiency. The model is organized as a 5 × 4 × 4 structure, comprising five core statistical tasks, four structured didactical situations (action, formulation, validation, and institutionalization), and four CT elements (decomposition, pattern recognition, abstraction, and algorithmic thinking). Validation procedures included expert review through focus group discussions (FGDs) and an initial classroom implementation followed by metapedadidactic analysis. Findings reveal that the Cuboid Framework fosters a coherent learning progression, enhances students’ engagement in statistical inquiry, and supports the development of CT competencies. Classroom observations confirmed that the intentional design of didactical situations facilitates students’ cognitive adaptation to computational tasks. While preliminary analyses indicate strong theoretical and practical coherence, further retrospective studies and quantitative evaluations are necessary to ascertain the long-term effects on student learning outcomes. This study contributes a structured and theoretically grounded model for CT integration in statistics education, with implications for improving curriculum design and instructional practice in mathematics education. Future research should aim to test the scalability and efficacy of the Cuboid Framework across diverse educational settings.

Keywords

Computational Thinking Cuboid Framework Didactical Design Statistics Learning Theory of Didactical Situation

Article Details

How to Cite
Irawan, E., Rosjanuardi, R., & Prabawanto, S. (2025). How computational thinking can be integrated in statistical learning: A cuboid framework. Journal on Mathematics Education, 16(2). Retrieved from http://jme.ejournal.unsri.ac.id/index.php/jme/article/view/3477

