Main Article Content

Abstract

Comprehending and formulating strategies for geometry problems that require higher-order thinking skills (HOTS) is crucial in enhancing mathematics education. This study implements a qualitative case study approach to comprehend how prospective mathematics teachers with varying Adversity Quotients (AQ) solve geometry Higher-Order Thinking Skill (HOTS) problems. We selected 3 participants from 167 Indonesian prospective mathematics teachers to solve the three- and two-dimensional HOTS problems and were invited to an interview session. The three participants represent three types of participants: a climber student (high AQ), a camper student (medium AQ), and a quitter student (low AQ). Our findings show that each student had different responses to deal with the obstacles they faced while solving the problem. The climber student is more adept at solving problems than the camper and quitter students. In addition to identifying specific implications, this study offers a comprehensive understanding of AQ's significant role in solving mathematical problems. This knowledge serves as a concrete foundation for guiding the future advancement of curricula, assessment methods, and instructional approaches in mathematics education, particularly in the field of geometry. This research contributes to enhancing educational practices and policies on a broader scale.

Keywords

Adversity Quotient Geometry HOTS Problems Problem-Solving

Article Details

How to Cite
Anwar, L., Sa’dijah, C., Murtafiah, W., & Huljannah, M. (2024). Adversity quotient of Indonesian prospective mathematics teachers in solving geometry higher-order thinking skills problems. Journal on Mathematics Education, 15(1), 79–98. https://doi.org/10.22342/jme.v15i1.pp79-98