References

  1. Abdul Hanid, M. F., Mohamad Said, M. N. H., Yahaya, N., & Abdullah, Z. (2022). Effects of augmented reality application integration with computational thinking in geometry topics. Education and Information Technologies, 27(7), 9485–9521. https://doi.org/10.1007/s10639-022-10994-w
  2. Acevedo-Borrega, J., Valverde-Berrocoso, J., & Garrido-Arroyo, M. del C. (2022). Computational thinking and educational technology: A scoping review of the literature. Education Sciences, 12(1), 39. https://doi.org/10.3390/educsci12010039
  3. Agbo, F. J., Oyelere, S. S., Suhonen, J., & Adewumi, S. (2019). A systematic review of computational thinking approach for programming education in higher education institutions. Proceedings of the 19th Koli Calling International Conference on Computing Education Research, 1–10. https://doi.org/10.1145/3364510.3364521
  4. Aho, A. V. (2012). Computation and computational thinking. The Computer Journal, 55(7), 832–835. https://doi.org/10.1093/comjnl/bxs074
  5. Akiba, D. (2022). Computational thinking and coding for young children: A hybrid approach to link unplugged and plugged activities. Education Sciences, 12(11), 793. https://doi.org/10.3390/educsci12110793
  6. Allsop, Y. (2019). Assessing computational thinking process using a multiple evaluation approach. International Journal of Child-Computer Interaction, 19(1), 30–55. https://doi.org/10.1016/j.ijcci.2018.10.004
  7. Angeli, C., & Giannakos, M. (2020). Computational thinking education: Issues and challenges. Computers in Human Behavior, 105(106185), 1–8. https://doi.org/10.1016/j.chb.2019.106185
  8. Anghileri, J. (2006). Scaffolding practices that enhance mathematics learning. Journal of Mathematics Teacher Education, 9(1), 33–52. https://doi.org/10.1007/s10857-006-9005-9
  9. Bakker, A., Smit, J., & Wegerif, R. (2015). Scaffolding and dialogic teaching in mathematics education: Introduction and review. ZDM, 47(7), 1047–1065. https://doi.org/10.1007/s11858-015-0738-8
  10. Becker, B. A., Glanville, G., Iwashima, R., McDonnell, C., Goslin, K., & Mooney, C. (2016). Effective compiler error message enhancement for novice programming students. Computer Science Education, 26(2–3), 148–175. https://doi.org/10.1080/08993408.2016.1225464
  11. Bell, C. V., & Pape, S. J. (2012). Scaffolding students’ opportunities to learn mathematics through social interactions. Mathematics Education Research Journal, 24(4), 423–445. https://doi.org/10.1007/s13394-012-0048-1
  12. Benakli, N., Kostadinov, B., Satyanarayana, A., & Singh, S. (2017). Introducing computational thinking through hands-on projects using R with applications to calculus, probability and data analysis. International Journal of Mathematical Education in Science and Technology, 48(3), 393–427. https://doi.org/10.1080/0020739X.2016.1254296
  13. Brousseau, G. (2002). Theory of didactical situations in mathematics (N. Balacheff, Trans.). Kluwer Academic Publishers.
  14. Chen, G., Shen, J., Barth-Cohen, L., Jiang, S., Huang, X., & Eltoukhy, M. (2017). Assessing elementary students’ computational thinking in everyday reasoning and robotics programming. Computers & Education, 109, 162–175. https://doi.org/10.1016/j.compedu.2017.03.001
  15. Chen, H. E., Sun, D., Hsu, T.-C., Yang, Y., & Sun, J. (2023). Visualising trends in computational thinking research from 2012 to 2021: A bibliometric analysis. Thinking Skills and Creativity, 47(3), 1–18. https://doi.org/10.1016/j.tsc.2022.101224
  16. Cutumisu, M., Adams, C., & Lu, C. (2019). A scoping review of empirical research on recent computational thinking assessments. Journal of Science Education and Technology, 28(6), 651–676. https://doi.org/10.1007/s10956-019-09799-3
  17. Dong, Y., Catete, V., Jocius, R., Lytle, N., Barnes, T., Albert, J., Joshi, D., Robinson, R., & Andrews, A. (2019). PRADA: A practical model for integrating computational thinking in K-12 education. Proceedings of the 50th ACM Technical Symposium on Computer Science Education, 906–912. https://doi.org/10.1145/3287324.3287431
  18. Guzdial, M. (2008). Education paving the way for computational thinking. Communications of the ACM, 51(8), 25–27. https://doi.org/10.1145/1378704.1378713
  19. Haseski, H. I., Ilic, U., & Tugtekin, U. (2018). Defining a new 21st century skill-computational thinking: Concepts and trends. International Education Studies, 11(4), 29. https://doi.org/10.5539/ies.v11n4p29
  20. Ilic, U., Haseski, H. I., & Tugtekin, U. (2018). Publication trends over 10 years of computational thinking research. Contemporary Educational Technology, 9(2), 131–153. https://doi.org/10.30935/cet.414798
  21. Irawan, E. (2024). Keterampilan computational thinking mahasiswa melalui penerapan desain didaktis dengan memanfaatkan perangkat lunak-R pada mata kuliah statistika [PhD Thesis, Universitas Pendidikan Indonesia]. https://repository.upi.edu/
  22. Irawan, E., & Herman, T. (2023). Trends in research on interconnection of mathematics and computational thinking. AIP Conference Proceedings, 2805, 1–9. https://doi.org/10.1063/5.0148018
  23. Irawan, E., Rosjanuardi, R., & Prabawanto, S. (2024a). Advancing computational thinking in mathematics education: A systematic review of indonesian research landscape. Jurnal Teori Dan Aplikasi Matematika, 8(1), 176–194. https://doi.org/10.31764/jtam.v8i1.17516
  24. Irawan, E., Rosjanuardi, R., & Prabawanto, S. (2024b). Harnessing the power of technology in statistics education: A comprehensive bibliometric study. Journal of Advanced Research in Applied Sciences and Engineering Technology, 58(2), 108–126. https://doi.org/10.37934/araset.58.2.108126
  25. Irawan, E., Rosjanuardi, R., & Prabawanto, S. (2024c). Promoting computational thinking through programming trends, tools, and educational approaches: A systematic review. Jurnal Teori Dan Aplikasi Matematika, 8(4), 1327–1348. https://doi.org/10.31764/jtam.v8i4.26407