References

  1. Amir, Z., Risnawati, Nurdin, E., Azmi, M. P., & Andrian, D. (2021). The increasing of math adversity quotient in mathematics cooperative learning through metacognitive. International Journal of Instruction, 14(4), 841–856. https://doi.org/10.29333/iji.2021.14448a
  2. Bennu, S. (2012). Adversity Quotient: Kajian kemungkinan pengintegrasiannya dalam pembelajaran matematika [Adversity Quotient: Study of the possibility of its integration in mathematics learning]. Aksioma, 1(1), 55–62.
  3. Cesaria, A., & Herman, T. (2019). Learning obstacle in geometry. In Journal of Engineering Science and Technology (Vol. 14, Issue 3).
  4. Creswell, J. W. ., & Poth, C. N. (2007). Qualitative inquiry and research design: Choosing among five approaches (2nd ed.). Sage publication.
  5. Ďuriš, V., Šumný, T., & Pavlovičová, G. (2019). Student solutions of non-traditional geometry tasks. TEM Journal, 8(2), 642–647. https://doi.org/10.18421/TEM82-44
  6. Fauziah, M., Marmoah, S., Murwaningsih, T., & Saddhono, K. (2020). The effect of thinking actively in a social context and creative problem-solving learning models on divergent-thinking skills viewed from adversity quotient. In European Journal of Educational Research (Vol. 9, Issue 2, pp. 537–568). Eurasian Society of Educational Research. https://doi.org/10.12973/eu-jer.9.2.537
  7. Fauziyah, I. N. L. (2013). Creative Thinking Process of Grdae X student in solving Geometric problem in term of Adversity Quotient (AQ). Jurnal Pendidikan Matematika Solusi, 1(1), 75–89.
  8. Firmansyah, F. F., Sa’dijah, C., Subanji, S., & Qohar, A. (2022). Characterizations of Students ’ Metacognition in Solving Geometry Problems through Positioning Group Work. 11(3), 1391–1398. https://doi.org/10.18421/TEM113
  9. Hidayat, W., Noto, M. S., & Sariningsih, R. (2019). The influence of adversity quotient on students’ mathematical understanding ability. Journal of Physics: Conference Series, 1157(3), 1–6. https://doi.org/10.1088/1742-6596/1157/3/032077
  10. Hidayat, W., Wahyudin, W., & Prabawanto, S. (2018). The Mathematical Argumentation Ability and Adversity Quotient (AQ) of Pre-Service Mathematics Teacher. Journal on Mathematics Education, 9(2), 239–248.
  11. Hulaikah, M., Degeng, I. N. S., Sulton, & Murwani, F. D. (2020). The effect of experiential learning and adversity quotient on problem solving ability. International Journal of Instruction, 13(1), 869–884. https://doi.org/10.29333/iji.2020.13156a
  12. Huljannah, M., Sa’dijah, C., & Qohar, A. (2018). Profil berpikir kreatif matematis mahasiswa pendidikan guru sekolah dasar [Profile of mathematical creative thinking of elementary school teacher education students]. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 3(11), 1428-1433.
  13. Isnaen, N. S. F., & Budiarto, M. T. (2018). Profil berpikir reflektif siswa dalam memecahkan masalah matematika ditinjau dari adversity quotient [Students' reflective thinking profile in solving mathematical problems in terms of the adversity quotient]. MATHEdunesa, 7(1), 68–73
  14. Kandaga, T., Rosjanuardi, R., & Juandi, D. (2022). Epistemological Obstacle in Transformation Geometry Based on van Hiele’s Level. Eurasia Journal of Mathematics, Science and Technology Education, 18(4). https://doi.org/10.29333/ejmste/11914
  15. Korstjens, I., & Moser, A. (2018). Series: Practical guidance to qualitative research. Part 4: Trustworthiness and publishing. European Journal of General Practice, 24(1), 120–124. https://doi.org/10.1080/13814788.2017.1375092
  16. Kusumadhani., Waluya., & Rusilowati. (2015). Mathematics literacy based on adversity quotient on the discovery learning and guilford approach. International Conference on Mathematics, Science, and Education, 2015(Icmse), 18–23.
  17. Masfingatin, T. (2013). Thinking Process of Junior Secondary School Student in Solving Mathematical Problem in term of Adversity Quotient. Jurnal Ilmiah Pendidikan Matematika, 2(1), 1–8.
  18. Miles, M. B., & Huberman, A. M. (1994). An expanded sourcebook: Qualitative data analysis. Sage.
  19. Misu, L., & Rosdiana. (2013). Devolepment of Learning Behaviour Theory in the Relevancy with Mathematical Problem Solving in Senor Secondary School. Proceeding in National Seminar of Mathematics and Mathematics Education.
  20. Murwaningsih, T., & Fauziah, M. (2022). The Effectiveness of the TASC, CPS, and di on Divergent Thinking Skill at Elementary School in Indonesia. International Journal of Instruction, 15(1), 167–184. https://doi.org/10.29333/iji.2022.15110a
  21. NCTM. (2000). Six Principles for School Mathematics. In National Council of Teachers of Mathematics (pp. 1–6).
  22. Nowell, L. S., Norris, J. M., White, D. E., & Moules, N. J. (2017). Thematic Analysis: Striving to Meet the Trustworthiness Criteria. International Journal of Qualitative Methods, 16(1). https://doi.org/10.1177/1609406917733847