  26. Irawan, E., Rosjanuardi, R., & Prabawanto, S. (2024d). Research trends of computational thinking in mathematics learning: A bibliometric analysis from 2009 to 2023. Eurasia Journal of Mathematics, Science and Technology Education, 20(3), 1–16. https://doi.org/10.29333/ejmste/14343
  27. Kansanen, P., & Meri, M. (1999). The didactic relation in the teaching-studying-learning process. Didaktik/Fachdidaktik as Science (-S) of the Teaching Profession, 2(1), 107–116.
  28. Korkmaz, Ö., Çakir, R., & Özden, M. Y. (2017). A validity and reliability study of the computational thinking scales (CTS). Computers in Human Behavior, 72, 558–569. https://doi.org/10.1016/j.chb.2017.01.005
  29. Looi, C.-K., How, M.-L., Longkai, W., Seow, P., & Liu, L. (2018). Analysis of linkages between an unplugged activity and the development of computational thinking. Computer Science Education, 28(3), 255–279. https://doi.org/10.1080/08993408.2018.1533297
  30. Nouri, J., Zhang, L., Mannila, L., & Norén, E. (2020). Development of Computational Thinking, Digital Competence and 21st Century Skills When Learning Programming in K-9. Education Inquiry, 11(1), 1–17. https://doi.org/10.1080/20004508.2019.1627844
  31. Nurjanah, N., Dahlan, J. A., & Wibisono, Y. (2021). The effect of hands-on and computer-based learning activities on conceptual understanding and mathematical reasoning. International Journal of Instruction, 14(1), 143–160. https://doi.org/10.29333/iji.2021.1419a
  32. Palts, T., & Pedaste, M. (2020). A model for developing computational thinking skills. Informatics in Education, 19(1), 113–128. https://doi.org/10.15388/infedu.2020.06
  33. Piatti, A., Adorni, G., El-Hamamsy, L., Negrini, L., Assaf, D., Gambardella, L., & Mondada, F. (2022). The CT-cube: A framework for the design and the assessment of computational thinking activities. Computers in Human Behavior Reports, 5(1), 1–56. https://doi.org/10.1016/j.chbr.2021.100166
  34. Prahmana, R. C. I., Kusaka, S., Peni, N. R. N., Endo, H., Azhari, A., & Tanikawa, K. (2024). Cross-Cultural Insights on Computational Thinking in Geometry: Indonesian and Japanese Students’ Perspectives. Journal on Mathematics Education, 15(2), 613–638. https://doi.org/10.22342/jme.v15i2.pp613-638
  35. Purwasih, R., Turmudi, & Dahlan, J. A. (2024). How do you solve number pattern problems through mathematical semiotics analysis and computational thinking? Journal on Mathematics Education, 15(2), Article 2. https://doi.org/10.22342/jme.v15i2.pp403-430
  36. Raykov, T., & Marcoulides, G. A. (2013). Basic statistics: An introduction with R. Rowman & Littlefield Publishers.
  37. Rich, K. M., Binkowski, T. A., Strickland, C., & Franklin, D. (2018). Decomposition: A K-8 Computational Thinking Learning Trajectory. Proceedings of the 2018 ACM Conference on International Computing Education Research, 124–132. https://doi.org/10.1145/3230977.3230979
  38. Rich, K. M., Franklin, D., Strickland, C., Isaacs, A., & Eatinger, D. (2022). A learning trajectory for variables based in computational thinking literature: Using levels of thinking to develop instruction. Computer Science Education, 32(2), 213–234. https://doi.org/10.1080/08993408.2020.1866938
  39. Rich, K. M., Strickland, C., Binkowski, T. A., Moran, C., & Franklin, D. (2018). K-8 learning trajectories derived from research literature: Sequence, repetition, conditionals. ACM Inroads, 9(1), 46–55. https://doi.org/10.1145/3183508
  40. Roig-Vila, R., & Moreno-Isac, V. (2020). Computational thinking in education: Bibliometric and thematic analysis. Revista de Educación a Distancia (RED), 20(63), 1–24. https://doi.org/10.6018/red.402621
  41. Sneider, C., Stephenson, C., Schafer, B., & Flick, L. (2014). Computational thinking in high school science classrooms. The Science Teacher, 81(05), 1–6. https://doi.org/10.2505/4/tst14_081_05_53
  42. So, H.-J., Jong, M. S.-Y., & Liu, C.-C. (2020). Computational thinking education in the asian pacific region. The Asia-Pacific Education Researcher, 29(1), 1–8. https://doi.org/10.1007/s40299-019-00494-w
  43. Suryadi, D. (2010). Penelitian pembelajaran matematika untuk pembentukan karakter bangsa. Prosiding Seminar Nasional Matematika dan Pendidikan Matematika UNY, 1–14.
  44. Suryadi, D. (2013). Didactical design research (DDR) to improve the teaching of mathematics. Far East Journal of Mathematical Education, 10(1), 91–107.
  45. Suryadi, D. (2019). Landasan filosofis penelitian desain didaktis (DDR). Gapura Press.
  46. Tang, K.-Y., Chou, T.-L., & Tsai, C.-C. (2020). A content analysis of computational thinking research: An international publication trends and research typology. The Asia-Pacific Education Researcher, 29(1), 9–19. https://doi.org/10.1007/s40299-019-00442-8
  47. Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148(1), 1–22. https://doi.org/10.1016/j.compedu.2019.103798
  48. Tareq, Z.-A., & Yusof, R. J. R. (2024). Modeling a problem-solving approach through computational thinking for teaching programming. IEEE Transactions on Education. https://doi.org/10.1109/TE.2024.3354425
  49. Tekdal, M. (2021). Trends and development in research on computational thinking. Education and Information Technologies, 26(5), 6499–6529. https://doi.org/10.1007/s10639-021-10617-w
  50. Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2015). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127–147. https://doi.org/10.1007/s10956-015-9581-5
  51. Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215
  52. Wing, J. M. (2017). Computational thinking’s influence on research and education for all. Italian Journal of Educational Technology, 25(2), 7–14. https://doi.org/10.17471/2499-4324/922
  53. Zhong, B., Wang, Q., Chen, J., & Li, Y. (2016). An exploration of three-dimensional integrated assessment for computational thinking. Journal of Educational Computing Research, 53(4), 562–590. https://doi.org/10.1177/0735633115608444