  23. Polya, G. (1962). Mathematical Discovery on Understanding, Learning, and Teaching Problem Solving. John Wiley & Sons Ltd.
  24. Polya, G. (1971). How To Solve It: A New Aspect of Mathematical Method. Princeton University Press.
  25. Purnomo, H., Sa’dijah, C., Cahyowati, E. T. D., Nurhakiki, R., Anwar, L., Hidayanto, E., & Sisworo, S. (2021). Gifted students in solving HOTS mathematical problems. AIP Conference Proceedings, 2330(March). https://doi.org/10.1063/5.0043728
  26. Ratna, H., Roemintoyo, R., & Usodo, B. (2020). The Role of Adversity Quotient in the Field of Education: A Review of the Literature on Educational Development. International Journal of Educational Methodology, 6(3), 507–515. https://doi.org/10.12973/ijem.6.3.507
  27. Rumanová, L., Vallo, D., & Laššová, K. (2020). Students’ Ability to Solve Geometry Problems with Emphasis on Interdisciplinary Relations. TEM Journal, 9(4), 1755–1759. https://doi.org/10.18421/TEM94-57
  28. Sa’dijah, C. (2007). Sikap kritis dan kemampuan pemecahan masalah siswa perempuan dengan menggunakan pembelajaran matematika konstruktivisme [The Critical Attitude and Problem-Solving Ability of Female Students Using Constructivism Mathematics]. Jurnal MIPA Dan Pembelajarannya, 36(2), 133–146.
  29. Sa’dijah, C., Sa’diyah, M., Sisworo, & Anwar, L. (2020). Students’ mathematical dispositions towards solving HOTS problems based on FI and FD cognitive style. AIP Conference Proceedings, 2215(April). https://doi.org/10.1063/5.0000644
  30. Sahyar, R. Y. F. (2017). The Effect of Problem-Based Learning Model (PBL) and Adversity Quotient (AQ) on Problem-Solving Ability. American Journal of Educational Research, 5(2), 179–183. https://doi.org/10.12691/education-5-2-11
  31. Sari, C. K., Sutopo., & Aryuna, D. (2016). The Profile of Students’ Thinking in Solving Mathematics Problems Based on Adversity Quotient. Journal of Research and Advances in Mathematics Education, 1(1), 36–48.
  32. Siswono, T. Y. E. (2006). Proses Berpikir Kreatif Siswa Dalam Memecahkan [Process of Student’s Creative Thinking in Solving and Posing Mathematical Problem]. Jurnal Ilmu Pendidikan, September, 1–14.
  33. Stoltz, P. (1997). Adversity Quotient: Turning Obstacles into Opportunities.
  34. Sudirman., Runisah., Kusumah, Y. S., & Martadipura, B. A. P. (2023). Epistemological Obstacle in 3D Geometry Thinking: Representation, Spatial Structuring, and Measurement. Pegem Journal of Education and Instruction, 13(4). https://doi.org/10.47750/pegegog.13.04.34
  35. Suhandoyo, G., & Wijayanti, P. (2016). Profil Kemampuan Berpikir Kreatif Siswa dalam Menyelesaikan Soal Higherorder Thinking ditinjau dari Adversity Quotient (AQ) [Profile of Students’ Creative Thinking Ability in Solving Higher Order Thinking Questions in terms of Adversity Quotient (AQ)]. MATHEdunesa, 3(5), 156–165.
  36. Sulistyowati, E. (2009). Pemecahan masalah dalam pembelajaran matematika SD/MI [Problem Solving in Elementary School Mathematics Learning]. Jurnal Pendidikan Guru Madrasah IbtidaiyahI, 1(1), 80–98.
  37. Suryaningrum, C. W., Purwanto, P., Subanji, S., Susanto, H., Ningtyas, Y. D. W. K., & Irfan, M. (2020). Semiotic reasoning emerges in constructing properties of a rectangle: a study of adversity quotient. Journal on Mathematics Education, 11(1), 95–110. https://doi.org/10.22342/jme.11.1.9766.95-110
  38. Susiswo., Sa’dijah, C., Nurjanah, M. T., & Anwar, L. (2021). Schematic representation: Solving TIMSS problems in algebra content. AIP Conference Proceedings, 2330(March), 40001. https://doi.org/10.1063/5.0043735
  39. Widjajanti, D. B. (2009). Kemampuan Pemecahan Masalah Matematis Mahasiswa Calon Guru Matematika: Apa dan Bagaimana Mengembangkannya [Mathematical Problem-Solving Ability for Prospective Mathematics Teacher Students: What and How to Develop It]. Seminar Nasioanal FMIPA, 5, 1–11. http://staff.uny.ac.id/sites/default/files/131569335/Makalah_5_Desember_UNY_Jadi.pdf
  40. Widodo, W., Gustari, I., & Chandrawaty, C. (2022). Adversity Quotient Promotes Teachers’ Professional Competence More Strongly Than Emotional Intelligence: Evidence from Indonesia. Journal of Intelligence, 10(3). https://doi.org/10.3390/jintelligence10030044
  41. Yani, M., Ikhsan, M., & Marwan. (2016). Proses berpikir siswa sekolah menengah pertama dalam memecahkan masalah matematika berdasarkanlangkah-langkah polya [Middle School Student Thinking Process in Solving Mathematics Problems Based on Polya’s Steps based on Adversity Quotient]. Jurnal Pendidikan Matematika, 10(1), 43–58. http://dx.doi.org/10.22342/jpm.10.1.3278.42-57
  42. Yin, R. K. (2018). Case Study Research and Applications Sixth Edition (6th ed.). Sage publications.
  43. Yohanes, B., Subanji., & Sisworo. (2016). Beban Kognitif Siswa dalam Pembelajaran Materi Geometri [Students’ Cognitive Burden in Learning Geometry Materials]. Jurnal Pendidikan: Teori, Penelitian Dan Pengembangan, 1(2), 187–195. http://journal.um.ac.id/index.php/jptpp/article/view/6121